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Abstract. Curcumin has been shown to exert therapeutic or 
protective effects against a variety of diseases, such as cancer, 
pulmonary diseases, neurological, liver, metabolic, autoim-
mune, cardiovascular diseases and numerous other chronic 
ailments. Over 116 clinical studies on curcumin in humans 
were registered with the US  National Institutes of Health 
in 2015. However, it is mystifying how curcumin can be so 
effective in the treatment of many diseases since it has very low 
water solubility and bioavailability. Furthermore, curcumin is 
not stable under various conditions; its degradation or conden-
sation into different bioactive compounds may be responsible 
for its biological activities rather than curcumin itself. In this 
review, we provide evidence of curcumin degradation and 
condensation into different compounds which have or may 
have health benefits themselves. Literature reviews strongly 
suggest that these molecules contribute to the observed health 
benefits, rather than curcumin itself.
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1. Introduction

Curcumin is the principal constituent of turmeric i.e.,  the 
ground rhizomes of Curcuma longa, which contains two other 
curcuminoids: desmethoxycurcumin and bis-desmethoxycur-
cumin (1). Turmeric is widely used as a spice mostly in Asian 
countries. However, it is also used to treat acne, psoriasis, 
dermatitis and rash. It should be stressed that traditionally, 
turmeric was suspended in whole milk or buttermilk that 
dissolved it in fat fractions and/or stabilized curcumin (2). 
Over the past few decades, preclinical and clinical studies have 
revealed that curcumin is active against variety of diseases, 
such as cancer and pulmonary diseases, as well as neurological, 
liver, metabolic, autoimmune and cardiovascular diseases, and 
numerous other chronic ailments (3-6). Over 116 clinical studies 
on curcumin in humans were registered with the US National 
Institutes of Health in 2015 encomapssing a number of condi-
tions, such as cancer, cognitive disorders, gastrointestinal 
diseases and psychiatric conditions. In humans, the administra-
tion of curcumin at up to 12 g per day has not been found to 
exert any toxic effects (7-10).

One of the puzzling questions is how curcumin can be so 
effective in the treatment of diseases, since it has a very low 
water solubility and bioavailability. For example, the oral 
dose of 8 g/day in humans translates to low nanogram levels 
of circulating curcumin in plasma (only 22-41 ng/ml) (11,12). 
Moreover, curcumin is not stable under various conditions, 
such as aqueous phosphate buffer or serum-free medium at 
37˚C, degrading to the bioactive compounds, including ferulic 
acid, feruloylmethane and vanillin, which may be responsible 
for its biological activities rather than curcumin itself (12,13).

In view of the very low bioavailability of curcumin as 
observed in clinical studies, the role of the degradation or 
condensation products should be taken into consideration when 
evaluating the activity of curcumin in various diseases.

2. Physico-chemical properties of curcumin

Curcumin (IUPAC name: (1E,6E)-1,7-bis(4-hydroxy-3-metho
xyphenyl)-1,6-heptadiene-3,5-dione) is, practically insoluble 
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in water at a neutral and lower pH, but is soluble in acetone, 
dichloromethane, methanol, ethanol, alkali and oils. The water 
solubility of curcumin may be increased by its incorporation 
into various surfactants, such as sodium dodecyl sulfate, 
polysaccharides, polyethylene glycol and cyclodextrins, as well 
as others (13,14). In addition, in aqueous solutions and at an 
alkaline pH, the acidic phenol group in curcumin dissociates its 
hydrogen, forming the phenolate ion(s) that render the solubility 
of curcumin in water somewhat possible (15-18). Curcumin is 
a natural polyphenol that is responsible for the yellow color 
of turmeric and exhibits keto-enol tautomerism (Fig. 1). The 
enol form is more energetically stable in the solid phase and, 
depending on the solvent, up to 95% can be in the enol form (1). 
Three reactive functional groups, namely diketone moiety and 
two phenolic groups determine the activity of curcumin. The 
biologically important chemical reactions of curcumin are the 
following: the hydrogen donation leading to oxidation, revers-
ible and irreversible nucleophilic addition (Michael reaction), 
hydrolysis, degradation and enzymatic reactions (19).

In a previous review article, Agrawal and Mishra analyzed 
studies  (years 1815-2009) on curcumin and 728 curcumin 
analogs (20). This very large group of compounds was tested for 
pharmacological properties and mostly on anticancer activity 
on different cell lines. Some analogs have been shown to exhibit 
antioxidant, anti-mutagenic and anti-HIV activities (21), as well 
as anti-angiogenic anti-malaria and anti-tuberculosis activi-
ties (7) or anti-inflammatory activities [cyclooxygenases (COX) 
inhibitors]. Based on a literature search, the authors concluded 
the following (Fig. 2): the anticancer properties of curcumi-
noids depend on the presence of OH groups in the phenolic 
ring (entries 4 and 4'). These groups are an electron donor to 
free radicals. The methoxy group at position 3 and 3' increases 
the antioxidant properties of curcuminoids; substitution in the 
2 and 2' positions increases all activities than the unsubstituted 
analogs; cyclization in the central part of the compound and 
the introduction of heteroatoms (oxygen and nitrogen) leads 
to the formation of compounds with enhanced antitumor and 
anti-angiogenic activities; attaching solubilizing groups to the 
OH group in position 4 and 4' is responsible for the cytotoxicity 
of curcuminoids; the elimination of one of the methoxy group 
reveals the effect of tuberculosis (7); conversion of methoxy 
groups to hydroxyl increases the anti-HIV activity (21).

3. Alkaline degradation and autoxidation of curcumin

Wang et al (13) incubated curcumin in 0.1 M phosphate buffer, 
pH 7.2 at 37˚C, and found that 90% was degraded in 30 min. 
Trans-6-(4-hydroxy-3-methoxyphenyl)-2,4-dioxo-5-hexenal, 
vanillin, ferulic acid and feruloyl methane (Fig. 3A-D) were 
identified as degradation products (13). This is a plausible 
explanation of the biological activity of curcumin, since the 
degradation products have better aqueous solubility as reflected 
by their respective logP values: 1.42 for ferulic acid and 1.09 
for vanillin, lower than the keto and enol form of curcumin, 
which are respectively 2.56 and 2.17 (12). Moreover, it has 
been reported that ferulic acid inhibits COX-1 and  -2 and 
suppresses the activation of nuclear factor-κB (NF-κB), which 
are known to be important targets in the prevention of cancer 
development (12,22,23). Vanillin as well can inhibit COX-2 
gene expression and NF-κB activation (12,24).

Shen and Ji (12), in a comprehensive review of curcumin 
degradation, described the curcumin-mediated inhibition 
of xanthine oxidase that is involved in the pathogenesis of 
many diseases. The authors described molecular modeling, 
demonstrating that all degradation products can enter into the 
binding pocket of an enzyme. Surprisingly, curcumin itself 
failed to efficiently fit within the binding pocket of xanthine 
oxidase and only entered the binding pocket with low binding 
affinity (12). This is consistent with the experimental findings 
that the degradation products (ferulic acid, vanillin, ferulic acid 
and feruloyl methane), rather than curcumin itself can inhibit 
xanthine oxidase (12,25,26).

In a previous study, Gordon and Schneider demonstrated 
that the cleavage of the heptadienedione chain, resulting in 
vanillin, ferulic acid and feruloylmethane as products, was not 
the prevailing degradation reaction (27). Rather, they proposed 
that the degradation of curcumin is a spontaneous autoxidation, 
free radical-driven incorporation of oxygen and that the major 
product of this process is a bicyclopentadione (15,27). It has 
been reported that different product profiles of curcumin autox-
idation reactions are dependent on time. In reactions between 
20-45  min, the chromatograms exhibit peaks, indicating 
spiroepoxide and vinylether as major products (Fig. 3E-G), 
and dihydroxy, ketohydroxy and hemiketal cyclopentadiones 
as minor products. Degradation between 30 min and 4 h also 
produces the bicyclopentadiones as major products and, several 
unidentified chemicals. When autoxidation is longer than 4 h, 
bicyclopentadione is detected as well (28,29).

Naturally occurring polyphenols have been shown to 
act with topoisomerase II, increasing the levels of topoisom-
erase  II-mediated DNA cleavage. Topoisomerase poisons 
are used in anticancer and antibacterial therapies. Thus, 
Ketron et al (30) investigated whether curcumin, its structurally 
related degradation products (vanillin, ferulic acid and feruloyl-
methane) and its oxidative metabolites exert any effects on the 
DNA cleavage of human topoisomerase IIα and IIβ. Curcumin, 
bicyclopentadione, vanillin, ferulic acid and feruloylmethane 
were shown to have no effect on DNA cleavage. However, 
intermediates of the curcumin oxidation pathway increased the 
level of DNA cleavage by both enzymes ~4-5-fold. Moreover, 
under conditions that promote oxidation, curcumin enhanced 
topoisomerase II-mediated DNA cleavage even further (30).

Gordon et al (28) also demonstrated that the product of 
curcumin oxidation, a stable spiroepoxide, was able to poison 
recombinant human topoisomerase IIα and that this process 
was significantly increased in the presence of potassium ferri-
cyanide, indicating that oxidative conversion was needed to 
achieve full DNA cleavage activity. They concluded that oxida-
tive metabolites may be responsible for the biological effects of 
curcumin (28).

4. Photodegradation of curcumin

It is common knowledge that turmeric stains can be removed 
by exposure to sunlight. This is due to the fact that curcumin 
absorbs strongly in the visible wavelength range, making it 
predisposed to degradation and modification in daylight and arti-
ficial lighting. The photodegradation of curcumin takes place in 
solid state, as well as in different organic solvents (14,18,31‑34). 
However, the composition, degradation kinetics and the relative 
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abundance of the degradation products differ, depending on the 
physical state of the compound and the conditions.

Previously, the photochemical degradation of solid state 
curcumin exposed to sunlight for 120 h yielded vanillin (34%), 
ferulic aldehyde (0.5%), ferulic acid (0.5%), vanillic acid (0.5%) 
and three unidentified compounds. The photodegradation of 
dissolved curcumin depends on the solvent and wavelength. 
When curcumin was dissolved in isopropanol and irradiated 
for 4 h at 400-510 nm, then similar products as in the case 
of light-irradiated crystalline curcumin were observed, such 
us vanillin, vanillic acid and ferulic acid, in addition to alde-
hyde 4-vinylguaiacol (34).

Exposure to visible light inflicts more degradation than 
UV light; the irradiation of curcumin in 254-nm in methanol 
has been shown to produce three unspecified degradation 
products, whereas irradiation with daylight produces five 
unspecified degradation chemicals products (31). The exposure 
of curcumin to visible light is solvent-dependent. Irradiation 
with light (400-750-nm) for 4 h was shown to be associated 
with cyclization at one of the o-methoxyphenyl groups, producing 
7-hydroxy-1-[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]- 
6-methoxy-naphthalen-2(1H)-one in isopropanol, methanol 
and chloroform, but not in acetonitrile and ethyl acetate (32,34). 
Galer and Šket irradiated acetonitrile solution of curcumin by 

Figure 1. Curcumin coexists in keto and enol forms; the enol form is the dominant type.

Figure 2. Structure-activity relationships of curcumin analogs.

Figure 3. Degradation of curcumin to: (A) trans-6-(4-hydroxy-3-methoxyphenyl)-2,4-dioxo-5-hexenal; (B) ferulic acid; (C) feruloyl methane; (D) vanilin (13). 
(E) spiroepoxide; (F) vinylether; (G) bicyclopentadione (28,91).
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light (350 nm) and found that 90% of all formed products 
included 3,5-dimethoxybenzaldehyde, 3,5-dimethoxybenzoic 
acid and Z and E isomers of 3-(3,5-dimethoxyphenyl)propenoic 
acid (35).

It has also been reported that the photodegradation of 
curcumin involves the formation of the excited states and 
generation of singlet oxygen that is responsible for the photobio-
logical and photodynamic activity of curcumin (19,33). Thus, 
it was postulated that the degradation of curcumin following 
photoexcitation must proceed though the triplet excited state of 
curcumin (19). Curcumin is photoactivated by blue light (420-
480 nm) that has limited tissue penetration. That property 
makes curcumin an ideal surface antibacterial agent for oral or 
skin disinfection, particularly for antibiotic-resistant bacterial 
strains as it does not affect healthy tissue (36-38).

An interesting observation was previously made when 
studying the interaction of curcumin with lipoxygenase (LOX) 
by a single-crystal X-ray analysis, showing the complex 
Enz:Fe‑O-O-R with the curcumin degradation product 
instead, identified as 4-hydroperoxy-2-methoxyphenol bound 
to the enzyme's iron cofactor. Irradiation by X-ray is known 
to produce free radicals, but curcumin itself is stable under 
such conditions. LOX is a very good biocatalyst stimulating 
many reactions, neither of which would lead to the observed 
product. Thus, it was obvious that the X-ray radiation, LOX 
and curcumin properties together were responsible for the 
curcumin transformation to this peroxide, which converts it 
into 2-methoxycyclohexa‑2,5-diene‑1,4-dione (39). While the 
enzyme in that experiment was of plant origin, humans do have 
six LOXs, four of which (5-, 12S-, 12R-LOX and eLOX-3, [for 
comparison see (40)] have a highly similar structure of the enzy-
matic active site. X-rays radiation used for curative purposes 
in humans often causes severe side-effects, including inflam-
matory responses caused by various eicosanoids produced by 
oxygenases: COX and LOX and cytochrome P450 (CYP450). 
It may be worth exploring whether and how curcumin may 
be utilized during radiation therapy to improve the treatment 
outcomes and the comfort of patients.

5. Curcumin complexes with metals

Curcumin can form complexes with transition metals to 
protect against degradation in the treatment of Alzheimer's 
disease (41,42). Several curcumin complexes with metals (Cu, 
Mn, V, Ga and In) have been synthesized and evaluated for their 
biological activity (43-49). However, all these metallocomplexes 

have been synthetized under high temperature conditions, 
reflux at 100˚C in the presence of different organic solvents 
for 3 h. Zebib et al (50) synthesized curcumin complexes with 
divalent ions of Zn2+, Cu2+, Mg2+ and Se2+, in glycerol/water 
solution and room temperature (50) (Fig. 4). They found that 
all complexes were stable in water at pH 6.5 up to 30 h at 
37˚C. All complexes rapidly decomposed by demetallization at 
acidic pH 2 and greatly decreased at higher pH 10. At pH 7.0, 
in phosphate buffer, curcumin was degraded after 1 h, while 
<5% of complexes were degraded. The authors estimated that 
the stability of curcumin metal complexes at pH 7 was ~20-fold 
greater than that of curcumin alone (50).

John et al (49) synthetized four synthetic curcuminoids 
and their Cu2+ metallocomplexes. Using L929 mouse fibrosar-
coma cells, they found that the concentration required for the 
50% inhibition of cell growth was ~10 µg/ml for curcuminoids, 
but only 1 µg/ml for their copper counterparts. Moreover, they 
observed a significant reduction (p<0.001) in tumor volume 
in mice treated with copper chelates of curcuminoids (49). 
Mei et al  (51) investigated the anti-ulcerogenic effects of a 
Zn-curcumin chelate in mice. Treatment with Zn-curcumin 
reduced gastric lesions in a dose-dependent manner (12, 24 
and 48 mg/kg) in comparison with the control group (51). In a 
different study from the same group, the effects of Zn-curcumin 
on hemorheological alterations, oxidative stress and liver injury 
in a rat model of acute alcoholism were investigated. They 
found that the oral dose of Zn-chelated curcumin prevented the 
alcohol-induced increase in malondialdehyde (MDA) levels in 
serum and the reduction in glutathione levels and superoxide 
dismutase  (SOD) activity. Furthermore the Zn-curcumin 
complex inhibited ethanol-induced liver injury. In addition, 
this curcumin derivative reduced the alcohol-induced elevation 
of blood viscosity, plasma viscosity, erythrocyte aggregation 
index and hematocrit. In all of these experiments Zn-curcumin 
was found to be more effective than curcumin (52).

In another study, Refat (53) synthesized curcumin 
complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) 
and Zn(II) and tested the antibacterial and antifungal activity. 
Only the cobalt [Co(II)]‑curcumin complex exhibited antibac-
terial activity against three bacterial strains (Bacillus subtilis, 
Pseudomonas aeruginosa and Staphylococcus aureus) (53).

6. Interaction of enzymes with curcumin

Curcumin interacts with very large number of proteins, 
such us albumin  (54), Ca2+-ATPase of the sarcoplasmic 

Figure 4. Proposed structure of 1:1 metal (Cu, Mg and Zn) curcumin complexes and 1:2 selenium complex (50).
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reticulum (55,56), Ca2+-dependent protein kinase (CDPK) (57), 
COX-2 (58,59), LOX (39,60), LOX-5 (61), pp60c-src tyrosine 
kinase (62,63), PKC (63), xanthine oxidase (64,65) and many 
others  (66). Dr  Duke's Phytochemical and Ethnobotanical 
Database (https://phytochem.nal.usda.gov/phytochem/search) 
provides a long list of curcumin anti- and pro-health properties. 
It is known as an inhibitor of the oxygenases 5- and 12-LOX, 
COX-2 and CYP450, but an inducer of lipase which is up in the 
arachidonic acid pathway. It can inhibit protein kinase C (PKC), 
protein tyrosine kinase (PTK), IKB-kinase and IKK involved in 
NF-κB signaling pathway, tumor necrosis factor (TNF), topoi-
somerase I and II, vascular endothelial growth factor (VEGF), 
sortase A and ornithine decarboxylase. It promotes maltase and 
sucroses, and glutathione synthetase activity, while it suppresses 
amyloid β activity. This list, probably far from complete, shows 
that curcumin has a very broad range of activities and that its 
impact would depend on dose and environment.

Computational molecular modeling methods have shown 
that curcumin can bind into the central active pocket of soybean 
LOX-3 lipoxygnase (39). However, the solved X-ray structure of 
LOX shows the photodegradation product of curcumin (Fig. 5). 
That was based on the size, volume and position of the unoc-
cupied (Fo-Fc) difference map (39,60).

7. Changes in the body

Interestingly, curcumin has is metabolized differently in the 
mammalian body depending on the type of administration (oral, 
intravenous or intraperitoneal). Curcumin administered orally 
undergoes glucuronidation and sulfation to the glucuronide of 
hexahydrocurcumin (67). However, when administered intrave-
nously or intraperitoneally, it undergoes a reduction that leads to 
the formation of tetrahydrocurcumin and hexahydrocurcumin, 
the two major metabolites of curcumin in body fluids, organs 

Figure 5. Based on molecular modeling (92,93), curcumin can fit into the soybean lipoxygenases-3 (LOX-3) lipoxygnase central cavity: (A) gray, keto form, 
yellow, enol form. Surface shown as: brown according to the lipophilic properties; blue, hydrophilic properties of the residues lining the cavity. Iron is indicated 
by an orange sphere, and selected residues are shown as stick models to illustrate curcumin's positioning. (B) Lipoxygnase central cavity molecule with the 
observed photodegradation product (carbon in green, oxygen in red) near the iron atom (in orange). Reprinted with permission from and based on struc-
ture (39,60). Permission to reprint part A granted by the editor.
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and cells (68), and two minor metabolites: octahydrocurcumin 
and dihydrocurcumin. Curcumin is poorly absorbed from the 
gastrointestinal tract after oral intake, with extremely low 
concentrations being detected only in bile, urine (67,69) and 
blood plasma (70). Furthermore, in available tissue samples 
obtained during surgery from patients administered high doses 
of curcumin, either no curcumin, or very low concentrations 
of curcumin conjugates were detected (71). Despite the lower 
bioavailability, in clinical investigations, curcumin has been 
shown to have therapeutic potential in various human diseases. 
The main activity of curcumin seems to be connected with 
its modulatory activity of cell signaling pathways and tran-
scription factors, such as NF-κB, activator protein 1 (AP-1) 
and mitogen-activated protein kinase (MAPK) (72), and its 
suppressive effects on the expression of inflammatory cyto-
kines, such as interleukin-6  (IL-6), IL-1β, TNF-α, matrix 
metalloproteinase (MMP)-2 and MMP-9 (73).

Periodontitis, as an imbalance between biofilm and immune 
host reaction, is an opportunistic and chronic infection in 
which the above-mentioned cell signaling pathways regulating 
the expression of inflammatory mediators have become prom-
ising therapeutic targets (74). The oral cavity can be easily 
used to observe the reactions of tissue to curcumin in vitro 
and in vivo. In many animal studies, the antioxidant (75) and 
anti-inflammatory (76), as well as the angiogenic and wound-
healing effects of curcumin,  by increasing the number of 
fibroblasts and promoting collagen synthesis (77), or by modu-
lating urokinase plasminogen activator (uPA) expression (78), 
have been demonstrated. Interestingly, curcumin does not 
prevent alveolar bone resorption in vivo in rats (76), but inhibits 
RANKL-induced osteoclastogenesis in vitro (79). Guimarães 
et al also observed the lack of inhibition of bone resorption 
in an experimental model of lipopolysacharide (LPS)-induced 
periodontal disease  (76), which is surprising, keeping in 
mind that curcumin was shown to significantly inhibit 
Porphyromonas gingivalis LPS-induced TNF-α and IL-1β 
production (80). Curcumin has also exhibited exhibited bacte-
ricidal activity against Porphyromonas gingivalis, Prevotella 
intermedia, Fusobacterium nucleatum and capnocytophaga at 
a minimal inhibitory concentration (MIC) of 1 mg/ml by the 
local application into periodontal pockets in humans (81). The 
results of the benzoyl-DL-arginine-naphthylamide (BANA) 
test, which verifyied the presence of Tannerella forsythia, 
Treponema denticola, Porphyromonas gingivalis and capno-
cytophaga species, was similar for 1% curcumin solution and 
0.2% chlorhexidine gluconate in subgingival irrigation. The 
only difference was the earlier re-colonization by periopatho-
gens places treated with curcumin (82). Curcumin exhibits a 
local activity in the chemopreventive therapy of premalignant 
lesions for oral cancer. In an in  vitro model consisting of 
primary cultures of normal epithelial cells, cell lines derived 
from dysplastic leukoplakia and squamous cell carcinoma 
cells, curcumin was equally effective for all cell types tested 
and blocked the cells in the S/G2M phase of the cell cycle (83). 
The local effectiveness of curcumin was higher in combination 
with(-)-epigallocatechin-3-gallate (EGCG) (83). This suggests 
some limitations of curcumin even in local treatment. 

Numerous approaches have been undertaken to improve 
the poor solubility, rapid metabolic disposition and the lack of 
systemic bioavailability of curcumin. One of the possibilities 

is the use of curcumin metabolites or chemically modified 
curcumin. Unlike curcumin, tetrahydrocurcumin is stable in 
phosphate buffer and in saline at various pH values and is easy 
absorbed through the gastrointestinal tract (84). An in vitro 
investigation revealed that treatment with tetrahydrocurcumin 
reduced fibrosarcoma cell (HT1080) adhesion to the extracel-
lular matrix and laminin, and the secretion of MMPs (MMP-2 
and MMP-9) and uPA (85). It has also been shown to affect 
the migration and proliferation of gingival fibroblast cells (86). 
Chemically modified curcumin with a carbonyl substituent 
at the C-4 position exhibits better solubility, serum albumin-
binding activity and enhanced zinc-binding characteristics (87). 
4-Metoxycarbonyl curcumin, administered orally, was shown 
to inhibit MMP-9 and MMP-13 activity more effectively than 
curcumin (by 2-7‑fold). It also demonstrates greater therapeutic 
activity, based on its inhibitory effect on MMPs and pro-inflam-
atory mediators [TNF-α, IL-1β, monocyte chemoattractant 
protein-1 (MCP-1), IL-6 and prostaglandin (PGE)-2] (87). In 
another study, phenylamino carbonyl curcumin exerted inhibi-
tory effects on MMPs in rats with LPS-induced periodontitis; 
however, unlike curcumin, it significantly reduced alveolar 
bone loss (88). The bioavailability of curcumin extremely was 
shown to increase when combined with piperine (20 mg/kg) 
in rats and humans with no side-effects (89). Promising results 
were also obtained in a recent study which used mucoadhe-
sive nanoparticles loaded with curcumin as a new approach 
with which to deliver curcumin for the local treatment of oral 
cancer (90).

8. Conclusion

Clearly curcumin exhibits a variety of health benefits; however, 
proof that the curcumin molecule itself is responsible for these 
effects seems to be illusive. This is due to the poor bioavail-
ability, instability and strong reactivity of curcumin. An 
additional complicating factor is the fact that curcumin metab-
olizes differently depending on the type of administration. The 
ability of curcumin to undergo degradation or condensation 
strongly suggests that research should also focus on the health 
benefits of these molecules rather than only on curcumin itself.
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