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Abstract. Sick sinus syndrome (SSS) encompasses a group 
of disorders whereby the heart is unable to perform its 
pacemaker function, due to genetic and acquired causes. 
Tachycardia‑bradycardia syndrome (TBS) is a complication 
of SSS characterized by alternating tachycardia and brady-
cardia. Techniques such as genetic screening and molecular 
diagnostics together with the use of pre‑clinical models have 
elucidated the electrophysiological mechanisms of this condi-
tion. Dysfunction of ion channels responsible for initiation 
or conduction of cardiac action potentials may underlie both 
bradycardia and tachycardia; bradycardia can also increase 
the risk of tachycardia, and vice versa. The mainstay treat-
ment option for SSS is pacemaker implantation, an effective 
approach, but has disadvantages such as infection, limited 
battery life, dislodgement of leads and catheters to be perma-
nently implanted in situ. Alternatives to electronic pacemakers 
are gene‑based bio‑artificial sinoatrial node and cell‑based 

bio‑artificial pacemakers, which are promising techniques 
whose long‑term safety and efficacy need to be established. 
The aim of this article is to review the different ion channels 
involved in TBS, examine the three‑way relationship between 
ion channel dysfunction, tachycardia and bradycardia in TBS 
and to consider its current and future therapies.
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1. Introduction

The association between sick sinus syndrome (SSS) and 
atrial fibrillation (AF) has been recognized for more 
than 5 decades since 1968 (1) with the first description of 
tachycardia‑bradycardia syndrome (TBS) reported 5 years 
later (2). Tachycardia complicates approximately 50% of SSS 
cases (2‑4). A related condition, Bayes syndrome, involves 
inter‑atrial block associated with AF (5‑15). Our understanding 
of cardiac electrophysiology has significantly advanced with 
the use of pre‑clinical animal models, which are amenable to 
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pharmacological, physical or genetic manipulation for studying 
the consequences of ion channel abnormalities (16‑19), and 
have provided insight for translational application (14,20‑25). 
These studies have identified the roles of different ion channels, 
such as hyperpolarization‑activated, cyclic nucleotide‑gated 
(HCN), Na+ and transient receptor potential (TRP) chan-
nels, ryanodine receptors (RyR) and gap junctions (26‑28), 
as well as tissue‑level mechanisms, in the pathogenesis of 
TBS. To understand the molecular basis of how ion channel 
dysfunction leads to bradycardia or tachycardia, and the 
causal relationship between bradycardia and tachycardia, the 
mechanisms responsible for automaticity in the sinoatrial node 
(SAN) and mediating action potential conduction need to be 
considered.

2. Ion channels underlying SAN function

Automaticity of SAN is dependent on two closely coupled 
clocks, voltage‑ and calcium‑dependent mechanisms 
(Fig.  1)  (29). The voltage‑dependent mechanism involves 
the funny current (If) mediated by HCN channels located 
at the plasma membrane (30). If has several unusual proper-
ties for a transmembrane current, including activation by a 
hyperpolarized voltage, permeability to both Na+ and K+ ions, 
regulation by intracellular cAMP, and small single channel 
conductance (31). There are four recognized HCN channel 
isoforms (1 to 4) (32). HCN4 is the predominant subtype found 
in the SAN (33,34). By contrast, the Ca2+‑mediated mecha-
nism involves rhythmic release of Ca2+ from the sarcoplasmic 
reticulum (SR), subsequent reuptake by the SR Ca2+‑ATPase 
and extrusion via the Na+‑Ca2+ exchanger (35). Together, the 
complex interplay of ion channels and pumps gives rise to the 
pacemaker action potential (AP), which is uniquely character-
ized by spontaneous depolarization during phase 4 (Fig. 2).

Na+ channels are found in high numbers in the periphery 
of the SAN, where they are thought to play a role in exit 
conduction of APs to the atrium (36,37). Each Na+ channel is 
formed by a pore‑forming α‑subunit, a modulatory β‑subunit 
and additional regulatory proteins. The NaV1.5 α‑subunit, 
encoded by SCN5A (38), has four domains (I to IV), each of 
which contain six transmembrane segments (S1 to S6). The 
positive‑charged S4 segments undergo outward movement 
upon membrane depolarization, opening the central pore to 
allow Na+ entry (39,40). The resulting INa therefore partly deter-
mines myocardial excitability and conduction velocity of the 
APs. Late INa results in membrane depolarization in the atrial 
myocardium, which produces fast inactivation, by moving 
the linker region between domains III and IV to occlude the 
central pore (41‑47). This is followed by slow inactivation, 
where the P‑segment linker sequence between S5  and S6 
bends back into the plasma membrane lining the outer region 
of the pore (48,49). The precision of sodium channel function 
is vital for the maintenance of transmembrane electrochemical 
gradient and therefore cardiac function.

Other ion channels are also involved in SAN function, 
such as HCN channels, predominantly HCN4, carry the If 
current which is a combination of both sodium and potas-
sium currents. Alterations in the highly regulated activation 
and inactivation of the highly regulated cycle of ion channels, 
such as an increase in late INa can lead to arrhythmias (47). A 

genetic mutation in any part of this complex pathway results in 
SAN dysfunction leading to arrhythmias (50).

Conduction of APs from one myocyte to the next occurs 
via gap junctions, each of which consists of two hexamers of 
connexin (Cx) subunits (51‑53). Cx 30.2, 40, 43 and 45 are found 
in cardiac tissues (54). Cx40 is expressed only in the atria and 
His‑Purkinje system (55,56). Cx43 is expressed throughout 
the atria and ventricles (57). Cx45 is the predominant isoform 
found in the core of SAN (58), whereas Cx43, Cx40 and Cx45 
are expressed in the periphery (50). However, few gap junc-
tions are found in the SAN core, suggesting that intercellular 
coupling is not required for synchronization of electrical 
activity within the node (59,60). The conventional membrane 
voltage‑dependent gating, transjunctional voltage‑dependent 
gating (61), phosphorylation (62‑64), intracellular Ca2+ (65‑68) 
and pH  (69,70) as  well  as the surrounding lipid environ-
ment (71‑74) all regulate gap junctional conductance.

Figure 1. Sinoatrial node automaticity depends on both voltage‑ and cal-
cium‑dependent mechanisms. SR, sarcoplasmic reticulum.

Figure 2. Pacemaker activity: from the maximum diastolic potential (MDP), 
spontaneous phase 4 depolarization brings the membrane to the threshold 
potential (TP), thereby initiating an action potential. Adapted from ref. 153 
with permission.
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3. Tachycardia‑bradycardia syndrome results from 
structural and electrophysiological remodeling

SSS can affect newborns and younger individuals, as well as 
elderly individuals over 65 years of age (36,75). TBS can be 
caused by genetic mutations, inflammation, ischaemia or 
drugs, involving both structural and electrophysiological 
remodeling (Fig. 3). Broadly, TBS can involve abnormal ion 
channel function, altered intercellular coupling or tissue level 
mechanisms.

4. Altered ionic currents

HCN4 is involved in mammalian cardiac pacemaking and is 
predominantly expressed in the SAN (28). Loss‑of‑function 
HCN4 mutations are known to cause atrioventricular (AV) 
block, long QT syndrome (LQTS), AF, familial TBS and 
non‑compaction cardiomyopathy in addition to sinus brady-
cardia  (76‑80). The G1097W HCN4 mutation, which is a 
loss‑of‑function mutation resulting in a hyperpolarizing 
shift of the activation curve and reduced expression levels, 
demonstrates 4:1 AV block and reflex sinus tachycardia (81). 
A missense HCN4 mutation was found to lead to impaired 
trafficking of the channel to the surface membrane, resulting 
in SSS, long QT and torsade de pointes (82). Some of these 
phenotypes have been recapitulated in genetically modified 
mice, making them particularly useful for modeling TBS. For 
example, HCN4-knockout mice show severe sinus bradycardia 
complicated by AV block (83), whereas If‑deficient mice gener-
ated by expression of a dominant‑negative, non‑conductive 
HCN4‑channel subunit exhibit bradycardia, AV block and 
ventricular tachycardia  (84). In this model, delayed after-
depolarizations in SAN, AV node and Purkinje fibres were 
observed, attibuted to increased SR Ca2+ load and increased 
frequency of Ca2+ release from the SR (84).

Mutations in the SCN5A encoding for the Na+ channels 
can lead to a range of clinical phenotypes, including SSS, 
Brugada syndrome, LQTS type 3, AVN block, dilated cardio-
myopathy, AF and overlap syndromes (85‑91). In a newborn 
patient, a gain‑of‑function SCN5A mutation producing a 

persistent inward Na+ current was found to cause LQTS type 3, 
and alternating tachycardia‑bradycardia of 2:1 AV block and 
ventricular tachycardia have been observed (92). Individuals 
with loss‑of‑function SCN5A mutations can suffer from SSS 
and Brugada syndrome, which are responsible for bradycardic 
and tachycardic complications, respectively (93).

Upregulation of the inward rectifier current (IK1) results 
from reduced levels of microRNA‑1, observed in heart failure. 
This causes membrane hyperpolarization, bradycardia and 
shortening of APs that predisposes to atrial reentry  (94). 
Ankyrin‑B, a member of the ankyrin family, is expressed at 
high levels in the SAN and has functions such as cell signaling 
and assembly of ion channels in the plasma membrane (95,96). 
Humans with ANK2 gene variants suffer from SND, AF and 
prolonged QT intervals (96‑98). Mice heterozygous for a null 
mutation in ankyrin‑B have been generated. Cardiomyocytes 
isolated from these mice showed altered Ca2+ handling and 
extrasystoles that presumably arise from delayed afterdepo-
larizations (98,99). Ankyrin‑B normally forms a complex with 
Na+‑K+ ATPase, the Na+‑Ca2+ exchanger and the IP3 receptor. 
Loss of ankyrin‑B therefore leads to impaired Ca2+ transport 
across the SR and plasma membranes.

Finally, a loss‑of‑function mutation in the Ca2+ channel 
gene has also been shown to cause TBS (100). Normally, Ca2+ 
entry through L‑type Ca2+ channels plays a role in pacemaker 
activity by contributing to diastolic depolarization. Reduction 
in this current can reduce the degree of spontaneous depolar-
ization, slow pacemaker activity and increase the likelihood of 
spontaneous arrhythmias in SAN cells

5. Abnormal calcium handling

Ca2+ in myocardial cells originates from two sources: the 
extracellular space and intracellular store, the SR. Increased 
Ca2+ levels can arise from a number of mechanisms, such 
as entry via voltage‑gated ion channels, receptor‑operated 
Ca2+ entry (ROCE), store‑operated Ca2+ entry (SOCE) and 
SR release (101,102). Alterations in any of these processes 
can promote the development of TBS. Ca2+ overload can 
promote apoptosis of SAN cells and stimulate fibrosis 
and reduce conduction velocity of APs by a calmodulin 
kinase II‑dependent pathway (103). It is also a feature in heart 
failure, in which persistent activation of angiotensin II and 
calmodulin kinase II, higher incidence of tachyarrhythmias 
are also observed (103,104). Sinus node dysfunction (SND) is 
frequently found in heart failure patients, and it is estimated 
that bradycardic complications account for approximately half 
of the cases of sudden death (105,106).

Increased SR Ca2+ release, observed in catecholaminergic 
polymorphic ventricular tachycardia (CPVT), can arise from 
defective SR Ca2+ sensing, increased sensitivity to cytoplasmic 
Ca2+ or abnormal activation by calmodulin  (107). Patients 
with CPVT demonstrate SND, inducible atrial arrhythmias 
as well as the bidirectional ventricular tachycardia traditionally 
observed in this condition (107,108). Experiments in mouse 
models indicate that SND and atrial arrhythmias are both 
due to abnormal Ca2+ handling in CPVT (109,110). In calse-
questrin 2‑null mice, spontaneous Ca2+ release led to delayed 
afterdepolarizations and atrial-triggered activity (109). Loss 
of calsequestrin 2 also produced selective interstitial fibrosis 

Figure 3. Molecular and electrophysiological mechanisms underlying tachy-
cardia‑bradycardia syndrome. HCN, hyperpolarization‑activated, cyclic 
nucleotide‑gated.
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in the atrial pacemaker complex, which disrupted SAN 
pacemaker activity and created conduction abnormalities that 
increased the tendency of atrial arrhythmias, likely by a reen-
trant mechanism (110).

6. Altered intercellular coupling

In the SAN, gap junctions contribute to automaticity and exit 
conduction of APs to the myocardium surrounding nodal 
tissue (111). Cx43 haploinsufficiency resulted in reduced CV 
in the ventricles, with tachyarrhythmias preceding bradyar-
rhythmias, but little effect on SAN function (112). Cx40‑/‑ mice 
showed intra‑atrial block, ectopic rhythms and abnormal 
conduction in the right atrium (113), inducible atrial tachy-
cardia (114), AVN and infra‑Hisian conduction delays (115).

7. Tissue level mechanisms through remodeling

If arrhythmia persists untreated, the structure of the SAN can 
be modified and this remodeling can lead to fibrosis and distur-
bance of the electrophysiology and even apoptosis of cardiac 
cells. This in turn increases the risk of AF and paroxysmal AF 
developing into permanent AF (28). The electrophysiological 
and structure remodeling of the SAN not only lead to arrhyth-
mias, as discussed, but also are responsible for arrhythmias 
refractory to medication and recurrence following cardiover-
sion (28).

8. Bradycardia and tachycardia in TBS: Which is the 
cause?

The causal relationship between bradycardia and tachycardia 
is bidirectional. It is unclear which precipitates which (28). 
Tachyarrhythmias can promote SND, resulting in sinus 
bradycardia (1,2). Patients with AF demonstrate structural 
abnormalities in the form of fibrosis in their SAN (116). Atrial 
tachycardia in dogs was found to lead to downregulation of 
HCN2, HCN4 and KCNE1 (which modulates the α‑subunit of 
the K+ channel), which underlies the SND observed (27). In 
an atrial tachycardia pacing model of TBS in rabbits, SND 
was associated with reduced HCN4 expression, both of which 
were reversible upon cessation of tachycardia pacing (26). In 
humans, HCN4 has been identified as a gene candidate associ-
ated with AF from a meta‑analysis of genome‑wide association 
studies (117). Adenosine is elevated in the plasma of patients, 
and the consequent activation of adenosine A1 receptors in the 
SAN is likely responsible for heart rate reduction (118). In a 
canine tachycardia‑pacing model, A1 receptors were upregu-
lated, which was associated with prolonged SAN conduction 
time, conduction block within the SAN, post‑pacing pauses, 
shortening of atrial repolarization durations leading to a higher 
propensity to AF (119).

Conversely, SND can lead to the development of tachy-
cardia (120). Genetically modified mice with an inducible 
deletion of cells specifically in the cardiac pacemaking and 
conduction system presented with degenerative fibrosis of 
nodal tissue, progressive bradycardia, sinus pauses, supra-
ventricular and ventricular tachycardia and chronotropic 
incompetence (121). Fibrosis of the atrium was found to lead to 
conduction abnormalities, increased dispersion of refractori-

ness, thereby predisposing to the development of circus‑type 
or spiral‑wave reentry (122). Fibrosis in the setting of reduced 
repolarization reserve can promote early afterdepolarizations 
and in turn atrial and ventricular tachycardia (123,124).

9. Current and future therapeutic options for TBS

The current treatment options for TBS involve removal or 
correction of extrinsic causes. In acute situations where heart 
block is observed, the parasympathomimetic agent atropine or 
beta agonist isoproterenol, or temporary pacing can be used to 
overcome the conduction abnormalities. Tachyarrhythmias can 
be managed by digoxin, quinidine or propranolol. Permanent 
pacing using an electronic pacemaker is, at present, the only 
curative option however battery life and electromagnetic inter-
ference are often problematic.

Animal models have been extensively used for exploring the 
electrophysiological basis of complex rhythm disorders in an 
attempt to develop a biological pacemaker which would be free 
of complications such as limited battery life (125‑129). These 
systems provide a platform for elucidating the mechanisms of 
arrhythmogenesis in different medical conditions (17,130‑133), 
determining the efficacy of novel therapeutic approaches and 
providing insights for translational application  (134‑136). 
Generally, there are two engineering biological alternatives to 
electronic pacemakers. The first is a gene‑based bio‑artificial 
SAN. Ventricular cardiomyocytes normally do not possess 
pacemaker activity, but they can be induced to exhibit pace-
maker function by genetic suppression of the inward‑rectifier 
K+ channels (137) or expression of HCN channels by adenoviral 
transfer (135‑145). A second approach is cell‑based bio‑arti-
ficial pacemakers. This involves differentiation of human 
embryonic stem cells or induced pluripotent stem cells into 
cardiomyocytes (146,147). For example, human mesenchymal 
stem cells pre‑transfected with HCN2 channels can be used 
to introduce If into surrounding cardiomyocytes that subse-
quently possess pacemaker activity (148,149). Cardiomyocytes 
can be converted into pacemaker cells by a cell fusion tech-
nique, where fibroblasts engineered to express HCN1 are 
chemically fused to the cardiomyocytes using chemicals such 
as polyethylene‑glycol 1500 (150). Human embryonic stem 
cells have also been differentiated into cardiomyocytes that 
demonstrated intrinsic pacemaker activity, capable of pacing 
the ventricular myocardium in vivo (135,151). Experimental 
data do not always produce the same results when applied to 
animal models (152) and it would therefore be sensible not 
to assume that animal models will produce the same results 
in a human heart. Future research is needed to establish the 
safety of these bio‑artificial pacemakers, and little is known 
regarding their long‑term efficacy. They may provide better 
treatment options for debilitating complex arrhythmias such 
as TBS.

10. Conclusion

In this review we summarized current literature to understand 
the molecular and electrophysiological mechanisms and 
discussed the current treatment and the exciting future possi-
bility of superior biological pacemakers which are hopefully 
not a too distant possibility.
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