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Abstract. The present study was carried out to investigate the 
effects of vascular endothelial growth inhibitor 174 (VEGI174) 
and its functional domains (V7 and V8) on epithelial-mesen-
chymal transition (EMT) in renal cell carcinoma (RCC) cells 
in vitro. The RCC cell lines A498 and 786-O were used in this 
study. Based on our preliminary study, we selected full-length 
VEGI174 and its functional domains (V7 and V8) as the target 
genes in this study. Plasmids containing VEGI174, V7 or V8 
transgenes were constructed and transfected into A498 and 
786-O cell lines. Cytological activity was tested during cell 
culture. Quantitative PCR and western blot analysis were 
performed to determine the expression levels of EMT markers 
(E-cadherin, vimentin, β-catenin and Slug). Overexpression 
of VEGI174, V7 or V8 did not have a significant influence on 
cell viability (P>0.05). The mRNA level of E-cadherin was 
significantly upregulated, while that of vimentin was down-
regulated in A498VEGIexp, A498V7exp, A498V8exp, 786-OVEGIexp, 
786-OV7exp and 786-OV8exp cells compared with the cells 

containing the empty plasmid controls (P<0.05). The western 
blot results showed that changes in protein expression levels 
were consistent with the changes in mRNA expression. Both 
the mRNA and protein expression levels of β-catenin and Slug 
were downregulated in the A498VEGIexp, A498V7exp, A498V8exp, 
786-OVEGIexp, 786-OV7exp and 786-OV8exp cells. In conclusion, 
overexpression of VEGI174, V7 or V8 inhibited EMT in 
A498 and 786-O cells. Notably, V7 and V8 are two effective 
functional domains of VEGI174 that have the potential to be 
studied for peptide synthesis and the treatment of RCC.

Introduction

Renal cell carcinoma (RCC) accounts for approximately 
4% of all adult malignancies. In 2016, ~63,000 new cases 
of kidney cancer were estimated to be diagnosed, and more 
than 14,000 deaths occurred in the United States (1). Each 
year, more than 250,000 new cases of kidney cancer are diag-
nosed worldwide. In particular, metastatic RCC has a poor 
prognosis that seriously affects the quality of life of patients. 
The median overall survival of metastatic RCC is ~12 months, 
and the 5-year survival rate is <10% (2). Multiple antagonists 
of the vascular endothelial growth factor (VEGF) signalling 
pathway, such as sorafenib, sunitinib, axitinib and pazopanib, 
have been approved for the treatment of patients with advanced 
RCC (3-5). While these anti-VEGF strategies have shown clin-
ical benefits, many patients are either resistant to such therapy 
or, more commonly, acquire resistance to these drugs within 
a year of treatment initiation. Therefore, targeting additional 
angiogenic signalling pathways may represent a promising 
therapeutic approach for patients with advanced RCC.

Vascular endothelial growth inhibitor (VEGI) is a member 
of the tumour necrosis factor superfamily, whose members 
have been identified as anti‑angiogenic cytokines (6,7). The 
VEGI gene is located on human chromosome 9q32. The 
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full-length VEGI gene is ~17 kb, and it consists of four exons 
and three introns. Three alternatively spliced isoforms of VEGI, 
VEGI174, VEGI192 and VEGI251 have been documented, 
sharing 151 common C-terminal amino acids but differing in 
their N-terminal regions. The initially reported VEGI protein 
consists of 174 amino acids, which can be divided into two 
parts. AA residues 1-25 at the N-terminus are the intracellular 
and transmembrane domains, and AA residues 26-174 at the 
C-terminus form an extracellular domain (8,9). VEGI expres-
sion has been observed in kidney, bladder, prostate, lung, breast 
and colon tissues (10-13). Studies examining the biological 
functions of VEGI revealed that it had potential inhibitory 
effects on tumours. For example, our previous studies showed 
that VEGI overexpression substantially reduced the motility 
and adhesion of prostate and bladder cancer cells and 
suppressed renal carcinoma cell growth in vivo (14-16).

In recent years, numerous studies have demonstrated that 
activation of epithelial-mesenchymal transition (EMT) is a 
key event in the tumour invasion process (17-19). EMT is 
a biological phenomenon that frequently occurs in tumour 
tissues and is associated with local invasion and distant metas-
tases. During this process, epithelial cells undergo multiple 
biochemical changes that enable them to lose the epithe-
lial-like phenotype and transform into a mesenchymal-like 
phenotype. The tumour cells lose cell-cell adhesion, detach 
from the primary tumours and disseminate through the 
vasculature to other organs. It has been determined that EMT 
plays a significant role in tumour progression and metastasis 
of RCC (20,21).

Currently, there is interest in studying the relationship 
between VEGI174 and EMT. The aim of the present study was 
to assess whether VEGI174 has an effect on EMT in RCC cells 
and which functional domains of VEGI174 play an important 
role in this process.

Materials and methods

Cell lines. In this study, the human RCC cell lines A498 and 
786-O were provided by Sun Yat-Sen University Laboratory 
(Guangzhou, China). Cells were cultured with Dulbecco's 
modified Eagle's medium (DMEM) or RPMI‑1640 medium 
supplemented with 10% fetal bovine serum (FBS) (all from 
HyClone, Logan, UT, USA), penicillin and streptomycin 
(Gibco, Grand Island, NY, USA).

Selection of the effective functional domains of VEGI174. 
Based on the human VEGI174 sequence (GenBank), we 
designed eight different segments of the genes (V1-V8) that 
encode VEGI174 extracellular-function domains (Fig. 1). In 
our preliminary studies, full-length human VEGI174 and 
its functional domains (V1-V8) were separately cloned into 
mammalian expression plasmid vectors and then transfected 
into HUVECs. Our results confirmed that overexpression of 
VEGI174 or domains V1 through V8 was able to inhibit the 
motility and adhesion of HUVECs to varying degrees. In 
particular, the inhibitory effects produced by overexpression 
of V7 and V8 were more significant than those produced by 
overexpression of domains V1 to V6. Therefore, we selected 
the full-length VEGI174 and domains V7 and V8 as the target 
genes in this study.

Construction of VEGI174-, V7- and V8-expressing trans-
genes. The coding sequences for full-length VEGI174 and 
for its functional domains V7 and V8 were cloned into 
mammalian expression plasmid vectors (pEF/His TOPO TA; 
Invitrogen, Inc., Paisley, UK). The recombinant plasmid vectors 
were transformed into chemically competent TOP10 E. coli 
(Invitrogen). After verification and amplification, plasmids 
containing VEGI174, V7 or V8 transgenes or empty control 
plasmids were then transfected into A498 and 786-O cells 
using electroporation (Easyjet; EquiBio Ltd., Kent, UK). The 
transfectants were selected with blasticidin and then applied 
in experiments (plasmid expression groups: A498VEGIexp, 
A498V7exp, A498V8exp, 786-OVEGIexp, 786-OV7exp, 786-OV8exp; 
empty control plasmid groups: A498pEF/His, 786-OpEF/His cells). 
Detailed experimental methods can be found in our previous 
studies (14-16). Full primer sequences used in this study are 
provided in Table I.

Cell growth assay. A total of 5,000 cells were seeded into each 
well of a 96‑well plate and cultured in a humidified incubator 
at 37˚C and 5% CO2. During cell culture, cyto-activity was 
tested with a Cell Counting kit-8 (Dojindo, Kumamoto, Japan) 
at 24, 48 and 72 h.

Quantitative polymerase chain reaction (qPCR). After the 
transfectants were cultured for 36 h, RNA was extracted using 
total RNA isolation reagent (ABgene, Epsom, UK). The first 
cDNA strand was synthesised with HiScript II reverse tran-
scriptase (Vanzyme, Nanjing, China). qPCR was performed 
using an iCycler iQ5 system (Bio-Rad, Hemel Hemstead, UK) 
to determine the expression level of EMT-related markers 
(E-cadherin, vimentin, β-catenin and Slug) in the RCC cell 
lines. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
served as the housekeeping gene. Full primer sequences are 
provided in Table I.

Western blot analysis of the expression of EMT markers. 
Protein quantification was determined using a bicinchoninic 
acid colorimetric assay (Pierce BCA Protein assay kit; 
Thermo Fisher Scientific, Waltham, MA, USA). Proteins 
undergoing sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) were transferred to PVDF 
membranes (Invitrogen) by electroblotting and probed 
with the primary antibodies E-cadherin (1:1,000, 5296s; 
Cell Signaling Technology, Danvers, MA, USA), vimentin 
(1:1,000, ab187380), β-catenin (1:1,000, ab32572), Slug 
(1:1,000, ab51772) (all from Abcam, Cambridge, MA, 
USA) and secondary anti-rabbit IgG, HRP-linked antibody 
(1:2,000, #7074; Cell Signaling Technology). Monoclonal 
mouse anti-human α-tubulin (1:1,000, #2125; Cell Signaling 
Technology) was used as an internal reference. The 
electrophoretic bands were analysed by an enhanced chemi-
luminescence system (Bio-Rad) and ImageJ software (NIH, 
Bethesda, MD, USA).

Statistical analysis. Statistical analyses were performed 
with SPSS 19.0 software (IBM Corp., Armonk, NY, USA). 
Statistical significance was determined by ANOVA and LSD 
multiple comparison t-test. A value of P<0.05 was considered 
to indicate a statistically significant difference.
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Results

Manipulation of VEGI174, V7 and V8 overexpression has no 
impact on cell growth. We examined the effect of the over-
expression of VEGI174, V7 and V8 on the viability of A498 
and 786-O cell lines. The cell activity of the empty plasmid 
control group was set as the baseline. The relative cell viability 

between A498VEGIexp, A498V7exp, A498V8exp, 786-OVEGIexp, 
786-OV7exp and 786-OV8exp cells and empty plasmid control 
cells was not significantly different (P>0.05) (Fig. 2).

The influence of VEGI174, V7 and V8 overexpression on 
EMT markers at the genetic level. A498 and 786-O cells were 
transfected with VEGI174, V7 or V8 recombinant plasmids 

Figure 1. The eight designed, distinct segments of genes (V1-V8) that encode the vascular endothelial growth inhibitor 174 (VEGI174) extracellular-function 
domains. The V7 gene segment contains 195 bases, and the V8 segment contains 84 bases.

Table I. Primers of the relevant genes used in the present study.

Primer Forward Reverse

VEGI (expression) 5'-ATGAGACGCTTTTTAAGCAA-3' 5'-CTATAGTAAGGCTCCAAAG-3'
V7 (expression) 5'-ATGACCTCTGAGTGCAGTGA-3' 5'-ATTAGCTTGTGGGGTTCTTGCAAG-3'
V8 (expression) 5'-ATGGGGACCAAGTCTGTA-3' 5'-ATTAGCTTGTCCCCTTCTTGCAAG-3'
E-cadherin 5'-TGCCCAGAAAATGAAAAAGG-3' 5'-GTGTATGTGGCAATGCGTTC-3'
Vimentin 5'-GAGAACTTTGCCGTTGAAGC-3' 5'-GCTTCCTGTAGGTGGCAATC-3'
β-catenin 5'-TGGATGGGCTGCCTCCAGGTGAC-3' 5'-ACCAGCCCACCCCTCGAGCCC-3'
Slug 5'-CATGCCTGTCATACCACAAC-3' 5'-GGTGTCAGATGGAGGAGGG-3'
GAPDH (reference) 5'-AGAAGGCTGGGGCTCATTTG-3' 5'-AGGGGCCATCCACAGTCTTC-3'

VEGI, vascular endothelial growth inhibitor; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

Figure 2. Relative cell viability between A498VEGIexp, A498V7exp, A498V8exp, 786-OVEGIexp, 786-OV7exp and 786-OV8exp cells and empty plasmid control cells. The 
cell activity of the empty plasmid control group was set as the baseline. There were no significant differences (P>0.05).
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to create sublines expressing enhanced or suppressed levels 
of EMT-related markers. According to the qPCR results, 
mRNA expression of E-cadherin was markedly increased, 
while that of vimentin was decreased in the A498VEGIexp, 
A498V7exp, A498V8exp, 786-OVEGIexp, 786-OV7exp and 786-OV8exp 
cells compared with these levels in the empty plasmid 
controls (P<0.05) (Fig. 3). Furthermore, mRNA expression of 
E-cadherin was found to be higher in the A498V7exp cells than 
that in the A498VEGIexp and A498V8exp cells (P<0.01). This result 
indicated that the bioactivity of the V7 functional domain was 
higher in regard to regulating the expression of E-cadherin. 
β-catenin and Slug mRNA expression was downregulated in 
the A498VEGIexp, A498V7exp, A498V8exp, 786-OVEGIexp, 786-OV7exp 
and 786-OV8exp cells compared with the corresponding controls 
(P<0.05) (Fig. 4). However, there were no significant differences 
in β-catenin and Slug mRNA expression among the A498 or 
786-O cells that overexpressed VEGI174, V7 or V8 (P>0.05).

Effect of VEGI174, V7 and V8 overexpression on EMT 
markers at the protein level. Compared with the empty 
plasmid controls, a significant increase in E‑cadherin and a 
decrease in vimentin were noted in the A498VEGIexp, A498V7exp, 
A498V8exp, 786-OVEGIexp, 786-OV7exp and 786-OV8exp cells as 
determined by western blot analysis (P<0.01) (Fig. 5). The 
protein expression of β-catenin and Slug declined in the 
A498VEGIexp, A498V7exp, A498V8exp, 786-OVEGIexp, 786-OV7exp 
and 786-OV8exp cells compared with these levels in the corre-
sponding controls (P<0.01) (Fig. 6). However, differences in 

the effect of VEGI174, V7 and V8 overexpression on EMT 
markers in A498 or 786‑O cells were not significant (P>0.05).

Discussion

VEGI, an endogenous inhibitor of endothelial cell prolifera-
tion, was first identified in human umbilical vein endothelial 
cells. VEGI is widely expressed in endothelial cells. Many 
studies have investigated the roles of VEGI in human cancers. 
This inhibitor is a promising candidate for cancer therapy. 
Parr et al (13) reported that VEGI is aberrantly expressed in 
breast cancer and displays prognostic relevance. Patients with 
breast tumours expressing reduced levels of VEGI had a poorer 
prognosis than those patients expressing high levels of VEGI. 
Chew et al (8) reported that overexpression of a secretable 
VEGI fusion protein abrogated xenograft tumour progression 
by reducing the tumour growth rate and microvessel density. 
VEGI also inhibited the growth of other human tumour cell 
lines, for instance, breast carcinoma (MCF-7), epithelial 
(HeLa) and myeloid (U-937 and ML-1a) tumour cells (22,23). 
Our previous studies showed that overexpression of VEGI 
inhibited cell motility in vitro and vascular endothelial tube 
formation and tumour growth in vivo (14-16).

The EMT process is linked to its role in tumour invasion 
and metastasis. EMT has been established in multiple cancer 
types, such as digestive tract, pancreas, liver, prostate and 
breast cancers (24-30). Zhang et al (31) demonstrated that 
hypoxia was able to induce EMT and enhance the invasion 

Figure 4. Verification of expression of β-catenin and Slug in the A498 and 786-O cells using qPCR. β-catenin and Slug mRNA expression was decreased 
in both the A498 and 786-O cell lines that overexpressed vascular endothelial growth inhibitor 174 (VEGI174), V7 or V8 compared with the empty plasmid 
control cells (P<0.05).

Figure 3. Verification of expression of E‑cadherin and vimentin in the A498 and 786‑O cells using qPCR. E‑cadherin mRNA expression was markedly 
increased, and vimentin mRNA expression was decreased in both the A498 and 786-O cell lines that overexpressed vascular endothelial growth inhibitor 174 
(VEGI174), V7 or V8 compared with the empty plasmid control cells (P<0.05).
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and migration ability of HCC cells. Chu et al (32) showed that 
EMT was closely related to in vitro cell migration and inva-
sion in breast cancer. Therefore, further studies are needed to 
investigate the relationships between EMT development and 
cancer. These studies will offer insights into the oncogenic 
EMT pathways of tumour metastasis and provide potential 
therapeutic targets. Currently, the relationship between VEGI 
and EMT is not clear. In this study, we studied the effects of 
VEGI174 and its functional domains (V7 and V8) on EMT in 
RCC cells in vitro.

Our results confirmed that overexpression of VEGI174, 
V7 or V8 inhibited EMT in A498 and 786-O cell lines. The 

mRNA level of E-cadherin was significantly upregulated, 
while vimentin was downregulated in the A498VEGIexp, 
A498V7exp, A498V8exp, 786-OVEGIexp, 786-OV7exp and 786-OV8exp 
cells compared with that noted in the empty plasmid controls 
(P<0.05). Elevated protein expression of E-cadherin and 
decreased expression of vimentin were also observed in these 
cells compared with the corresponding controls (P<0.01). 
Thus, changes in the level of protein expression were consistent 
with the changes in mRNA expression. E-cadherin belongs to 
a family of calcium-dependent transmembrane glycoproteins. 
This glycoprotein is an intercellular adhesion molecule that 
enhances connections between cells and maintains the stability 

Figure 5. Western blotting showed that the protein expression of E-cadherin was increased and that of vimentin was reduced in the A498VEGIexp, A498V7exp, 
A498V8exp, 786-OVEGIexp, 786-OV7exp and 786-OV8exp cells when compared with the empty plasmid controls (P<0.01). There were no significant differences in the 
expression of E-cadherin and vimentin between the A498 and 786-O cell lines that overexpressed vascular endothelial growth inhibitor 174 (VEGI174), V7 
or V8 (P>0.05).

Figure 6. Western blotting showed that the protein expression of β-catenin and Slug declined in the A498VEGIexp, A498V7exp, A498V8exp, 786-OVEGIexp, 786-OV7exp 
and 786-OV8exp cells when compared with the empty plasmid controls (P<0.01). The expression of β-catenin was higher in the 786-OVEGIexp cells than that noted 
in the 786-OV7exp and 786-OV8exp cells (P<0.01). 
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of the cytoskeleton. Many signalling pathways promote 
EMT by suppressing the expression of E-cadherin (33,34). 
Importantly, vimentin, the mesenchymal intermediate fila-
ment and a hallmark of EMT, is overexpressed in malignant 
epithelial cancers and correlates with a poor prognosis (35). 
Thus, vimentin provides a further link between EMT and 
malignancy. Abundant evidence indicates that vimentin regu-
lates mesenchymal cell shape and mammary epithelial cell 
migration and that it plays a role in regulating signal transduc-
tion, which is necessary for EMT induction (36-38).

Moreover, we also detected the expression of EMT-related 
regulatory factors (β-catenin and Slug). β-catenin is a key 
mediator in the Wnt/β-catenin signalling pathway. β-catenin 
translocates into the cell nucleus and promotes downstream 
pathways by binding to target genes (39,40). Studies have 
shown that Wnt/β-catenin signalling is associated with 
EMT (41-43). Slug, a member of the Snail family, is known to 
play diverse roles in the cell. Slug a transcriptional repressor, 
and its deregulation has been observed in a variety of cancers. 
Slug-mediated regulation of EMT is often associated with 
its ability to transcriptionally repress the expression of 
E-cadherin (44-47), and it has been shown to promote cancer 
cell invasion, migration and metastasis. In this study, compared 
with empty plasmid controls, β-catenin and Slug mRNA and 
protein expression levels were downregulated in the A498 and 
786-O cells that overexpressed VEGI174, V7 or V8. These 
two proteins may be key regulatory factors in the mechanisms 
involved in suppression of the EMT process by VEGI174, V7 
or V8 overexpression.

In conclusion, the present study showed that overexpression 
of VEGI174, V7 or V8 was able to inhibit the EMT process 
in the A498 and 786‑O cell lines. This finding indicates that 
VEGI may be a potential tumour suppressor and target for RCC 
therapy. Furthermore, V7 and V8 are two effective functional 
domains of VEGI174, which can be considered for synthesis as 
peptides and further studied for the treatment of RCC.
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