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Abstract. Fibrillins (FBNs) are key relay molecules that 
form the backbone of microfibrils in elastic and non‑elastic 
tissues. Interacting with other components of the extracel‑
lular matrix (ECM), these ubiquitous glycoproteins exert 
pivotal roles in tissue development, homeostasis and repair. 
In addition to mechanical support, FBN networks also exhibit 
regulatory activities on growth factor signalling, ECM forma‑
tion, cell behaviour and the immune response. consequently, 
mutations affecting the structure, assembly and stability of 
FBN microfibrils have been associated with impaired biome-
chanical tissue properties, altered cell‑matrix interactions, 
uncontrolled growth factor or cytokine activation, and the 
development of fibrillinopathies and associated severe compli-
cations in multiple organs. Beyond a panoramic overview of 
structural cues of the FBN network, the present review will 
also describe the pathological implications of FBN disorders 
in the development of inflammatory and fibrotic conditions.
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1. Introduction

Fibrillin (FBN)‑1 is a calcium‑binding protein that assembles to 
form 10‑12 nm microfibrils in the extracellular matrix (ECM) 
of elastic and non‑elastic tissues. The human gene FBN‑1 spans 
>230 kb (1) on chromosome 15q15‑21.1 (2) and is highly frag-
mented into 65 exons. The primary protein structure reveals 
multi‑domains (3), which primarily consist of epidermal 
growth factor (EGF)‑like and certain other modules (4). 
Out of a total of 47 EGF domains (5), 43 modules contain 
the calcium binding (cbEGF) consensus sequence D/N‑XD/
N‑E/Q‑Xm‑D/N‑Xn‑Y/F (6), which provides structural 
stabilization (7), a characteristic rigid rod‑like shape (8‑10) and 
protection against proteolysis (11), and allows the control of 
self‑ or FBN‑2‑interaction (12,13) and interactions with ECM 
components, including fibulin‑2, heparin/heparan sulphate 
and microfibril‑associated glycoprotein (MAGP)‑1 (14‑17). 
Disulphide bonds formed among the six cysteine residues in 
EGF and cbEGF, in a C1‑C3, C2‑C4 and C5‑C6 pattern (9), 
contribute to further stabilize FBN‑1. EGF‑like domains are 
interspersed by seven transforming growth factor (TGF)‑β 
binding protein (TB)‑like modules and structurally related 
latent TGF-β‑binding proteins (LTBPs) (18). Characterized by 
eight cysteine residues that form four disulphide bonds (C1‑C3, 
C2‑C6, C4‑C7 and C5‑C8 arrangement), TB domains occur 
seven times in FBN‑1. Among them, the fourth TB module is 
of particular interest due to the presence of the cell binding 
site RGD (arginine‑glycine‑aspartic acid), which mediates 
interactions with integrins (19). Additionally, as with other 
FBNs, ‘hybrid domains’ are repeated twice in FBN‑1 and are 
stabilized by four intradomain disulphide bonds in a C1‑C3, 
C2‑C5, C4‑C6 and C7‑C8 formation (20). The unique N‑ and 
C‑terminal domains of FBN‑1 include four and two cysteine 
residues, respectively, and contain the basic consensus sequence 
for processing by furin‑type enzymes (21‑23). A distinguishing 
feature of FBN‑1 is the presence of a proline‑rich domain close 
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to its N-terminus (4,24). A summary of the chromosomal loca-
tion, domain organisation and primary functions of FBN‑1 is 
presented in Fig. 1.

2. FBN network assembly and elastogenesis

FBN‑1 is synthesized as an ~350 kDa precursor molecule, 
profibrillin‑1, which requires proteolytic processing by furin 
proteases into its biologically active form (~320 kDa) prior 
to incorporation into microfibrils (22,25). Accounting for 
all microfibril structural features, FBN alignment models 
predict the initial interactions between the N‑ and C‑terminal 
sequences, which cause a head‑to‑tail alignment and an 
approximate one‑third stagger that is stable as a 56 nm folded 
form (26‑28). FBN bundles are stabilized by transgluta-
minase‑derived cross‑links (29). Microfibril assembly has 
been reported to be dependent and fine‑tuned by a variety of 
FBN‑associated proteins. When visualized by rotary electron 
microscopy (30), the extracted microfibrils exhibit a beaded 
string morphology with dark areas, which are termed ‘bead’ 
regions and appear in an average periodicity of 56 nm (31). 
Highlighting their important structural role, FBN microfibrils 
are essential for the process of elastogenesis, acting as a scaf-
fold for the soluble precursor of elastin (tropoelastin) (32). 
Tropoelastin molecules are secreted and deposited extracel-
lularly onto a preformed, organized FBN microfibril network, 
which gives rise to mature, elastic fibres that are subsequently 
processed by the lysyl oxidase enzyme for the formation of 
desmosine cross‑links. The importance of FBN in the forma-
tion of elastic fibres is highlighted by the inability of FBN‑1 
knockout mice to form functioning elastic fibres, in addition 
to a disorganization of elastic fibres (33) and a reduction of 
tissue flexibility and extensibility, primarily in the arteries, 
lungs, skin and other dynamic connective tissues (17). Unlike 
cbEGF‑cbEGF, EGF1‑EGF2 and TB6‑cbEGF32 are flexible 
domain interfaces (34,35).

3. Non‑elastic components of the FBN network

FBN microfibrils interact with a large variety of ligands. 
The binding with ECM components involves the C‑terminal 
regions of FBNs (36) and is essential for regulating protein 
assembly and functionality. Depending on the cell type, the 
FBN network (36‑39) and MAGP (40‑42) contribute to micro-
fibril biogenesis. Additionally, fibulin‑2 appears to colocalise 
with microfibrils in certain tissues at the interface between 
microfibrils and elastin (14). Fibulin‑2 specifically binds to 
the N‑terminal region of FBN‑1, while it also interacts with 
fibronectin and exhibits a connecting role with other ECM 
molecules. As with fibulin‑2, fibulin‑1 localizes with elastin 
providing connective bridges to other ECM components and to 
cells through laminin, fibronectin, nidogen or fibrinogen (43). 
contributing to elastic fibre assembly, fibulin-5 interacts 
with FBN and tropoelastin (44). According to experimental 
data, fibulin‑5 null mice exhibit structural abnormalities due 
to disrupted elastogenesis (45,46). As they may be absent 
in tissues exerting strong tensional forces, such as tendons, 
fibulins are associated with elastic fibre assembly rather 
than the mechanical properties of microfibrils. Furthermore, 
studies have demonstrated that A disintegrin‑like and 

metalloprotease (reprolysin‑type) with thrombospondin 
type‑1 motif (ADAMTS) and ADAMTS‑like (ADAMTSL) 
proteins, including ADAMTSL4 (47), ADAMTSL6 (48) 
and ADAMTSL10 (49), bind to FBN and modulate micro-
fibril assembly (49,50). If mutations occur in these genes, 
pathologies similar to fibrillinopathies are observed. Direct 
interaction of FBN with various proteoglycans are reported 
to be essential for network assembly and the maintenance of 
basement membranes (51,52). The proteoglycans decorin and 
biglycan are able to bind to tropoelastin, while only decorin 
directly interacts with FBN‑1 (41,53). However, biglycan forms 
a ternary complex with tropoelastin and MAGP‑1, indicating 
a potential role during elastogenesis (53). Notably, alterations 
in decorin expression have been observed in neonatal Marfan 
syndrome, which is connective tissue disorder (54,55). The 
heparan sulphate proteoglycan (HSPG) perlecan, also termed 
HSPG‑2, colocalises with FBN and elastin (56), and binds to 
the central region of FBN‑1 (57). Additionally, these HSPGs 
bind to cell surface molecules and growth factors (58), such as 
basic fibroblast growth factor, indicating an indirect involve-
ment of FBN in the regulation of cell functions and stem 
cell niches (59,60). The chondroitin sulphate proteoglycan 
versican controls the genesis of elastic fibres (61,62) and acts 
as a key factor in inflammation by interacting with the adhe-
sion molecules of activated leukocytes, including L‑selectin, 
CD44 and chemokines, to recruit inflammatory cells (63,64). 
FBN‑associated collagen with interrupted triple helices 
type XVI is associated with microfibrils in various tissues, 
including the upper papillary dermis (65) and dorsal root 
ganglia (66), indicating a potential association between FBN 
assembly and neuronal regeneration. LTBPs interact with FBN 
at the N‑terminal region (16,67) while they are also anchored 
to other ECM components, such as fibronectin (68‑70). These 
interactions are important in regulating the availability 
and the activation of TGF‑β deposited in the ECM. LTBP 
1, 3 and 4 covalently bind to the small latent TGF‑β complex 
with their third TB domain and control the local TGF‑β 
bioavailability (71). In addition to TGF‑β via LTBPs, a number 
of bone morphogenetic proteins (BMPs), and growth and 
differentiation factors, directly bind to FBN at the N‑terminal 
region (72‑75). Furthermore, through the RGD binding site in 
the TB4 domain, FBN‑1 interacts with different integrins that 
are responsible for cell‑matrix communication. 

4. FBN matrix: A dynamic deposit of growth factors

The FBN network is an important constituent of connec-
tive tissues that interacts with the cellular compartment. 
It controls the bioavailability and activity of the TGF‑β 
superfamily, which activates specific cellular signalling 
pathways for preserving tissue homeostasis. The loss of cell 
matrix interactions is a factor implicated in the pathological 
manifestations observed in microfibrillinopathies (Fig. 2). 
By indirect interaction with FBN through LTBPs, as with 
TGF-β, or direct interaction, for example BMPs (76), growth 
factors regulate the cellular behaviour and control cell 
survival, differentiation and response to injury (77). TGF‑β 
isoforms (TGF-β1, 2 and 3) are synthesized as precursor 
proteins that comprise a growth factor domain at the 
C‑terminal end and a latency‑associated peptide (LAP) at 
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the N‑terminus (78). Two precursor proteins homodimerize 
and, following cleavage by furin‑like endoproteases, form a 
complex that is termed the small latent complex (SLC) (79), 
in which LAP is non‑covalently bound to the active TGF‑β 
dimer. The SLC binds covalently to the penultimate TB 
domain in LTBPs, which together form a complex termed 
the large latent complex (LLC). The C‑terminal region of 
LTBP‑1 and ‑4 exhibit non‑covalent interactions with the 
N‑terminus of FBN‑1 within the core of beaded microfibrils, 
while the N‑terminal regions bind to fibronectin. LTBP‑3 
localizes to microfibrils using a different mechanism (80). 
The LLC is biologically inactive and TGF‑βs are accessible 
to its receptors following proteolytic degradation or confor-
mational changes (81,82) induced by integrin binding or 
cell‑mediated force transmission (79,83,84) The enzymatic 
activation followed by TGF‑β release is reported to be medi-
ated by matrix metalloprotease (MMP)‑2 and ‑9 (85), the 
serine protease plasmin (85‑88), thrombospondin‑1 (89) and 
reactive oxygen species (90). Following cleavage and activa-
tion, TGF-β binds to its serine and threonine kinase receptors 
(TβRI and TβRII) on cell membranes, forming a receptor 
heterocomplex (77,91) that, through Smad signalling activa-
tion (92,93), promotes the expression of target genes (94,95), 
including collagen type 1 α1 chain, collagen type 3 α1 chain 
and TIMP metallopeptidase inhibitor 1, in addition to another 
60 ECM‑associated genes (96). The direct binding of FBN‑1 
to different BMPs, including BMP‑2, ‑4, ‑5, ‑7 and ‑10, has 
been previously reported (73,75,97). In addition, there is 

increasing evidence that other growth factors are indirectly 
controlled through targeting to other FBN binding partners 
within the ECM, such as perlecan (57).

5. Cellular sensing of FBN signalling

As reported by Zeyer and Reinhardt (80) in 2015, 
FBN‑containing microfibrils, which contain one RGD 
binding site within the fourth TB domain (98), represent 
key signal relay molecules for cell attachment, gene expres-
sion, spreading, migration and proliferation. In vitro studies 
on cells cultured on FBN‑1 RGD‑containing peptides have 
established the impact of this interaction on cell adhesion and 
gene expression (99). Cellular interactions have been reported 
to be mediated via integrins (α5β1, α5β6, αvβ3, αvβ6 and 
α8β1) (19,99‑103) and, potentially, by other cellular sensors, 
including angiotensin II type 1 receptor (AT1) and proteogly-
cans, such as syndecans (35,104‑106). Mutations in regions 
close to the RGD binding site in FBN‑1 lead to a condition that 
is termed stiff skin syndrome (SSS), a pathological condition 
that is characterized by excessive skin fibrosis and microfibril 
accumulation (107). In vitro and in vivo studies employing 
mice harbouring a mutation in this region reported disturbed 
cell contact with microfibrils and altered cell spreading. It is 
reported that AT1 is activated by mechanical stress in cardiac 
hypertrophy (108). Mice homozygous for a hypomorphic FBN‑1 
allele (FBN‑1mgR/mgR) exhibited dilated cardiomyopathy (109). 
A heparin sulphate binding region upstream of the RGD motif 

Figure 1. Schematic figure representing the chromosomal location, domain organization and primary functions of human fibrillin. EGF domain, epidermal 
growth factor‑like domain; TGF, transforming growth factor; TB domain, TGF‑β binding protein‑like domain; ECM, extracellular matrix; LTBP, latent 
TGF-β‑binding protein; BMPs, bone morphogenetic proteins; GDF, growth and differentiation factors; TGFBR, TGF‑β receptor; BMPR, BMP receptor.
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has been reported to be synergistically involved in integrin 
binding, while another downstream heparan sulphate binding 
site stimulates the formation of focal adhesion (103) through 
αvβ3‑integrin (110). It has been demonstrated that, when 
heparin sulphate signalling is inhibited, the formation of the 
FBN network is disrupted (104). 

6. FBN diseases in humans

Due to the number of functions that are controlled to a certain 
degree by FBN, it is clear that mutations in FBN genes lead 
to a number of diseases that affect multiple organs, which are 
collectively termed fibrillinopathies. Mutations in the FBN‑1 
gene have been demonstrated to cause Marfan syndrome, an 
autosomal dominant disorder of the connective tissue that is 
characterized by pleiotropic manifestations in ocular, skeletal 
and cardiovascular systems. Since the identification of the 
first mutation in 1991 (111), at present, >1,800 genetic abnor-
malities have been identified throughout the entire length of 
FBN‑1 (112). Unfortunately, due to phenotypic variability and 
disease severity, a phenotype‑genotype correlation remains to 
be established (113,114). Mutations in the central region of the 
FBN‑1 gene, comprising exons 24‑32, are commonly associ-
ated with severe myocardial dysfunctions, neonatal Marfan 
syndrome and mortality within the first two years of postnatal 
life (115‑117). It is reported that approximately two‑thirds 
of missense mutations involve cysteine residues and lead 
to ocular complications, while premature terminations are 
associated with severe skeletal and skin anomalies (115). A 
growing body of evidence indicates that not all mutations 

in FBN‑1 result in Marfan syndrome; however, those that 
are not are associated with Marfan‑like disorders (118), 
including MASS phenotype (119), familial thoracic aortic 
aneurysm (120,121), Shprintzen‑Goldberg syndrome (122) 
and ectopia lentis (123). It has also been established that 
mutations in FBN‑1 may lead to acromelic dysplasias, such as 
Weill‑Marchesani syndrome (WMS), geleophysic dysplasia, 
acromicric dysplasia and Myhre syndrome (74,124,125). The 
patients affected by these syndromes generally exhibit short 
statue, short hands and feet, stiff joints and a hypermuscular 
build, which is unlike patients with Marfan syndrome, who 
present with a tall stature, arachnodactyly, hypermobile joints 
and a thin hypomuscular structure. By contrast to Marfan 
syndrome, the mutations in FBN‑1 that cause acromelic 
dysplasias, such as WMS, are located in a hot spot within the 
FBN‑1 gene (126) and are in‑frame deletions of 24 nucleotides 
in exon 41 and 42, which encode the fifth TB (124,126,127). 
An in‑frame deletion of exons 9‑11, encoding the first TB 
domain, the proline rich region and the fourth EGF‑like 
domain, have been identified in WMS (74). Notably, while 
FBN‑1 mutations account for the dominant form of WMS, 
the recessive form is reported to be caused by mutations in 
ADAMTS10 (128). According to experimental evidence from 
mouse models expressing RGD sequence mutations and the 
ability of integrin‑modulating therapy to prevent fibrosis and 
autoimmunity (129), the primary cause of SSS may be the loss 
of integrin binding sites. A mutation in the TB4 domain has 
also been reported in patients affected by this syndrome (107). 
A summary of the structural and signalling effects of muta-
tions in FBN‑1 is presented in Fig. 2.

Figure 2. Schematic figure representing the structural and signalling effects of fibrillin mutations and the process of fibrillin network fragmentation. 
(A) Structural and signalling effects of fibrillin mutations. (B) Process of fibrillin network fragmentation caused by fibrillin mutations. TGF, transforming 
growth factor; TGFBR, TGF‑β receptor; BMP, bone morphogenetic protein; BMPR, BMP receptor.
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7. In vitro and in vivo studies of FBN assembly

Pathophysiological mechanisms accounting for the clinical 
manifestation of Marfan syndrome and similar disorders are 
associated with an altered FBN network. Early immunofluo-
rescent studies using anti‑FBN antibodies revealed qualitative 
and quantitative abnormalities of the dermal microfibrils, 
with a fragmented appearance in tissues extracted from 
patients with Marfan syndrome. Isolated dermal fibroblasts 
exhibited a reduced expression of FBN fibres and an abnormal 
morphology in immunofluorescent analyses (130,131). 
Differences in microfibril morphology have also been observed 
in neonatal Marfan syndrome fibroblast cultures (132). In 
contrast to the fragmented FBN networks observed in Marfan 
syndrome (130,133), the FBN network in WMS is abnormal 
for a different reason, as large FBN aggregate accumula-
tions (74) have been reported in the skin of patients with 
SSS (107). Several in vitro and in vivo studies of FBN‑1 
disorders have been performed in the last two decades. The 
dominant negative model is supported by an in vitro study in 
which the wild‑type protein function is disrupted by the mutant 
FBN, indicating that one FBN‑1 mutant allele is sufficient to 
diminish microfibril assembly (131). Furthermore, data from 
this model are consistent with published data that reported that 
low levels of mutant FBN‑1 expression in patients with Marfan 
syndrome is associated with a less severe phenotype (134). On 
the other hand, haplosufficient models have demonstrated that 
selected mutations, such as C1039G, lead to a disorganization 
of the microfibril network, while the C1663R FBN‑1 mutation 
participates in productive microfibril assembly (135). Based 
on this body of evidence, it is clear that FBN‑1 disorders are 

caused by mechanisms that are dependent on the position and 
type of mutation. In vivo studies of mutant FBN have indicated 
that abnormalities within the first hybrid domain do not affect 
microfibril stability (133), while mutations in cbEGF‑like 
domains perturb microfibril assembly (136). Certain FBN‑1 
mutations also lead to a gene product that, although it may 
be assembled into microfibrils with a normal appearance, the 
mutation destabilizes the structure of FBN‑1 and renders it 
more susceptible to proteolysis, leading to a gradual degrada-
tion (137,138). As reported by several studies, the regulation of 
MMPs is implicated in the pathogenesis of Marfan syndrome 
and other fibrillinopathies (139,140). In particular, MMP‑1, ‑2, 
‑3 and ‑9 appear to exert a pivotal role in FBN fragmenta-
tion, as demonstrated by the increased concentration of FBN 
fragments in the aortic specimens of patients with Marfan 
syndrome (140‑142). Studies concerning connective tissue 
disorders caused by FBN‑1 mutations have also revealed 
alterations in the targeting and activation of growth factors. 
In addition, an association between FBN‑1 mutations and the 
altered release of TGF‑β has been associated with the develop-
ment of fibrillinopathies (143). In support of this hypothesis, 
the administration of TGF‑β antagonists led to anti‑apoptotic 
effects in the lungs of FBN‑1‑deficient mice (144). Additionally, 
neutralizing TGF-β antibodies successfully prevented the 
development of aortic aneurysm by normalizing the levels of 
TGF-β in Marfan syndrome mouse models (145). Furthermore, 
TGF-β antagonists have been reported to reduce the levels of 
circulating TGF-β in patients with Marfan syndrome (146). 
Notably, mutations in LTBPs or TGF‑β receptors, as observed 
in Loyes‑Dietz syndrome, may lead to the uncontrolled release 
of TGF-β. A perturbation of TGF‑β signalling is also observed 

Figure 3. Schematic figure representing the development of gut fibrosis. TNF, tumour necrosis factor; IL, interleukin; ECM, extracellular matrix; TGF, 
transforming growth factor; MMPs, matrix metalloproteases; TIMPs, TIMP metallopeptidase inhibitors.
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in other fibrillinopathies, including SSS (107) and acromicric 
or geleophysic dysplasia (124). 

8. Involvement of FBN‑1 in inflammatory disorders 

Scleroderma is a heterogeneous connective tissue disease 
that is characterized by excessive cutaneous and visceral 
fibrosis, Raynaud's phenomenon, vascular lesions and gastro-
intestinal manifestations (147). A widely used mouse model 
of systemic sclerosis is the tight skin (Tsk) mouse, which 
exhibits an in‑frame tandem duplication of FBN‑1 (148). 
While homozygotes suffer embryonic lethality at day 7‑8 of 
gestation, heterozygotes (Tsk/+) have a normal life span but 
manifest myocardial, skeletal, and pulmonary abnormalities. 
Furthermore, heterozygotes also present with abnormal/altered 
fibrotic, inflammatory and autoimmune function. Comparable 
levels of normal and mutant FBN‑1 transcripts in Tsk/+ 
tissues, and the presence of abundant tissue microfibrils, 
indicates that the mutant FBN‑1 is regularly synthesized and 
assembled (148). Mutant FBN copolymerizes with wild‑type 
FBN‑1, which leads to an unstable structure (149) that is more 
sensitive to proteolysis (150). Briefly, Tsk/+ mice synthe-
size two types of microfibrils that present with a normal 
morphology and a well‑organized periodicity, or diffuse inter-
beads, a longer periodicity and a tendency to aggregate (151). 
The instability of Tsk microfibrils leads to a disorganization 
and fragmentation of elastic fibres, subsequently leading to 
reduced ECM integrity (152,153) and increased cellular 
processing, followed by an autoimmune response and the 
development of autoantibodies (154). The autoimmune pheno-
type, however, is not required for the development of dermal 
thickening observed in Tsk/+ mice, and the Tsk phenotype 
appears to be independent of the immune system, as this 
phenotype has also been reported in mice lacking mature T 
and B cells (155,156). A potential mechanism involved in the 
promotion of the fibrotic phenotype may be driven by altered 
TGF-β signalling (157).

9. Gut‑FBN axis

Inflammatory bowel disease (IBD) comprises a group of gut 
immunopathological conditions that are a result of genetic, 
environmental and cellular cues (158). ECM components 
have important immunoregulatory roles, and the composi-
tion and ultrastructure of the ECM are involved in intestinal 
immune responses, pathological signalling, and chronic 
inf lammation (159). Uncontrolled alterations in ECM 
composition are reported in IBD and involve collagen I (160), 
collagen III (161,162), collagen V (163), collagen XVI (164), 
laminin (165,166), hyaluronan (167) and, recently, FBN‑1 (164). 
FBN and elastic fibre networks have important structural and 
biomechanical roles within the intestinal tract as they are 
essential for the peristaltic movement of the gastrointestinal 
tract. Notably, in up to 90% of patients with SSS (168), FBN 
network perturbations are reported to lead to excessive fibrosis, 
inflammation and vascular dysfunction (169‑175). Reinforcing 
the hypothesis that the FBN network is involved in intestinal 
homeostasis, a previous study reported the downregulation of 
FBN in the lamina propria of patients with IBD compared with 
healthy donors (164). The development of gut fibrosis (176) 

involves multiple cell types and a large number of soluble 
factors (Fig. 3). Among soluble factors, TGF-β1, which is 
generally considered to be the key mediator of fibrosis (177), is 
overexpressed in IBD (178), while under physiological condi-
tions TGF-β1 regulates the immune homeostasis by preventing 
abnormal proinflammatory responses, as demonstrated by the 
development of severe and lethal systematic inflammation in 
TGF-β1 knockout mice (179) or animals expressing T cells 
that do not respond to TGF‑β1 (180). As observed in other 
organs, FBN and elastin fragments deriving from unstable 
networks lead to the upregulated expression of MMPs, 
including MMP‑1, ‑2, ‑3, ‑7, ‑9, ‑10, ‑12 and ‑13 (181‑183), 
which results in disturbed ECM turnover and subsequent 
fibrosis (184,185).

10. Conclusions and perspectives

FBN‑1 is an important ECM component that integrates the 
biological network of structural and instructive information 
for the modulation of cell‑cell and cell‑matrix interactions. 
Acting as a key relay molecule for the transmission of extracel-
lular information into cellular signalling and function, FBN‑1 
contributes to the accumulation of latent forms of growth factors, 
such as TGF-β and BMPs, and regulates their bioavailability 
and activity. Regulating the expression of MMPs, fragmented 
microfibrils are associated with the development of multiorgan 
inflammation and fibrosis. At present, the characterization of 
FBN‑1 dysfunction has improved the characterization of the 
pathological pattern of connective tissue diseases and the 
identification of novel therapeutic biological approaches for 
the treatment of inflammation‑associated states.
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