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Abstract. Breast cancer-specific gene 1 (BCSG1), also referred 
to as γ-synuclein (SNCG), is highly expressed in human infil-
trating breast carcinomas, but not in normal or benign breast 
tissue. The present study aimed to evaluate the effects of BCSG1 
siRNA delivered by lentiviral vector on breast cancer cells and 
investigate the underlying mechanisms. BCSG1 RNAi lentiviral 
vector was constructed and transfected into MDA-MB-231 
cells. BCSG1 mRNA levels were determined by quantitative 
polymerase chain reaction analysis. Cell proliferation, migration 
and apoptosis were evaluated by using the cell counting kit‑8, 
Transwell assay and flow cytometry, respectively, followed by 
western blotting to determine the relative levels of AKT, extra-
cellular signal‑regulated kinase (ERK), p-AKT and p-ERK 
expression. BCSG1 mRNA levels were significantly reduced in 
MDA-MB‑231 cells following transfection of BCSG1 siRNA 
delivered by lentiviral vector. Cell migration and proliferation 
were significantly decreased and the cell cycle was arrested. 
Western blot analysis indicated that the protein levels of p-AKT 
and p-ERK were significantly lower in the BCSG1 siRNA-
treated groups compared with the control and negative control 
groups. Therefore, BCSG1 siRNA delivered by lentiviral vector 

was able to significantly reduce BCSG1 expression, suppress 
cell migration and proliferation, possibly through the reduction 
of the protein levels of p-AKT and p-ERK.

Introduction

Breast cancer is the most common type of cancer and the second 
leading cause of cancer‑related mortality in women  (1,2). 
Although several effective options, including radiation, chemo-
therapy, endocrine therapy and surgery, may be selected for 
treatment, the mortality rate of breast cancer remains high. 
Numerous studies have been conducted to investigate the 
pathogenesis of breast cancer; however, the precise mechanism 
remains unclear. Genetic alterations in normal cells are consid-
ered to be involved in the occurrence of breast cancer.

Breast cancer-specific gene 1 (BCSG1) is not expressed in 
normal breast tissue or benign breast diseases, but is highly 
expressed in human infiltrating breast carcinomas, and its 
expression is stage-specific  (3-5). When overexpressed, 
BCSG1 leads to a significant increase in the proliferation, 
invasiveness and metastasis of breast cancer cells (6), whereas 
downregulation of BCSG1 expression sensitizes breast cancer 
cells to antimicrotubule agent-induced cytotoxicity  (7-9). 
These findings indicate that BCSG1 may act as a tumor marker, 
and downregulation of BCSG1 may be an effective strategy in 
breast cancer treatment.

As a type of retrovirus, lentiviral vectors can infect both 
dividing and non‑dividing cells due to their preintegration 
complex (virus ‘shell’) (10,11). It has been reported that lentivi-
ruses can change the expression levels of target genes for up to 
6 months (12); thus, it possible to provide highly effective gene 
therapy by using lentiviruses. These properties make lentiviral 
vectors attractive vehicles for delivering small interfering 
RNAs (siRNAs) into mammalian cells (13,14).

RNA interference (RNAi) inhibits gene expression by 
reducing mRNA stability or inhibiting translation (15). Since 
the discovery of siRNA in gene silencing (16), RNAi has become 
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a powerful research tool in gene function studies. Compared 
with genetic deletion, RNAi-mediated gene silencing has 
several advantages (17). Numerous studies have demonstrated 
the applications of RNAi in cancer research (18,19). In the 
present study, a BCSG1 RNAi lentiviral vector was initially 
constructed, followed by transfection of MDA-MB-231 breast 
cancer cells. The proliferation, migration and apoptosis of 
MDA-MB-231 cells were then evaluated and the underlying 
mechanisms were investigated.

Material and methods

Cell lines. The 293T cell line was selected for lentivirus pack-
aging and titer determination, while the human breast cancer 
line MDA‑MB‑231 was used for functional experiments. All the 
cells were purchased from American Type Culture Collection 
(Manassas, VA, USA) and were cultured in Dulbecco's 
modified Eagle's medium (Gibco; Thermo Fisher Scientific, 
Carlsbad, CA, USA) supplemented with 10% heat‑inactivated 
fetal bovine serum, 100 mg̸̸l streptomycin and 100 U̸̸ml 
penicillin (Gibco; Thermo Fisher Scientific) under 5% CO2, at 
37˚C in a humidified incubator.

Construction of the BCSG1 RNAi lentiviral vector. Based on the 
gene sequence of BCSG1 in GenBank (Gene ID: 6623), primers 
of BCSG1 siRNA and negative control were designed and 
cloned into a PGLV3̸̸ H1̸̸ GFP + Puro vector. The interference 
primers for BCSG1 (Si-BCSG1) were as follows: forward, 
5'-GAT​CCG​CCC​ACT​TAT​GCT​GCT​GTG​AAT​TTC​AAG​AGA​
ATT​CAC​AGC​AGC​ATA​AGT​GGG​CTT​TTT​TG-3' and reverse, 
5'-AAT​TCA​AAA​AAG​CCC​ACT​TAT​GCT​GCT​GTG​AAT​
TCT​CTT​GAA​ATT​CAC​AGC​AGC​ATA​AGT​GGG​CG-3'. The 
primers for the interference negative control (NC) were as 
follows: forward, 5'-GAT​CCG​TTC​TCC​GAA​CGT​GTC​ACG​
TTT​CAA​GAG​AAC​GTG​ACA​CGT​TCG​GAG​AAC​TTT​TTT​
G-3' and reverse, 5'-GTT​CTC​CGA​ACG​TGT​CAC​GTT​TCA​
AGA​GAA​CGT​GAC​ACG​TTC​GGA​GAA​CTT-3'. Cell transfor-
mation and plasmid sequencing of positive cell clones were used 
to confirm the successful construction of the lentiviral vector.

Lentivirus packaging and titer determination. After reaching 
a confluence of ~70-80%, 293T cells were transfected with 
NC and BCSG1 RNAi lentiviral vectors. After 48  h, the 
viruses were harvested and concentrated, and their titers were 
detected. MDA-MB-231 cells at a confluence of ~90% were 
transfected with NC lentivirus (NC group), BCSG1 lentivirus 
siRNA (siRNA group) or not transfected (control group). 
Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, 
Carlsbad, CA, USA) was used for transfection according to the 
manufacturer's instructions.

Quantitative polymerase chain reaction (qPCR). Total RNA 
was extracted from MDA-MB-231 cells and the quality was 
evaluated by agarose gel electrophoresis. The concentration of 
the extracted RNA was estimated by optical density measure-
ment (A260̸̸A280 ratio) with the Q5000 Spectrophotometer 
(Quawell, Sunnyvale, CA, USA). qPCR was then performed 
using the SYBR-Green‑based PCR master mix. The ABI 
PRISM 7500 system (ABI, Grand Island, NY, USA) was 
used for all amplification reactions in a total volume of 25 µl. 

The cycling conditions were as follows: an initial 10 min of 
pre-denaturation at 95˚C, followed by 40 cycles of 95˚C for 
10 sec, 60˚C for 20 sec, and 72˚C for 15 sec. The specificity 
of the amplification products was confirmed by melting curve 
analysis. All products were normalized to β-actin mRNA 
levels. Each specimen was repeated 3 times.

CCK-8 assay. At 72 h after transfection, MDA-MB‑231 cells 
were seeded in the 96-well plates at a density of 2,000 cells̸well 
and incubated for 0, 24, 48 and 72 h. At the end of the incu-
bation, 20 µl CCK-8 (Dojindo Molecular Technologies, Inc., 
Xiongben, Japan) were added to each well. The plates were 
then incubated in a humidified incubator at 37˚C under 5% CO2 
for 1 h, and the absorbance was measured at 450 nm.

Transwell assay. After 72 h of transfection, MDA-MB-231 
cells were seeded in the 6-well Transwell upper chambers 
at a density of 25,000 cells̸well. The Transwell assay was 
performed according to the manufacturer's instructions. The 
Transwell chambers were then incubated for 48 h at 37˚C 
in a humidified incubator with 5% CO2, and then the lower 
chamber was stained with hematoxylin and photographed.

Flow cytometry analyses. MDA-MB-231 cells in the loga-
rithmic phase of growth were seeded in 6-well plates at a density 
of 500,000 cells̸well and incubated overnight. After 72 h of 
transfection, the cells were collected, washed with Dulbecco's 
phosphate-buffered saline (DPBS; Genview, El Monte, CA, 
USA), fixed in 70% ethanol, and incubated overnight at -20˚C; 
ethanol was then removed by centrifugation at 3,000 x g. The 
cell pellets were washed with DPBS, followed by incubation 
with 100 µl propidium iodide (PI) solution (Sigma‑Aldrich; 
Merck KGaA, St. Louis, MO, USA) for 5-10 min in the dark 
at 37˚C and were then analyzed by flow cytometry (Beckman 
Coulter, Brea, CA, USA).

Flow cytometeric analysis for apoptosis was performed 
using an Annexin V-FITC apoptosis detection kit (Shanghai 
Genechem Biotech Co., Ltd., Shanghai, China) and PI. Cells 
were harvested 72 h after transfection, followed by staining 
with the binding buffer, 5 µl Annexin V̸ fluorescein isothiocya-
nate (FITC) for 15 min in the dark at room temperature. PI was 
then added and incubated in the dark at room temperature for a 
further 15 min. Apoptosis was then detected by flow cytometry.

Western blotting. Cell lysates were harvested and samples 
(50 µg protein̸lane) were fractionated by 12% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis and transferred to 
polyvinylidene fluoride membranes. The membranes were 
incubated in 5% skimmed milk for 1 h at room temperature, 
and overnight at 4˚C with primary antibodies; glyceraldehyde 
3-phosphate dehydrogenase was used as the control. The bands 
were visualized using an ECL chemiluminescence kit (Genview) 
and quantitated by Quantity One (Bio-Rad, Hercules, CA, USA).

Results

BCSG1 mRNA level in MDA-MB-231 cells. As shown 
in Fig. 1A, the levels of BCSG1 mRNA were found to be 
significantly lower in the siRNA group compared with those 
in the NC (P<0.0001) and control groups (P<0.0001). These 
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results suggest that BCSG1 lentivirus siRNA significantly 
downregulated the BCSG1 mRNA levels in breast cancer 
cells; the interference efficiency reached 82.45% (Fig. 1B).

Proliferation of MDA-MB-231 cells. The CCK-8 assay 
demonstrated that cell proliferation decreased significantly 
in the siRNA group (P<0.0001), particularly after 72 h of 
treatment; no significant difference was observed between 
the NC and control groups (P>0.05; Fig. 2). The CCK-8 assay 
demonstrated that BCSG1 lentivirus siRNA inhibited the 
proliferation of breast cancer cells.

Migration of MDA-MB-231 cells. Cells that migrated through 
the membrane were counted in five random fields for each 
group, and the relative migration rate was calculated as follows: 
Relative migration rate = number of migrated cells̸number of 
migrated cells in the control group. The migrated cell number 
in the siRNA group decreased significantly, particularly after 
48 h of treatment (Fig. 3A). The relative migration rates of the 
siRNA group were significantly lower compared with those 
in the control and NC groups (P<0.001 and P<0.0001, respec-
tively; Fig. 3B). The results indicated that BCSG1 lentivirus 
siRNA inhibited breast cancer cell migration.

Apoptosis of MDA-MB-231 cells. As shown in Fig. 4, 74.02% of 
the cells in the siRNA group were Annexin V̸FITC‑positive, 
which was significantly higher compared with the NC (0.45%) 
and control groups (0.84%). These results suggested that the 

BCSG1 lentivirus siRNA decreased the proliferation of breast 
cancer cells through induction of apoptosis.

MDA-MB-231 cell cycle. As shown in  Fig.  5, a higher 
percentage of cells in the siRNA group (67.25±0.93%) were 
in the G0̸G1 phase when compared with those in the NC 
and control groups (48.90±0.40%, P<0.05; and 50.50±0.89%, 
P<0.05, respectively). A lower percentage of cells in the siRNA 
group (25.69±1.57%) were in the S phase. And ~8.42±0.87% 
of cells were in the G2̸M phase. These results indicated that 
transfection with BCSG1 lentivirus siRNA led to breast cancer 
cell cycle arrest.

Figure 1. The relative concentration of breast cancer-specific gene 1 (BCSG1) 
mRNA in the human breast cancer cell line MDA-MB-231. (A) Relative 
mRNA expression of BCSG1. (B) Interference efficiency of BCSG1 lenti-
virus siRNA. ***P<0.0001. NC, negative control.

Figure 2. Cell proliferation in cell counting kit‑8 (CCK-8) assay at 0, 24, 48 
and 72 h after transfection. *P<0.05 and ***P<0.0001. BCSG1, breast cancer-
specific gene 1; NC, negative control.

Figure 3. Migration of MDA-MB-231 cells. (A) Migration with microscopic 
examination. (B) relative migration rate of three groups. *P<0.05, **P<0.001 
and ***P<0.0001. BCSG1, breast cancer-specific gene 1; NC, negative control.
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Figure 6. (A) Western blotting of AKT, p-AKT, extracellular signal-regulated kinase (ERK), p-ERK and their corresponding internal reference (GAPDH). 
(B) histogram for the content of proteins in each group. NC, negative control; BCSG1, breast cancer-specific gene 1;

Figure 4. Apoptosis of MDA-MB-231 cells in each group. (A) Fluorescence-activated cell sorting results of the control, NC and si-BCSG1 groups. (B) Early 
apoptosis (%). ***P<0.0001. NC, negative control; BCSG1, breast cancer-specific gene 1; GFP, green fluorescent protein.

Figure 5. MDA-MB-231 cell cycle in each group. (A) Control, (B) NC and (C) si-BCSG1 groups. (D) Percentage of DNA distribution (%). ***P<0.0001. NC, 
negative control; BCSG1, breast cancer-specific gene 1.
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Protein expression in MDA-MB-231 cells. After transfection 
of BCSG1 lentivirus siRNA, MDA-MB-231 cells exhibited 
a relative downregulation of p-AKT and p-extracellular 
signal‑regulated kinase (ERK) levels (Fig. 6), while there were 
no significant differences in the expression levels of AKT and 
ERK among the three groups. These data suggested that the 
BCSG1 lentivirus siRNA downregulated the levels of p-AKT 
and p-ERK, which, in turn, may be involved in the process of 
cell apoptosis induced by BCSG1 lentivirus siRNA.

Discussion

BCSG1, also referred to as γ-synuclein gene (SNCG), was 
identified by Ji et al  (3) in 1997 by direct sequencing of 
cDNA in breast cancer. BCSG1 is not expressed in normal 
or benign breast tissues, but is highly expressed in advanced 
and metastatic breast tumors  (4). Abnormal expression 
of BCSG1 has been implicated in various types of cancer, 
including ovarian, hepatic, glial tumors, esophageal, pros-
tatic, pancreatic, colon, gastric, lung, bladder and cervical 
cancers (5,20-27). In breast cancer, BCSG1 expression was 
found to be closely correlated with disease stage, lymph node 
involvement, metastasis, tumor size and human epidermal 
growth factor receptor 2 status; however, BCSG1 expression 
was found to be independent of the expression of estrogen 
receptor (ER) and progesterone receptor (28). Overexpression 
of BCSG1 in breast cancer cells may facilitate cell prolifera-
tion (29), increase migration and promote metastasis in nude 
mice (6). Moreover, BCSG1 is associated with ERα overex-
pression (30), antimicrotubule drug resistance (31), and an 
accelerated rate of chromosomal instability (32). All these 
studies suggest that BCSG1 knockdown may be an effective 
therapy in breast cancer treatment.

In the present study, a constructed siRNA lentiviral vector 
was used to effectively suppress BCSG1 expression in human 
breast cancer. BCSG1 mRNA expression was found to be 
significantly suppressed (up to 84.2%) in MDA‑MB‑231 cells; 
cell migration and proliferation decreased significantly and 
the cell cycle was arrested. In accordance with our previous 
study, western blot analysis indicated that overexpression of 
BCSG1 may enhance the migration and viability of breast 
cancer cells through regulating the AKT and ERK pathways. 
In addition, the induction of apoptosis of breast cancer cells 
was more prominent compared with that in our previous study 
(74.02 vs. 33.2%, respectively) (33). We hypothesized that this 
may due to prolonged expression of BCSG1 siRNA delivered 
by lentiviral vector in breast cancer cells.

RNAi is a powerful new tool, which may be used to 
perform loss‑of‑function genetic screens in lower organisms 
and may greatly facilitate the identification of components of 
cellular signaling pathways. In mammalian cells, such screens 
have been hampered by a lack of suitable tools that can be 
used on a large scale (34). RNAi lentiviral vectors may be a 
potential biological method for the short-term treatment of 
breast cancer.

In conclusion, our results demonstrated that BCSG1 siRNA 
delivered by a lentiviral vector was able to significantly reduce 
BCSG1 expression, suppress cell migration and proliferation 
and lead to cell cycle arrest; reduced protein levels of p-AKT 
and p-ERK may contribute to these phenomena.
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