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Abstract. Colorectal cancer (CRC) is one of the most common 
cancers and a major cause of mortality. The present study 
aimed to identify potential biomarkers for CRC metastasis 
and uncover the mechanisms underlying the etiology of the 
disease. The five datasets GSE68468, GSE62321, GSE22834, 
GSE14297 and GSE6988 were utilized in the study, all of 
which contained metastatic and non-metastatic CRC samples. 
Among them, three datasets were integrated via meta-analysis 
to identify the differentially expressed genes (DEGs) between 
the two types of samples. A protein-protein interaction (PPI) 
network was constructed for these DEGs. Candidate genes 
were then selected by the support vector machine (SVM) clas-
sifier based on the betweenness centrality (BC) algorithm. A 
CRC dataset from The Cancer Genome Atlas database was 
used to evaluate the accuracy of the SVM classifier. Pathway 
enrichment analysis was carried out for the SVM-classified 
gene signatures. In total, 358 DEGs were identified by 
meta-analysis. The top ten nodes in the PPI network with the 
highest BC values were selected, including cAMP responsive 
element binding protein 1 (CREB1), cullin 7 (CUL7) and signal 
sequence receptor 3 (SSR3). The optimal SVM classification 
model was established, which was able to precisely distinguish 
between the metastatic and non-metastatic samples. Based on 
this SVM classifier, 40 signature genes were identified, which 
were mainly enriched in protein processing in endoplasmic 
reticulum (e.g., SSR3), AMPK signaling pathway (e.g., CREB1) 
and ubiquitin mediated proteolysis (e.g., FBXO2, CUL7 and 
UBE2D3) pathways. In conclusion, the SVM-classified genes, 
including CREB1, CUL7 and SSR3, precisely distinguished the 
metastatic CRC samples from the non-metastatic ones. These 

genes have the potential to be used as biomarkers for the prog-
nosis of metastatic CRC.

Introduction

Colorectal cancer (CRC) is one of the most lethal diseases 
worldwide, and it is estimated to account for >9% of all cases of 
cancer. The incidence of CRC varies according to geographical 
location, and the majority of cases occur in developed coun-
tries (1). Based on epidemiological data, it was estimated 
that 136,830 individuals would be diagnosed with CRC and 
50,310 would succumb to the disease in the USA in 2014 (2).

Genetic factors have been established as major regula-
tors that affect CRC pathogenesis. Germline mutations of 
susceptibility genes, such as adenomatous polyposis coli, 
MutL homolog 1, MutL homolog 2 and the three loci recently 
identified near to the genes paired like homeodomain 1, 
cyclin D2 and hydroxyacid oxidase 1, are considered to be 
tightly associated with CRC risk (3). SRY-box containing 
gene 17 is a transcription factor (TF) that functions as an 
inhibitor in the Wnt pathway, and its abnormal expression 
caused by promoter hypermethylation may influence CRC 
development (4). The activation of nuclear factor-κB signaling 
and its regulated genes also serve important roles in the promo-
tion of CRC progression (5). Metastasis is the most common 
cause of cancer-associated mortality, and accounts for ~90% 
of all cancer deaths (6). Patients with metastatic CRC have a 
poor 5-year survival rate of <10% (7). A number of studies 
have investigated the molecular mechanisms of metastatic 
CRC. For instance, the overexpression of AKT serine/threo-
nine kinase 2 has been indicated to be a causative factor for 
CRC metastasis (8). Another study identified several metas-
tasis-associated genes in CRC, which mainly participate in 
extracellular matrix interactions and cell signaling functions, 
and include integrin subunit β1, integrin subunit β5, collagen 
type Vα1 and secreted phosphoprotein 1 (9). A further study 
indicated that metastatic gene signatures, such as chemokine 
(C-X-C Motif) receptor 7, adenylate kinase 1 and early growth 
response 1 are able to predict the risk of recurrence and 
mortality in patients with CRC (10). Despite these profound 
findings, the etiology of CRC metastasis remains obscure.

The support vector machine (SVM) classifier is a kernel 
algorithm that bases its analysis on data obtained only 
through dot-products. The SVM classifier is widely applied in 

Support vector machine classifier for prediction 
of the metastasis of colorectal cancer

JIAJUn ZhI,  JIWEI SUn,  ZhonGChUAn WAnG  and  WEnJUn DInG

Department of Colorectal Surgery, Xinhua hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 
Shanghai 200092, P.R. China

Received December 31, 2016;  Accepted December 13, 2017

DoI: 10.3892/ijmm.2018.3359

Correspondence to: Dr Wenjun Ding, Department of Colorectal 
Surgery, Xinhua hospital Affiliated to Shanghai Jiao Tong University 
School of Medicine, 1665 Kongjiang Road, Shanghai 200092, 
P.R. China
E-mail: wow_dingwenjun@163.com

Key words: colorectal cancer, metastasis, microarray, meta-analysis, 
support vector machine, classification



ZHI et al:  SVM CLASSIFIER FoR METASTATIC CoLoRECTAL CAnCER1420

bioinformatics due to its high accuracy, and has the ability to 
identify the multivariate statistical properties of data that distin-
guish between two different groups (11,12). henneges et al (13) 
demonstrated that the SVM classifier, in combination with 
liquid chromatography ion trap mass spectrometry, is a prom-
ising tool for crucial gene predictions in non-invasive breast 
cancer. In addition, another study using SVM established 
a model that was able to discriminate normal samples from 
those of CRC patients; via this classification method, several 
biomarkers were predicted, including cadherin 3, claudin 1 
and interleukin-8 (14). however, to the best of our knowledge, 
there have been no previous reports regarding the application 
of the SVM classifier to CRC metastasis.

Therefore, the present study was performed using the SVM 
method to classify metastatic and non-metastatic CRC samples. 
Three datasets were integrated using meta-analysis and an 
additional dataset from The Cancer Genome Atlas (TCGA) 
database was utilized to validate the precision of the SVM 
classifier. Several bioinformatic methods were then carried 
out to reveal function and pathway information of the identi-
fied SVM-classified signature genes, on the basis of which a 
comprehensive evaluation of the metastatic mechanisms in 
CRC was conducted and novel biomarkers identified.

Materials and methods

Data resources and pretreatment. The Gene Expression 
omnibus (GEo; http://www.ncbi.nlm.nih.gov/geo) database 
was searched for all eligible open public datasets with the key 
search terms of ‘colon cancer’ and ‘homo sapiens’. Datasets 
that satisfied the following criteria were included in the 
study: i) The data comprised gene expression profiles; ii) the 
data were associated with CRC and metastasis; iii) informa-
tion on samples from patients with CRC and controls was 
elaborated. Based on these selection criteria, five microarray 
datasets, GSE68468 (15), GSE62321 (16), GSE22834 (17), 
GSE14297 (18) and GSE6988 (19) were included in the present 
study.

Among these datasets, GSE68468 and GSE62321 were 
from the same platform, Affymetrix hG-U133 arrays 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA). 
GSE68468 consisted of 240 CRC samples, of which 47 were 
metastatic and 193 were non-metastatic. GSE62321 comprised 
a total of 39 CRC samples, including 19 metastatic and 
20 non-metastatic samples. For these two datasets, raw data 
in the CEL format was downloaded from the GEo database, 
followed by background correction and normalization using 
the Microarray Suite and quantiles, respectively (20,21). The 
median method was used for the supplementation of missing 
values. These pretreatments were performed using the Affy 
package in R version 1.42.3 (http://www.bioconductor.org/
packages/release/bioc/html/affy.html).

Regarding the remaining three datasets, GSE22834 was 
obtained from the Stanford Microarray Database print plat-
form (Stanford University, Stanford, CA, USA), and consisted 
of 63 CRC samples (32 metastatic and 31 non-metastatic); 
GSE14297 was derived from the Illumina human-6 v2.0 
expression beadchip (extended) (Illumina, Inc., San Diego, 
CA, USA), and included 36 CRC samples (18 metastatic and 
18 non-metastatic); and GSE6988 was from the human 17K 

cDnA-GeneTrack platform (Genomic Tree, Inc., Daegeon, 
Korea), and comprised 53 CRC samples (33 metastatic and 
20 non-metastatic). For these three datasets, raw data in the txt 
format was downloaded in the respective platform. In each anno-
tation platform, the probe identification number was transformed 
into gene expression symbols. Probes that had a vacancy were 
deleted, and multiple probes that corresponded to a single gene 
were averaged to obtain the gene expression value. The Linear 
Models for Microarray Analysis (limma; http://www.biocon-
ductor.org/packages/release/bioc/html/limma.html) package 
version 3.22.1 was then used to normalize the data (22).

Selection of differentially expressed genes (DEGs) using 
meta‑analysis. To eliminate the bias from different platforms, 
the MetaQC package version 0.1.13 was utilized to perform 
quality control of the different datasets, in combination 
with principal component analysis and standardized mean 
rank (23). The standards in MetaQC included: i) Internal 
quality control, which was used to determine the structural 
homogeneity of gene expression values among different 
datasets; ii) external quality control, which was used for the 
consistency testing of gene expression in a pathway database; 
iii) accuracy quality control, which was used to determine the 
accuracy of a differentially DEG or recognition of a pathway; 
iv) consistency quality control of a DEG and pathway.

Following quality control, MetaDE.ES in the MetaDE 
package [(23) https://cran.r-project.org/web/packages/
MetaQC/index.html] was utilized to identify DEGs in the 
integrated dataset. First, the heterogeneity of the expression 
of each gene in different platforms was detected based on 
parameters including τ2, the Q value and Qpval (τ2=0 indicates 
homogeneity and a lack of bias; a Q statistic obeying the χ2 
test with a freedom of K-1 and Qpval >0.05 indicate homoge-
neity and a lack of bias). DEGs between the different groups 
in this integrated dataset were then selected, and the P-value 
and false discovery rate (FDR) were obtained. FDR <0.05 
indicated a significant difference. Thresholds for DEGs among 
different groups in the present study were τ2=0, Qpval >0.05 
and FDR <0.05. Thereafter, these DEGs were subjected 
to bi-directional hierarchical clustering analysis using the 
pheatmap R package version 1.0.2 (http://cran.r-project.org/
web/packages/pheatmap/index.html).

Construction of a protein‑protein interaction (PPI) network 
and its topological properties. Information in the human 
protein reference database (hPRD; http://www.hprd.org/) 
was integrated with that in the Biological General Repository 
for Interaction Datasets (BioGRID; http://www.thebiogrid.
org) (24,25) to construct a PPI network for the identified 
DEGs. The network was visualized using Cytoscape software 
version 3.6.0 (http://cytoscape.org/).

The betweenness centrality (BC or CB) algorithm was used 
to reflect the topological property of each gene in this network 
and to optimize candidate genes (26). The BC value of each 
DEG was calculated based on the following formula:

In the formula, v, s and t denote three nodes (protein production 
of DEGs) in the PPI network, σst is the number of shortest paths 
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from ‘s’ to ‘t’, and σst (v) reflects the number of σst that pass the 
node ‘v’. The BC value varies from 0-1, and the greatest value 
indicates the highest centrality of a node in the PPI network.

Training of the optimal SVM classification model and perfor‑
mance evaluation. The DEGs were sorted in descending 
order based on their BC values, and for those ranked at 
10 to 100, the dataset that conformed to the quality control 
and had the largest sample number was set as the training 
dataset to perform training of the optimal SVM classification 
model, until it could absolutely distinguish one sample from 
another (27). DEGs obtained by this SVM classifier were then 
further investigated using bi-directional hierarchical clus-
tering analysis, with visualization using the aforementioned 
heatmap software. Afterwards, the remaining datasets were 
taken as the validation datasets to evaluate the accuracy of the 
optimal SVM classifier.

Validation via an individual dataset. A CRC dataset 
that was downloaded from the TCGA database (https://
cancergenome.nih.gov/), with the accession number TCGA_
CoAD_G4502A_07_3-2015-02-24 (level 3), was used for the 
validation. The dataset included a total of 193 specimens, and 
90 of them had available clinical information, including 14 
and 76 cases with and without the appearance of additional 
tumors, respectively.

Enrichment analysis. Kyoto Encyclopedia of Genes and 
Genomes (KEGG; http://www.genome.jp/kegg/pathway.html) 
pathway enrichment analysis was carried out for these DEGs 
to identify their potential pathways, using Fisher's exact test 
based on the following formula:

In the formula, n represents total gene counts in the whole 
genome, M indicates gene counts in the pathways, K denotes 
DGE counts, and p represents the probability of ≥x of the 
K DEGs being enriched in the pathway.

Results

DEGs detected by meta‑analysis. Quality control conducted 
using MetaQC indicated that the GSE22834 and GSE6988 
datasets had relatively low quality, compared with the 
others (Table I). In addition, GSE22834 markedly deviated 
from the other four datasets, and GSE6988 also exhibited 
evident bias (Fig. 1). For these reasons, these two datasets were 
excluded. The remaining three datasets were selected for data 
integration via meta-analysis. The parameters pval, FDR, τ2, 
Qpval and Qval were calculated using MetaDE. Based on the 
aforementioned selection criteria, a total of 358 DEGs were 
identified by integrating the three datasets, and the top 10 
DEGs are listed in Table II. A heat map of the gene expression 
of the 358 genes is presented in Fig. 2.

PPI network of the DEGs. By integrating protein information in 
the hPRD database with that in BioGRID, interactions among 

the 358 DEGs were extracted to form a PPI network, which 
contained 162 nodes and 193 interactions (Fig. 3).

DEGs optimized by BC of the network. Based on the BC algo-
rithm, the BC value of each node was obtained, and the top 
10 nodes were: BCL6 corepressor; coatomer protein complex 
subunit β 2; cAMP responsive element binding protein 1 
(CREB1); myosin heavy chain 11; family with sequence 
similarity 3 member C; InaD-like (also known as PATJ, 
crumbs cell polarity complex component); RAB32, member 
RAS oncogene family; translocation of outer mitochondrial 
membrane 22; cullin 7 (CUL7); and signal sequence receptor 3 
(SSR3). Detailed information is listed in Table III.

Optimal SVM classification model and performance evalu‑
ation results. GSE68468, which includes 47 metastatic and 
193 non-metastatic CRC samples, was used as the training 

Figure 1. Quality control of the five datasets via MetaQC. numbers 1-5 denote 
the five datasets. IQC, internal quality control; EQC, external quality control; 
CQCg, consistency quality control of gene; CQCp, consistency quality con-
trol of pathway; AQCg, accuracy quality control of gene; AQCp, accuracy 
quality control of pathway.

Table I. Quality control results of the five datasets.

Dataset IQC EQC CQCg CQCp AQCg AQCp SMR

GSE68468 5.19 3.28 69.15 103.59 27.46 56.31 2.13
GSE62321 3.76 3.15 56.7 148.66 33.78 47.61 3.59
GSE22834 0.21 0.67 0.01 0.27 0.83 1.98 13.87
GSE14297 7.65 4.32 1.92 59.62 21.19 2.39 6.02
GSE6988 0.03 1.19 0.86 0.53 1.73 1.96 8.62

IQC, internal quality control; EQC, external quality control; CQCg, 
consistency quality control of gene; CQCp, consistency quality 
control of pathway; AQCg, accuracy quality control of gene; AQCp, 
accuracy quality control of pathway; SMR, standardized mean rank.
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dataset to perform SVM classification training, until the SVM 
classification was able to completely distinguish the two types 
of sample. In the training process, as the number of DEGs was 
increased from the top 10 to the top 100, the precision of the 
SVM classification increased from 98 to 100%. notably, the 
precision remained at 100% as the number of DEGs increased 
from the top 40 to the top 100. Therefore, the DEGs whose 
BC value ranked within the top 40 were selected to build the 

SVM classification model with a strong ability to distinguish 
metastatic samples from non-metastatic ones. The scattergram 
is shown in Fig. 4.

To determine whether the SVM classification constructed 
using the top 40 genes was repeatable, two other datasets, 
GSE62321 and GSE14297 were used to test the precision of 
the classification. As shown in Fig. 5, this SVM classifica-
tion was clearly able to distinguish between metastatic and 
non-metastatic samples in these two datasets.

Validation results. The CRC dataset downloaded from TCGA 
was set as the individual validation dataset, which was used to 
testify the performance evaluation of the SVM classification. 
As a result, 13 metastatic and 76 non-metastatic samples were 
correctly identified. only 1 sample was wrongly classified and 
the area under the curve was 0.997 (Fig. 6).

Pathways of the 40 DEGs. on the basis of Fisher's exact test, 
five pathways were identified for these 40 DEGs (Table IV), 
namely protein processing in endoplasmic reticulum (ER) 
[e.g., F-box protein 2 (FBXO2), DnaJ heat shock protein family 
(Hsp40) member C10 (DNAJC10) and SSR3], AMP-activated 
protein kinase (AMPK) signaling pathway [e.g., protein kinase 
AMP-activated non-catalytic subunit β 2 (PRKAB2), phospho-
fructokinase, platelet (PFKP) and CREB1], dorso-ventral axis 
formation [e.g., mitogen-activated protein kinase 1 (MAPK1) 
and notch 1 (NOTCH1)], ubiquitin mediated proteolysis 
[e.g., FBXO2, CUL7 and ubiquitin conjugating enzyme E2 D3 
(UBE2D3)] and prion diseases (e.g., MAPK1 and NOTCH1).

Discussion

The present study identified 40 SVM-classified signature 
genes in metastatic CRC, including CREB1, CUL7 and SSR3, 

Figure 2. heat map of the gene expression of the 358 differentially expressed genes in metastatic and non-metastatic colon cancer samples. Red indicates high 
expression and green indicates low expression, yellow represents metastatic samples and blue represents non-metastatic samples.

Table II. Top 10 differentially expressed genes identified via 
meta-analysis of the three integrated datasets.

Gene P-value FDR Q Qp τ2

MCF2L 1.00x10-20 3.45x10-18 1.7104 0.4252 0
TCF21 1.00x10-20 3.45x10-18 0.9410 0.6247 0
FGD6 1.00x10-20 3.45x10-18 0.9375 0.6258 0
MED28 1.00x10-20 3.45x10-18 0.7498 0.6874 0
PRDM1 1.00x10-20 3.45x10-18 0.7372 0.6917 0
TMED10 1.00x10-20 3.45x10-18 0.6972 0.7057 0
F5 1.00x10-20 3.45x10-18 0.4327 0.8054 0
NUMA1 1.00x10-20 3.45x10-18 0.2751 0.8715 0
ELOVL6 3.62x10-6 7.69x10-4 1.9948 0.3688 0
DLD 3.62x10-6 7.69x10-4 1.8035 0.4059 0

FDR, false discovery rate; MCF2L, MCF.2 cell line derived trans-
forming sequence like; TCF21, transcription factor 21; FGD6, FYVE, 
RhoGEF and Ph domain containing 6; MED28, mediator complex 
subunit 28; PRDM1, PR/SET domain 1; TMED10, transmembrane 
p24 trafficking protein 10; F5, coagulation factor 5; nUMA1, nuclear 
mitotic apparatus protein 1; ELoVL6, ELoVL fatty acid elongase 6; 
DLD, dihydrolipoamide dehydrogenase.
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which were significantly enriched in protein processing in ER, 
AMPK signaling pathway and ubiquitin mediated proteolysis 

functions. The precision of the SVM-classified 40 gene signa-
tures was as high as 100%, and the validation using a dataset 

Figure 3. Protein-protein interaction network of the differentially expressed genes. orange indicates upregulated genes and blue represents downregulated 
genes in metastatic compared with non-metastatic colon cancer samples. Lines between two nodes represent interactions between them.

Table III. Top 10 differentially expressed genes ranked by their betweenness centrality value.

Gene BC Exp Degree P-value FDR Q Qp τ2

BCOR 1 1 2 1.41x10-2 0.1337 0.1198 0.9418 0
COPB2 1 0 2 6.28x10-3 0.0845 0.8227 0.6627 0
CREB1 1 0 4 2.44x10-2 0.1812 0.6522 0.7217 0
MYH11 1 0 2 7.17x10-4 0.0236 0.8618 0.6499 0
FAM3C 0.7 0 3 3.82x10-2 0.2279 0.0720 0.9646 0
INADL 0.6667 1 2 3.26x10-5 0.0030 1.6994 0.4275 0
RAB32 0.6667 0 3 3.02x10-2 0.1990 0.4374 0.8036 0
TOMM22 0.6 0 2 2.54x10-5 0.0028 1.6978 0.4279 0
CUL7 0.4595 1 16 6.92x10-4 0.0234 1.0330 0.5966 0
SSR3 0.4 0 2 1.04x10-3 0.0291 1.5003 0.4723 0

BC, betweenness centrality; FDR, false discovery rate; BCoR, BCL6 corepressor; CoPB2, coatomer protein complex subunit β 2; CREB1, 
cAMP responsive element binding protein 1; MYh11, myosin heavy chain 11; FAM3C, family with sequence similarity 3 member C; InADL, 
InaD-like; RAB32, RAB32, member RAS oncogene family; ToMM22, translocation of outer mitochondrial membrane 22; CUL7, culin 7; 
SSR3, signal sequence receptor 3.
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from TCGA indicated that the majority of the metastatic and 
non-metastatic samples could be clearly distinguished from 
each other using these 40 genes.

CREB1 is a TF that belongs to the leucine zipper family. 
The CREB1 gene is reported to increase the proliferation 
of CRC cells, while the knockdown of CREB1 inhibits this 
process (28). In addition, multiple microRNAs (miRs) function 
as tumor suppressors in CRC development through targeting 
this gene, including miR-9, miR-34b and miR-200b (29). A 
soluble resistance-related calcium binding protein, sorcin, has 
been demonstrated to increase the metastasis of CRC (30). 
notably, the overexpression of sorcin activates the CREB 
pathway by increasing the phosphorylation of CREB1 (30), 
which implicates the expression of CREB1 in CRC metastasis, 
as predicted in the present study. AMPK is a heterotrimeric 
protein kinase that serves as a metabolic master switch. AMPK 
induces apoptosis in the development of CRC, and resveratrol 
is reported to exert therapeutic effects via inhibition of the 
AMPK signaling pathway (31). In the present study, CREB1 
was significantly enriched in the AMPK signaling pathway, 

Figure 4. SVM classification and the performance evaluation result. (A) Accurate and error ratios of different training SVM classifications based on different 
signature genes. Red denotes error ratio and blue represents accurate ratio. (B) Scattergram based on SVM classification on different kinds of samples. orange 
represents non-metastatic samples and blue represents metastatic samples. SVM, support vector machine.

Figure 5. Scattergram based on support vector machine classification of different samples in two datasets. (A) GSE62321 and (B) GSE14297 datasets. orange 
represents non-metastatic samples and blue represents metastatic samples.

Figure 6. Receiver operating characteristic curve of support vector machine 
classification on individual validation datasets. AUC, area under the curve.
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suggesting that the alteration of this gene may affect the 
AMPK signaling pathway, whereby it may contribute to the 
metastasis of CRC. Based on this finding, it may be inferred 
that the CREB1-mediated AMPK signaling pathway has the 
potential to serve as a therapeutic marker for the diagnosis of 
CRC metastasis.

As a major component of the ubiquitin proteasome 
system, E3 ubiquitin ligases serve an important function 
in orchestrating the substrate ubiquitination in the cullin, 
Skp and F-box-containing complex (32). Disruption of their 
roles is the primary cause of the occurrence of various 
types of cancer (33). The CUL7 protein is a complex of the 
E3 ubiquitin-protein ligase that also comprises the S-phase 
kinase-associated protein 1, F-box/WD repeat-containing 
protein 8 (FBXW8) and E3 ubiquitin-protein ligase RBX1 
proteins. Reportedly, the CUL7/FBXW8 complex inhibits 
cell growth in gastric cancer by inducing the expression of 
insulin receptor substrate 1 (34). The overexpression of CUL7 
has been detected in hepatocellular carcinoma (HCC) tissues, 
particularly in metastatic HCC, and in vitro experiments have 
demonstrated that the knockdown of this gene pronouncedly 
decreases the metastatic capacity of hCC (32). In addition, 
the expression of CUL7 has been observed to be increased 
in non-small cell lung cancer cells, with its high expression 
potentially promoting the invasion and metastasis of these 
cells (35). Cyclin D1 is a vital protein for cell proliferation 
in various types of cancer. Its activation is controlled via the 
degradation caused by ubiquitin-mediated proteolysis (36). 
In the present study, CUL7 and its family member CUL1 
were enriched in the ubiquitin-mediated proteolysis pathway, 
suggesting that their activation through this pathway may 
also regulate cell proliferation in CRC. however, there is 
insufficient evidence supporting the involvement of CUL7 in 
metastatic CRC. The results of the present study indicate that 
CUL7 is a signature gene that is able to distinguish between 
metastatic and non-metastatic CRC. In combination with the 
previously reported findings that CUL7 is involved in the 
metastasis of other cancers, it is speculated that this gene may 
also be implicated in metastatic CRC, and is activated via the 
ubiquitin-mediated proteolysis pathway.

SSR is a glycosylated membrane receptor responsible 
for protein entry into the ER (37). As one of the four SSR 

family members, SSR3 is a non-glycosylated subunit that 
mediates the translocation of nascent polypeptide through the 
ER membrane (38). Reportedly, in pancreatic cancer (PAC) 
and prostate cancer, the expression of SSR3 is elevated, and 
the inhibition of this gene may weaken the potential tumor 
growth of PAC (39,40). Furthermore, in a study using an RnA 
sequencing method, it was predicted that SSR3 is a target of a 
long noncoding RnA, RP5-890E16.4, that may have crucial 
roles in esophageal squamous cell carcinoma (41). In murine 
breast tumor, SSR3 has been identified as a DEG associated 
with metastasis, using an exon-based clustering method (42). 
however, to the best of our knowledge, no further information 
is available concerning the role of this gene in CRC progres-
sion, particularly in metastasis. In the present study, SSR3 was 
demonstrated to be a critical gene signature of metastatic CRC 
that was enriched in the protein processing in ER pathway. 
Together, the aforementioned information suggests that SSR3 
may serve an important function in the metastasis of CRC 
via involvement in the protein processing in ER pathway, and 
could be used as a novel therapeutic target for the treatment of 
metastatic CRC.

Despite these comprehensive analyses and the precision 
of the SVM classifier, the present study has the limitation 
that all the predicted results lack experimental validation. 
nevertheless, the findings are valuable as they provide novel 
insights into the regulatory mechanisms of the metastasis of 
CRC and identify novel biomarkers for the prognosis of this 
disease.

In conclusion, the SVM-classified gene signatures in the 
present study precisely distinguished metastatic CRC samples 
from non-metastatic ones, using genes including CREB1, 
CUL7 and SSR3. The genes could be used as biomarkers for the 
prognosis of metastatic CRC. however, substantial additional 
experiments are required to validate the predicted expression 
levels and functions.
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