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Abstract. The present study aimed to explore possible prog-
nostic marker genes in glioblastoma (GBM). differentially 
expressed genes (dEGs) were screened by comparing micro-
array data of tumor and normal tissue samples from The cancer 
Genome Atlas (TcGA) and the Gene Expression Omnibus 
(GEO) dataset GSE22866. Subsequently, the prognosis-asso-
ciated dEGs were screened via cox regression analysis, 
followed by construction of gene/protein/pathway interaction 
networks of these DEGs by calculating the correlation coeffi-
cient between the dEGs. Next, a prognostic prediction system 
was constructed using Bayes discriminant analysis, which was 
validated by the microarray data of samples from patients 
with good and bad prognosis from the TcGA and chinese 
Glioma Genome Atlas (cGGA), as well as the GEO dataset. 
Finally, a co-expression network of the signature genes in 
the prediction system was constructed in combination with 
the significant pathways. A total of 288 overlapping DEGs 
(false discovery rate <0.5 and |log2 of fold change|>1) were 
screened, 123 of which were identified to be associated with 
the prognosis of GBM patients. The co-expression network of 
these prognosis-associated dEGs included 1405 interactions 
and 112 DEGs, and 6 functional modules were identified in 
the network. The prognostic prediction system was comprised 
of 63 signature genes with a specificity value of 0.929 and a 
sensitivity value of 0.948. GBM samples with good and bad 
prognosis in the TcGA, cGGA and GEO datasets were distin-
guishable by these signature genes (P=1.33x10-6, 1.63x10-4 and 
0.00534, respectively). The co-expression network of signature 
genes with significant pathways was comprised of 56 genes 
and 361 interactions. Protein kinase cγ (PRKcG), protein 
kinase cβ (PRKcB) and calcium/calmodulin-dependent 

protein kinase IIα (cAMK2A) were important genes in the 
network, and based on the expression of these genes, it was 
possible to distinguish between samples with significantly 
different survival risks. In the present study, an effective prog-
nostic prediction system for GBM patients was constructed and 
validated. PRKcG, PRKcB and cAMK2A may be potential 
prognostic factors for GBM.

Introduction

Glioblastoma (GBM) ranks as the most common malignant 
brain tumor type in adults. despite the low incidence of ~6 out 
of 100,000 individuals, the mortality rate of GBM is relatively 
high (1). Patients with GBM suffer not only from headaches, 
seizures and focal deficits, but also exhibit personality and 
behavioral changes (2). GBM has a poor prognosis with rela-
tively low survival estimates and the 5-year survival rate is 
<5% (3).

Molecular-based therapies are considered to be 
breakthrough measures for GBM (4). Various prognostic 
markers have been identified in GBM, including overex-
pressed epidermal growth factor receptor (EGFR) and 
mutated tumor protein p53 (5). The EGFR vIII mutation is 
a GBM‑specific therapeutic target which is present in 50% 
of EGFR gene‑amplified GBM (6). Phosphatase and tensin 
homolog was reported to be mutated in 5-40% tumor tissues 
of GBM patients and is a promising prognostic indicator for 
GBM patients aged >45 years (7). In order to develop novel 
therapeutic strategies to increase overall patient survival, 
the underlying mechanisms of GBM require to be further 
elucidated.

Previous studies have explored the signature of deregu-
lated genes for developing effective treatments and better 
clinical prognostic methods for GBM patients. Bao et al (8) 
identified a nine-gene signature in glioma patients using 
the mRNA expression data. An EGFR- and platelet-derived 
growth factor receptor α‑centered classification scheme in 
glioma was established by Sun et al (9). In addition, according 
to the 2016 World Health Organization (WHO) classification 
of tumors of the central nervous system, molecular features 
are incorporated into the classification of GBM (10). In 
the present study, differentially expressed genes (dEGs) 
were identified from microarray data downloaded from 
The cancer Genome Atlas (TcGA) and Gene Expression 
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Omnibus (GEO) databases. Based on the co-expression 
network of prognosis-associated dEGs, a prognostic predic-
tion system was constructed using Bayes discriminant 
analysis. Subsequently, the system established in the present 
study was validated using microarray data from the TcGA 
dataset, another GEO dataset and a chinese Glioma Genome 
Atlas (cGGA) dataset.

Materials and methods

Microarray data. The mRNA expression data for GBM were 
downloaded from TcGA database (https://gdc-portal.nci.nih.
gov/) on 25th dec 2016, including 154 tumor samples (survival 
time information was available for 152 samples) and 13 normal 
samples. The normal samples were collected from some of 
the 154 patients with GBM. The Illumina HiSeq 2000 RNA 
Sequencing platform was used. The genes were identified 
from the mRNAs in the downloaded dataset using the Human 
Gene Organization Gene Nomenclature committee website 
(http://www.genenames.org/).

Another GBM microarray dataset, GSE22866, was 
downloaded from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE22866), which contained 
40 tumor samples and 6 corresponding normal samples. The 
raw data in the dataset were annotated to obtain the gene 
expression levels and the average expression values of probes 
were considered as the expression values of the corresponding 
genes. Next, the expression values of the genes were subjected 
to log2 transformation and normalization using the Limma 
package in R language (11). The clinical characteristics of the 
subjects from which the TCGA and GSE22866 datasets were 
derived are summarized in Table I.

Screening for DEGs. dEGs between tumor and normal 
samples were identified in the TcGA and GEO datasets 
using the Limma and multitest package from Bioconductor 
(http://bioconductor.org/) in R language (11,12). False 
discovery rate <0.5 and |log2 fold change (Fc)|>1 were set as 
the cut-off criteria. The dEGs overlapping between the two 
datasets were selected for further analysis. The top 50 overlap-
ping dEGs based on the size of their |log2Fc| values were 
subjected to bidirectional clustering.

Identification of prognosis‑associated DEGs. cox regression 
analysis in the survival package (13) was utilized to select the 
prognosis-associated genes from the overlapping dEGs, based 
on the expression values and survival status data. P<0.05 
was set as a strict threshold. The top 6 dEGs based on their 
log-rank P-values were screened as the prognosis-associated 
dEGs, and were numbered according to their log-rank 
P-values. Kaplan-Meier survival analysis was performed for 
the top 6 prognosis-associated dEGs.

Co‑expression network of prognosis‑associated DEGs. 
Correlation coefficients (r) between these prognosis‑associated 
dEGs were calculated using the cor function in R language. 
The DEG interaction pairs with coefficients of |r|≥0.6 and 
P<0.05 were selected to construct a co-expression network, 
which was visualized using cytoscape2.8.0 (http://www.
cytoscape.org/). Functional modules in the co-expression 

network were identified using the GraphWeb tool (http://biit.
cs.ut.ee/graphweb/) (14).

Construction of a prognostic prediction system. The 152 
GBM tumor samples from TcGA were stratified into two 
groups based on good prognosis and bad prognosis. The good 
prognosis group was comprised of the samples from patients 
that were alive and those with a survival time of ≥15 months 
following sample collection, while the bad prognosis group was 
comprised of the samples from deceased patients and those with 
a survival time of <15 months. Based on this grouping, Bayes 
discriminant analysis was performed to analyze the genes in 
the co-expression network constructed for the prognosis-asso-
ciated dEGs by using the discriminant Bayes function in R 
language (15,16). The discriminant coefficient under the highest 
discriminant accuracy was considered as the prognostic score. 
The prognostic dEGs were assembled randomly to genesets to 
identify the prognostic discriminant. The effectiveness of the 
prognostic prediction system was evaluated by the receiver 
operating characteristic (ROc) curve using the pROc package 
in R3.4.1 (https://cran.r‑project.org/web/packages/pROC/index.
html). The genes in the highest prognostic discriminant 
geneset were considered to be signature genes and thereby the 
constructed system was the prognostic prediction system.

Validation of the prognostic prediction system. To verify 
the prognostic prediction effect of the constructed system, 
Kaplan-Meier survival analysis was performed to compare good 
and bad prognosis groups, which were divided with the scores 
calculated by the prediction system established in the present 
study according to the expression level of the signature genes. 
Next, the microarray dataset GSE13041, containing 191 GBM 
tumor samples with survival data, was downloaded from the 
GEO database for further validation of the prediction system. 
The expression values of the signature genes in this dataset were 
subjected to analysis with the prediction system for distinguishing 
different samples based on their prognostic score. Kaplan-Meier 
survival analysis was also performed to compare the survival 
status of the two groups to determine the prognostic efficacy of 
the system. In addition, PartA expression profiles, including 128 
GBM tumor samples with survival data, were downloaded from 
the cGGA database for further validation. clinical features of 
patients from which the cGGA dataset was derived are listed 
in Table I. A similar analysis as for the GSE13041 dataset was 
performed for validation of the prediction system.

Co‑expression network of signature genes. Based on the 
expression values of these signature genes in TcGA dataset, 
r values between these signature genes were calculated 
using the cor function in R 3.4.1 language (https://stat.ethz.
ch/R-manual/R-devel/library/stats/html/cor.html). These gene 
interaction pairs with coefficients of |r|≥0.6 and P<0.05 were 
collected to construct the co-expression network of these 
signature genes.

Function and pathway enrichment. Function and pathway 
enrichment was performed for the hub genes in the signa-
ture genes co‑expression network using the cluster Profiler 
package in R language (https://bioconductor.org/pack-
ages/release/bioc/html/clusterProfiler.html) (17).
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Results

DEG screening. In the present study, 370 and 3564 dEGs 
were screened from TcGA dataset and the GEO dataset 
no. GSE22866, respectively. Among them, 288 dEGs over-

lapped. The heatmap obtained after bidirectional clustering 
of the top 50 overlapping dEGs with the highest |log2Fc| 
values is presented in Fig. 1. The expression values of these 
dEGs were obviously different between normal and GBM 
samples.

Table I. clinical characteristics of patients from the TcGA, cGcA and GEO GSE13041 datasets.

 TcGA (n=172) GEO
 ---------------------------------------------------------------- cGcA GSE13041
Clinical characteristic Tumor Normal (n=126) (n=191)

Age (years) 59.84±13.54 54.62±12.27 46.99±12.04 53.83±13.65
Gender (male/female/undefined) 99/54/1 8/5/5 78/48 117/74
Survival status (dead/alive/unknown) 102/40/12 12/1/5 89/37 176/15
Overall survival time (months)  12.06±10.41 17.09±11.89 14.49±8.05 19.37±19.41

Values are expressed as the mean ± standard deviation or as n. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; CGCA, 
chinese Glioma Genome Atlas.

Figure 1. Bidirectional clustering heatmap of the top 50 overlapped differentially expressed genes with high log fold change values. (A) dataset from The 
cancer Genome Atlas; (B) dataset from the Gene Expression Omnibus dataset GSE22866. Tumor samples are marked in pink while normal samples are 
marked in blue.
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Prognosis‑associated DEGs. A total of 123 prognosis-associ-
ated dEGs were selected using cox regression analysis and the 
log-rank test. These prognosis-associated dEGs were ranked 
according to their P-values (log-rank test; data not shown). 
Kaplan-Meier survival curves of the top 6 prognosis-associated 
dEGs, including V-set and transmembrane domain containing 
2-like, calcium-binding protein 1, cd22, neurexin 3, small G 
protein signaling modulator 1 and synaptic vesicle glycoprotein 
2b, are presented in Fig. 2. The difference in expression of 
the top 6 genes between tumor tissue and normal tissue are 
presented in Fig. 3. All of these dEGs were able to distinguish 
between groups with different survival status (P<0.05).

Co‑expression network of prognosis‑associated DEGs. The 
co-expression network was comprised of 1405 interaction 
pairs of 112 prognosis‑associated DEGs (91 upregulated and 
21 downregulated DEGs). A total of 6 significant modules 
were identified in the network (Fig. 4). Functional analysis 
revealed that the modules were associated with transmission 
of nerve impulses (red), nervous system development (blue), 
nuclear division (green), synaptic transmission (pink) or 
further unknown functions (yellow and purple).

Construction of prognostic prediction system. The TcGA 
dataset included 50 patients with good prognosis and 
102 patients with bad prognosis. Based on the co-expression 
network of prognosis-associated genes, a prognostic predic-
tion system comprising 63 signature genes was constructed 
using Bayes discriminant analysis. The discriminant accuracy 
of the prognostic prediction system was identified from the 
ROc curve by determining the area under the curve (AUc) 
(Fig. 5). The samples from patients with scores -3< score <0 
were defined as good prognosis; the samples from patients 
with scores 0≤ score <3 were defined as bad prognosis. The 

specificity value was 0.929 and the sensitivity value was 0.948 
for the ROC curve with the largest AUC of 0.980.

Validation of the prognostic prediction system. In order to 
validate the performance of the prognostic prediction system, 
it was tested on the GEO GSE13041 and cGGA datasets. As 
presented in Fig. 6, based on the expression of the signature 
genes included in the prognostic prediction system, it was 
possible to distinguish between samples from patients with 
good and bad prognosis from the TcGA, GEO GSE13041 
and cGGA datasets (P=1.33x10-6, 0.00534 and 1.63x10-4, 
respectively). The ROc curves of the GSE13041 and cGGA 

Figure 3. difference in expression levels of the top 6 genes between tumor 
tissue and normal tissue. cd22, cluster of differentiation 22; cABP1, calcium 
binding protein 1; SGSM1, small G protein signaling modulator 1; SV2B, 
synaptic vesicle glycoprotein 2B; NRXN3, neurexin 3; VSTM2L, V-set and 
transmembrane domain containing 2 like. ***P<0.05.

Figure 2. Kaplan‑Meier survival curves with patients stratified by high and low expression of the top 6 prognosis‑associated differentially expressed genes. 
(A) VSTM2L, (B) cABP1, (c) cd22, (d) NRXN3, (E) SGSM1 and (F) SV2B. The samples with different expression are marked in different colors (red and 
black). HR, hazard ratio; VSTM2L, V-set and transmembrane domain containing 2 like; cABP1, calcium-binding protein 1; NRXN3, neurexin 3; SGSM1, 
small G protein signalling modulator 1; SV2B, synaptic vesicle glycoprotein 2b.
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Figure 5. (A) Construction diagram and (B) AUROC curve of the prognostic prediction system. 0.929 was the specificity value and 0.948 was the sensitivity 
value under the largest AUC of 0.980. AU(RO)C, area under the (receiver operating characteristic) curve; TCGA, The Cancer Genome Atlas.

Figure 4. Significant functional modules in the co‑expression network of prognosis‑associated differentially expressed genes. The numbers are the P‑values 
of genes enriched modules. Blue lines represent a positive connection, while red lines represent a negative connection. Triangles pointing upwards represent 
upregulated genes, while those pointing downwards indicate downregulated genes.

Figure 6. Kaplan-Meier survival curves validating the prediction system established in the present study with the survival compared between the three datasets 
from (A) The cancer Genome Atlas, (B) Gene Expression Omnibus (no. GSE13041) and (c) the chinese Glioma Genome Atlas. Blue lines represent samples 
from patients with good and green lines represent those from patients with bad prognosis according to the prediction system established in the present study.
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datasets are displayed in Fig. 7. The AUC was 0.935 and 0.965, 
respectively. All of these results proved the accuracy of the 
prognostic prediction system.

Co‑expression network of signature genes. For investigating 
the possible roles of the 63 prognostic signature genes in GBM, 

functional and pathway enrichment analysis was performed. 
The genes were enriched in a total of 16 significant functional 
terms and 9 significant pathway terms (Fig. 8). The top 3 func-
tional terms included plasma membrane, plasma membrane 
part and nucleotide binding, while the top 3 pathway terms 
included calcium signaling pathway, long-term potentiation 

Figure 7. discriminant receiver operating characteristic curves according to the prognostic prediction system for the microarray data of (A) the Gene Expression 
Omnibus dataset no. GSE13041 and (B) the chinese Glioma Genome Atlas dataset. AUc, area under curve.

Figure 8. Significant functional enrichment and pathway terms of the signature genes in (A) GO terms and (B) pathways. The number of genes is displayed on 
the in x-axis, while the associated function/pathway term is displayed on the y-axis. The color is representative of the log2 of the P-value. GO, gene ontology; 
MAPK, mitogen-activated protein kinase; hsa, Homo sapiens.
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and the mitogen-associated protein kinase (MAPK) signaling 
pathway.

To gain a better understanding of the associations of these 
genes with pathways, a co-expression network of signature 
genes with significant pathways was constructed. The network 
included 56 genes and 361 interactions. As presented in Fig. 9, 

protein kinase c (PKc) γ (PRKcG) and PKc β (PRKcB) 
participated in 7 common pathways, and calcium/calmod-
ulin-dependent protein kinase IIα (cAMK2A) was involved 
in 6 pathways. Kaplan‑Meier curves with patients stratified 
according to high or low expression of each of the three genes 
are presented in Fig. 10. Based on the expression of these three 

Figure 10. Kaplan-Meier survival curves of three important signature genes: (A) PRKcB, (B) PRKcG and (c) cAMK2A. The samples from patients with 
different expression of the respective genes are marked in different colors (red and black). HR, hazard ratio; PRKcG, protein kinase cγ; PRKcB, protein 
kinase cβ; cAMK2A, calcium/calmodulin-dependent protein kinase IIα.

Figure 9. Co‑expression network of the signature genes with the significant pathways. Upward‑facing triangles represent upregulated genes, while triangles 
pointing downwards represent downregulated genes. Red triangles represent genes in the significant pathways, and genes in the same circle participate the 
same pathway. MAPK, mitogen-associated protein kinase.
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genes, it was possible to distinguish between samples with 
significantly different survival risks.

Discussion

GBM is a highly aggressive form of brain cancer associated with 
a poor prognosis. By analyzing the TcGA and GEO GSE22866 
datasets, it was identified that they had 288 of the screened 
dEGs in common. A total of 123 prognosis-associated dEGs 
were selected from the overlapped dEGs. The co-expression 
network of the prognosis-associated dEGs was comprised of 
1,405 interactions, 91 upregulated DEGs and 21 downregulated 
DEGs. A total of 6 significant modules were identified in the 
network, and their significant functions included transmission 
of nerve impulse, nervous system development, nuclear division 
and synaptic transmission. The prognostic prediction system 
was comprised of 63 signature genes with the specificity value 
of 0.929 and the sensitivity value of 0.948. The prognostic 
prediction system was able to distinguish between samples 
with good and bad prognosis from the TcGA, GEO GSE13041 
and cGGA datasets based on the expression of the signature 
genes (P=1.33x10-6, 0.00534 and 1.63x10-4, respectively). The 
63 prognostic signature genes were significantly enriched in 
16 significant functional terms and 9 significant pathway terms. 
The top 3 functional terms included plasma membrane, plasma 
membrane part and nucleotide binding, while the top 3 pathway 
terms included calcium signaling pathway, long-term poten-
tiation and the MAPK signaling pathway. In the co-expression 
network of signature genes with significant pathways, PRKCG 
and PRKcB were two important genes participating in 
7 common significant pathways, while CAMK2A was involved 
in 6 significant pathways. Based on the expression status of the 
three genes, it was possible to distinguish between samples 
with significantly different survival risk.

calcium mediates long-term potentiation in the hippo-
campus (18), and is involved in activating the MAPK pathway. 
In addition, cytosolic calcium regulates ion channels located 
in the plasma membrane (19). Evidence suggested that calcium 
signaling has a tumorigenic role in GBM (20). Long-term 
potentiation is an underlying mechanism for learning and 
memory. Previous studies have demonstrated that the MAPK 
pathway is implicated in GBM cell migration and prolifera-
tion (21,22). The present study suggested that these signature 
genes may be associated with the prognosis of GBM patients, 
partly by modulating the calcium signaling pathway, long-term 
potentiation and the MAPK signaling pathway.

PRKcG is a susceptibility locus for behavioral disin-
hibition (23). PRKcG encodes the PKc family γ isoform, 
which normally only occurs in the nervous system. PRKcG 
is the receptor of phorbol esters, which functions as a class 
of tumor promoter (24). Louhimo et al (25) reported that 
Homo sapiens microRNA-23a has a survival effect and its 
target PRKcG participates in GBM progression-associated 
processes. It has been reported that PRKcG mutations in 
spinocerebellar ataxia type 14 affect c1 domain accessibility 
and kinase activity, leading to aberrant MAPK signaling (26). 
PRKcG was reported to be mutated in spinocerebellar ataxia, 
causing aberrant MAPK signaling (26). The MAPK signaling 
pathway is involved in the migration and proliferation of GBM 
cells (21), and MAPK/extracellular signal-regulated kinase 

signaling activity is comprised of the migration and invasion 
ability of glioma cells (27). The MAPK signaling pathway also 
participates in the cellular activity of survival or death (28). 
Activation of the RAS-MAPK pathway is associated with poor 
prognosis in neuroblastoma tumors (29). In the present study, 
it was therefore inferred that PRKcG may affect the prognosis 
of GBM by the influencing MAPK signaling pathway.

PRKcB also belongs to the PKc family and is considered as 
a tumor promoter gene, as it enhances certain cellular signaling 
pathways (30). PRKcB modulates the rate of autophagy, which 
serves as a pro-death or pro-survival mechanism (31). The PKc 
family also participates in several cell life and survival-asso-
ciated processes, including the regulation of cell survival and 
apoptosis (32). Upregulation of PRKCB is considered beneficial 
and was identified to be associated with relapse‑free survival of 
breast cancer patients (33). PRKcB is aberrantly expressed in 
GBM and its expression levels have been reported to be propor-
tional to patient survival time (34). Hence, PRKcB may be a 
potential prognostic indicator for GBM.

cAMK2A encodes an enzyme involved in calcium-calmod-
ulin-dependent activity. calcium/calmodulin-dependent 
protein kinases participate in activating anti-apoptotic 
signaling pathways and regulating the cell cycle (35). In the 
present study, CAMK2A was identified to be significantly 
enriched in long-term potentiation and calcium signaling path-
ways. This indicates that cAMK2A may affect the prognosis 
of GBM patients, partly by modulating long-term potentiation 
and calcium signaling pathways.

The 2016 WHO classification of Tumors of the central 
Nervous system introduced molecular parameters for grouping 
tumors (10). It is expected that thereby, the accuracy in the diag-
nosis as well as prognosis of patients may be improved. In the 
present study, PRKCG, PRKCB and CAMK2A were identified 
as potential prognostic factors for GBM. The use of PRKcG, 
PRKcB and cAMK2A as novel molecular markers for GBM 
may lead to an improvement in prognostic accuracy. Of note, the 
present study had certain limitations. First, the sample size of 
patients was limited. Furthermore, the present study focused on 
bioinformatics analyses only. In vivo and in vitro experiments 
are required to verify the results of the present study.

In conclusion, the present study established an effective 
prognostic prediction system and validated its prognostic 
performance for GBM. PRKcG, PRKcB and cAMK2A may 
be potential prognostic factors for GBM.
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