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Abstract. Acute lung injury (ALI) is a critical illness with a 
high morbidity and mortality rate due to severe inflammation 
in the lungs. The effects and underlying mechanism of the trig-
gering receptor expressed on myeloid cells‑1 (TREM‑1)‑like 
transcript‑1‑derived peptide (LR12) on ALI remain unclear. 
The aim of the present study was to determine whether 
LR12 attenuates lipopolysaccharide (LPS)‑induced ALI and 
elucidate the mechanism underlying it. Male C57BL/6 mice 
were randomly assigned to three groups as follows: Sham 
group, LPS + scramble group and LPS + LR12 group. Normal 
saline (NS) or LPS was administrated by intratracheal instil-
lation, and NS, LR12 or LR12 scramble was administered 
intraperitoneally 30 min later. The treatment was repeated 
every 3  h three times. Mice were sacrificed 24  h later. 
Pulmonary pathological changes, the lung wet/dry weight 
ratio, the macrophage and neutrophil counts in bronchoal-
veolar lavage fluid and myeloperoxidase (MPO) activity in 
the lung tissues were observed. The inflammatory cytokines 
were evaluated by enzyme‑linked immunosorbent assay and 
lung neutrophil infiltration was detected by immunohisto-
chemistry. Nuclear factor (NF)‑κB p65 and TREM‑1 were 
analyzed by western blotting, and the activation of NF‑κB was 
detected by electrophoretic mobility shift assay. LPS‑induced 
pathohistological injury, edema and neutrophil infiltration 
were significantly alleviated by TREM‑1 inhibitor, LR12. The 

proinflammatory cytokines [interleukin (IL)‑6, IL‑1β, tumor 
necrosis factor‑α] and chemokines (keratinocyte chemokine 
and monocyte chemoattractant protein‑1) were significantly 
reduced, whereas the anti‑inflammatory cytokines, IL‑10 
were significantly increased by LR12. LR12 was identified to 
significantly decrease p65 expression levels in the nucleus and 
inhibit the activity of NF‑κB. Furthermore, LR12 alleviated 
LPS‑induced ALI by reducing the expression of TREM‑1, 
increasing the release of soluble TREM‑1 and inhibiting acti-
vation of the NF‑κB signaling pathway.

Introduction

Acute lung injury (ALI) and acute respiratory distress 
syndrome (ARDS) are life‑threatening conditions, the clinical 
manifestations of which are refractory hypoxemia and progres-
sive dyspnea (1). Current studies indicate that the release of 
proinflammatory cytokines and chemokines are key factors 
in ALI. Inflammation is a protective defense system that acts 
against the invasion of pathogens (2,3); however, the excessive 
inflammation induces tissue and organ injury (3). Excessive 
inflammation induced by bacterial infection performs a major 
role in the progression of ALI, although the exact mechanisms 
remain unclear (4). Blocking the progression of inflammatory 
cascades has been demonstrated as a valid method of miti-
gating ALI (5,6), indicating that inflammatory blocking agents 
may be used to prevent and treat ALI.

In 2000, triggering receptor expressed on myeloid cells‑1 
(TREM‑1) was first reported by Bouchon et al (7). TREM‑1, 
a member of the immunoglobulin superfamily, is expressed 
on monocytes/macrophages and neutrophils (7,8). TREM‑1 
is deemed to be an amplifier of inflammation (8). TREM‑1 
triggers neutrophil degranulation and oxidative burst (7,9‑11), 
which is one of the most upregulated signaling pathways in 
inflammation  (12). Engagement of TREM‑1 with agonist 
monoclonal antibodies increases the secretion of tumor 
necrosis factor (TNF)‑α, keratinocyte chemokine (KC) and 
monocyte chemoattractant protein‑1 (MCP‑1), and inhibits the 
release of interleukin (IL)‑10 by monocytes (13‑15). Studies 
have demonstrated that TREM‑1 is a necessary regulator of 
immunity and a potential therapeutic target in septic shock (16). 
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Blocking TREM‑1 signaling using a fusion protein or a short 
inhibitory peptide shows a protective effect in bacterial sepsis 
caused by live Escherichia coli and Pseudomonas aeruginosa, 
and in lipopolysaccharide (LPS)‑induced shock, as well as in 
cecal ligation and puncture models of sepsis (9,16‑19). In addi-
tion, TREM‑1 deficiency reduced local release of cytokines 
and chemokines, and delayed the influx of neutrophils (20). 
Furthermore, TREM‑1 deficiency decreased the transepithe-
lial migration of neutrophils into the lung (21). In other acute 
or chronic inflammatory diseases, the protective effects of 
blocking TREM‑1 have been confirmed (22‑25). Recently, 
Liu's group (26) reported the regulation of NLR family pyrin 
domain containing 3 (NLRP3) inflammasome activation by 
TREM‑1, which relieves LPS‑induced ALI and improves 
survival rate via pretreatment methods. Hence, the role of 
TREM‑1 in LPS‑induced ALI requires further investigation.

Crystallographic studies reveal that the structure between 
TREM‑like transcript‑1 (TLT‑1) and TREM‑1 are similar, 
which indicates the existence of interactions between TLT‑1 
and TREM‑1 (27). Previous studies demonstrate that TLT‑1 
and LR12 behave like natural TREM‑1 inhibitors, which 
exhibit anti‑inflammatory properties by inhibiting TREM‑1 
signaling (28,29). It has been identified that LR12 exerts protec-
tive effects in hypodynamic septic shock in pigs, and mediates 
inflammatory injury and cardiac remodeling following myocar-
dial infarction in mice (30,31). Furthermore, LR12 weakens 
endotoxin‑associated clinical and biological alterations, and no 
obvious side effects were identified in nonhuman primates (29). 

Hence, by using an LPS‑induced ALI model in C57BL/6 
mice, the roles and potential underlying mechanisms of TREM‑1 
in LPS‑induced ALI were investigated in the present study.

Materials and methods

Animals. All animal experiments were approved by the 
Animal Care and Use Committee of Tongji Medical College 
of Huazhong University of Science and Technology (Wuhan, 
China; certification no.  2015S621). Six to eight‑week old 
male C57BL/6 mice (weight, 20‑25  g) were purchased 
from the animal experimental center of Wuhan University 
(Wuhan, China). Mice were housed (4 mice/cage) in a 
specific‑pathogen‑free room at a temperature of 22‑24˚C, 
humidity of 60‑65% and under a 12‑h light/dark cycle. The 
animals were allowed free access to standard laboratory chow 
and water, and acclimatized to the environment for 5 days 
before the experiments.

Introduction of LR12 and LR12 scramble. LR12 is a 
12‑amino acid peptide, which is derived from TLT‑1 
(LQEEDAGEYGCM), and the placebo, LR12 scramble 
(a COOH‑terminal amidated peptide) is the corresponding 
scramble peptide (YQMGELCAGEED). These peptides were 
synthesized by Bioyeargene Biosciences Co., Ltd. (Wuhan, 
China). The peptides were homogeneous and with a purity 
of >99%, which was confirmed by mass spectrometry and 
analytic reversed‑phase high‑performance liquid chromatog-
raphy. These peptides were free of endotoxin.

Experimental procedures. All the mice were divided randomly 
into three groups as follows: Sham, LPS + scramble and LPS + 

LR12 (n=5 per group). The preliminary experiment identified 
that there was no difference in ALI between model groups 
treated with normal saline (NS) and LR12 scramble (data not 
shown). The mice were anaesthetized intraperitoneally with 
90 mg/kg of 1% sodium pentobarbital (Sigma‑Aldrich; Merck 
KGaA, Darmstadt, Germany) prior to surgery. Following 
successful endotracheal intubation, mice were instilled with 
LPS (Escherichia coli serotype O55:B5; Sigma‑Aldrich, Merck 
KGaA) at a dosage of 3 mg/kg (LPS + scramble group and 
LPS + LR12 group) or NS (1.5 ml/kg; sham group) (2). LR12 
(5 mg/kg LPS + LR12 group), LR12 scramble (5 mg/kg; LPS + 
scramble group) or NS (5 ml/kg; sham group) was administrated 
intraperitoneally 30 min after intratracheal instillation with LPS 
or NS (30). The treatment was repeated every 3 h three times.

Twenty‑four hours after intratracheal instillation with LPS 
or NS, mice were anesthetized with an overdose of sodium 
pentobarbital and 1 ml blood samples were collected from the 
eyeball. The blood was centrifuged at 1,000 x g for 10 min at 
room temperature and the supernatant was stored at ‑80˚C for 
further experiments. The right lung was clamped at the level 
of the main stem bronchus. Lung tissue samples were excised 
and rinsed with cold phosphate‑buffered saline to obtain the 
lung wet/dry (W/D) weight ratio and for histologic analysis, 
or frozen in liquid nitrogen and stored at ‑80˚C for further 
investigation.

Histological analysis of lung tissue samples. The right 
lower lobes of the lungs were embedded in paraffin wax 
and the sections (~6‑mm thick) were stained with hema-
toxylin for 10 min at room temperature and then with eosin 
for 3 min at room temperature. The lung injury scores were 
evaluated by an investigator who was blinded to the experi-
mental design according to the published criteria (Table I): 
Score=(20xA+14xB+7xC+7xD+2xE)/(number of fields 
x100) (32).

Differential leukocyte counts and pulmonary edema. 
Bronchoalveolar lavage fluid (BALF) was collected by 
bronchoalveolar lavaging with 0.4 ml NS from the left lung 
three times. The BALF was spun at 4˚C for 10 min at 250 x g. 
Supernatant was collected and stored at ‑80˚C for protein and 
cytokine detection. The cell aggregate underwent differential 
leukocyte counting. Total BALF cells were measured using a 
hematocytometer and stained with Giemsa stain solution for 
30 min at room temperature. A total of 200 cells/slide were 
randomly selected to calculate the percentage of neutrophils 
and monocytes/macrophages in the sample under the micro-
scope. 

Pulmonary W/D weight ratio and the BALF protein 
concentrations were detected for the assessment of pulmonary 
edema. For the W/D weight ratio, the right‑middle lobes were 
weighed as soon as they were removed. The lobe samples were 
placed in an oven and weighted again 24 h later when they 
were dried. BALF protein concentration was estimated using 
a Bicinchoninic acid Protein Assay kit (cat. no. 23227; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) and the procedure 
was performed according to the manufacturer's instructions.

Pulmonary MPO activity. Lung tissue samples were homog-
enized with isotonic sodium chloride to detect the MPO 
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activity. Lung tissue MPO activity was measured using the 
MPO kits (cat. no. A044; Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China). Detection was conducted according 
to the manufacturer's instructions.

Immunohistochemistry. Following deparaffinization and 
repair, the sections were incubated in 3% hydrogen peroxide 
for 30 min at room temperature and blocked using 5% goat 
serum albumin (cat. no. SL038; Beijing Solarbio Science and 
Technology Co., Ltd., Beijing, China) for 20 min at room 
temperature. The sections were incubated with MPO antibody 
(cat. no. ab208670; 1:100; Abcam, Cambridge, MA, USA) over-
night at 4˚C. Then the secondary antibody (cat. no. A25112; 
1:100; Abbkine Scientific Co., Ltd., Wuhan, China) was added 
to the sections for 50 min at 4˚C. The sections were stained 
with 3,3'‑diaminobenzidine and re‑dyed with hematoxylin at 
room temperature. The integrated optical density was analyzed 
using the Image‑pro Plus 6.0 software (Media Cybernetics, 
Inc., Rockville, MD, USA).

Immunofluorescence. Following deparaffinization, micro-
wave‑treated antigen retrieval was conducted in sodium citrate 
solution. Subsequently, nonspecific binding was blocked using 
goat serum for 30 min. The sections were incubated with 
the MPO antibody (1:100) or p65 antibody (cat. no. ab16502; 
1:100; Abcam) overnight at 4˚C. The secondary antibody 
was added for 2 h after washing three times with PBS. The 
coverslips were counterstained at room temperature with 
4',6‑diamidino‑2‑phenylindole for 5 min and images were 
acquired using a fluorescence microscope in a dark room.

ELISA. The expression levels of TNF‑α, IL‑1β, IL‑6, IL‑10 
and KC in BALF were detected by using ELISA kits (cat. 
nos. EMC102a, EMC001b, EMC004, EMC005 and EMC104, 
respectively; NeoBioscience Technology Co., Shanghai, 
China). The expression levels of MCP‑1 in BALF were 
evaluated using the ELISA kit (cat. no.  ELM‑MCP1‑001; 
RayBiotech, Inc., Norcross, GA, USA) and sTREM‑1 was 
analyzed with an ELISA kit (cat. no. CSB‑E13848m; Cusabio 
Biotech Co., Ltd., Hubei, China). The intensity of the color 
was measured at 450 nm using a microplate reader (Bio‑Rad 
Laboratories, Inc., Hercules, CA, USA) and the procedure was 
performed according to the manufacturer's instructions.

Western blotting. Protein was extracted from the lung tissue 
sample homogenates according to the manual provided by 
the Protein Extraction kit (cat. no. KGP150; Nanjing KeyGen 
Biotech Co., Ltd., Nanjing, China). The nuclear protein and 
cytosolic protein were separated during the procedure. 
Proteins were separated by electrophoresis on 10% polyacryl-
amide SDS gels and transferred to a polyvinylidene difluoride 
membrane by wet transfer (200 mA, 1 h). The membranes 
were blocked with 5% non‑fat milk for 1 h, and incubated 
with p65 (cat. no. ab32536; 1:2,000), inhibitor of NF‑κB (IκB) 
(cat. no. ab32518; 1:1,000), TREM‑1(cat. no. ab104413; 1:500), 
β‑actin (cat. no. ab8226; 1:1,000) (all Abcam) and histone H3 

(cat. no. 4243; 1:500; Cell Signaling Technology, Inc., Danvers, 
MA, USA) individually, overnight at 4˚C. After washing three 
times with TBS containing 0.05% Tween‑20, horse radish 
peroxidase‑conjugated goat anti‑rabbit Immunoglobulin G 
(IgG) antibodies (cat. no. SA00001‑2; 1:2,000) or anti‑mouse 
IgG antibodies (cat. no. SA00001‑1; 1:2,000) (both Proteintech 
Group, Inc., Wuhan, China) was added at room temperature 
for 1 h. Chemiluminescent detection was performed using 
Western Lighting Chemiluminescence Reagent (Beyotime 
Institute of Biotechnology, Shanghai, China). Images were 
scanned using a UVP imaging system and analyzed using 
ImageJ software (version 1.45s; National Institutes of Health, 
Bethesda, MD, USA).

Electrophoretic mobility shift assay (EMSA) for p65. The 
protein extract was prepared using a protein extraction kit 
(cat. no. KGP150; Nanjing KeyGen Biotech Co., Ltd.). Each 
sample contained an equivalent magnitude of nuclear extract 
protein (10 µg), and the 50‑fmol biotin‑labeled, double‑strand 
probe was incubated for 15 min at room temperature. The 
oligonucleotide probe sequence of the p65 binding site was 
5'‑AGT​TGA​GGG​GAC​TTT​CCA​GGC‑3'. The DNA‑protein 
complexes were electrophoresed on a 6.5% nondenaturing 
polyacrylamide gel and electrotransferred for detection.

Statistical analysis. All data are presented as the mean ± stan-
dard error of the mean. GraphPad Prism version 5.0 (GraphPad 
Software, Inc., La Jolla, CA, USA) was used to analyze the 
results. Following testing for their normal distribution (using 
the Kolmogorov‑Smirnov test), the significance of the differ-
ence between the groups was tested by one‑way ANOVA, and 
pairwise comparisons were performed between groups using 
the Newman‑Keuls method. P<0.05 was considered to indicate 
a statistically significant difference.

Results

LR12 attenuates pathological changes and lung injury 
scores in mice with LPS‑induced ALI. The pulmonary 
construction was normal and, under light microscopy, fewer 
macrophages were observed in the alveolar space in the sham 
group (Fig. 1A). LPS treatment significantly increased the 
damage and hemorrhaging in the lung tissue samples. The 
thickness of the alveolar septal interstitium and neutrophil infil-
tration were significantly increased following treatment with 
LPS (Fig. 1A). LR12 significantly alleviated lung tissue injury 
when compared with the LPS + scramble group (Fig. 1A). 
Furthermore, the lung injury scores were assessed in parallel 
with the pathohistological changes (Fig. 1B).

Table I. Lung injury scoring system.

	 Score per field
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ -‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Parameter	 0	 1	 2

A. Neutrophils in the alveolar space	 None	 1‑5	 >5
B. Neutrophils in the interstitial space	 None	 1‑5	 >5
C. Hyaline membranes	 None	 1	 >1
D. Proteinaceous debris filling the	 None	 1	 >1
     airspaces
E. Alveolar septal thickening	 <2x	 2‑4x	 >4x

Score = (20xA+14xB+7xC+7xD+2xE)/(number of fields x100).
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LR12 attenuates the changes of lung tissue permeability in 
mice with LPS‑induced ALI. The lung tissue sample W/D 
weight ratio and BALF protein concentration reflect the 
changes in lung tissue permeability. Compared with the 
sham group, the lung tissue sample W/D weight ratio and 
BALF protein concentration were significantly elevated in the 
LPS + scramble group, which indicated an obvious disruption 
in the microvascular permeability of the lung tissues. The lung 
tissue sample W/D weight ratio and BALF protein concentra-
tion in the LPS + LR12 group were significantly decreased 
compared with that in the LPS + scramble group (Fig. 2).

LR12 suppresses the variation of lung leukocyte recruitment 
in mice with LPS‑induced ALI. Following LPS treatment, the 
BALF cytology changed markedly in the alveoli. Compared 
with that in the sham group, the numbers of total cells, macro-
phages and neutrophils were significantly increased in the 
LPS + scramble group (Fig. 3A‑C). 

The number of total cells and neutrophils, but not macro-
phages in the BALF were significantly decreased following 
treatment with LR12 (Fig. 3A‑C).

LR12 suppresses neutrophil infiltration of lung tissues in 
mice with LPS‑induced ALI. Immunohistochemical staining 
indicated that LPS treatment significantly increased the 
MPO‑positive cells in the lung tissue samples (Fig. 4A and B). 
Treatment with LR12 signif icantly at tenuated the 
LPS‑induced significant increase of the MPO‑positive cells 
in the lung tissue samples when compared with that in the 
LPS + scramble group (Fig. 4A and B). MPO activity of the 
lung tissue samples is an important indicator of neutrophil 
infiltration. The MPO activity of lung tissue samples from 
the LPS + LR12 group was significantly decreased when 
compared with that in the LPS + scramble group (Fig. 4C). 
The immunofluorescence staining for MPO confirmed the 
results (Fig. 4D).

Figure 2. LR12 treatment alleviated LPS‑induced permeability of ALI. (A) The lung wet/dry weight ratio. (B) The protein concentration in BALF. Data are 
presented as means ± standard error of the mean (n=5). **P<0.01 vs. sham group; ##P<0.01 vs. LPS + scramble group. LPS, lipopolysaccharide; ALI, acute lung 
injury; BALF, bronchoalveolar lavage fluid.

Figure 1. LR12 treatment alleviated LPS‑induced ALI. (A) Morphologic changes of lung tissues (hematoxylin and eosin stain; original magnification, x200). 
(B) Histopathologic lung injury score. Data are presented as means ± standard error of the mean (n=5). **P<0.01 vs. sham group; ##P<0.01 vs. LPS + scramble 
group. LPS, lipopolysaccharide; ALI, acute lung injury.
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LR12 suppresses the expression of proinflammatory cytokines 
and promotes the expression of anti‑inflammatory cytokines 
in mice with LPS‑induced ALI. Inflammatory cytokines 
are important in neutrophil recruitment and propagation of 
the inflammatory response. These particular inflammatory 
cytokines were detected in BALF using ELISA in order to 
investigate their effects. Compared with that in the sham group, 
the expression levels of proinflammatory cytokines (TNF‑α, 
IL‑1β, IL‑6, MCP‑1 and KC) were significantly increased 
in the LPS + scramble group (Fig. 5). Treatment with LR12 
significantly attenuated the LPS‑induced significant increase 
in proinflammatory cytokines  (Fig.  5). Furthermore, the 
expression level of anti‑inflammatory cytokine, IL‑10 in the 
LPS + LR12 group was significantly increased when compared 
with that in the LPS + scramble group (Fig. 5).

LR12 inhibits NF‑κB activation in mice with LPS‑induced ALI. 
NF‑κB existed as an inactive form combined with its inhibitor, 
IκB when cells were in the resting state. The expression level 
of p65 in the nucleus was significantly increased with the 
treatment of LPS compared with that in the sham group, and 
administration of LR12 significantly decreased the expression 
level of p65 in the nucleus (Fig. 6A). The expression level 
of p65 and IκB in the cytoplasm was signif﻿﻿icantly increased 
following treatment with LR12 compared with the LPS + 
scramble group (Fig. 6B and C). The EMSA and immunofluo-
rescence staining of p65 confirmed the results (Fig. 6D and E).

LR12 suppresses the expression of TREM‑1 and promotes 
the release of sTREM‑1 in mice with LPS‑induced ALI. The 
expression level of TREM‑1 was significantly increased 

in the LPS  +  scramble group compared with the sham 
group (Fig. 7A). Following treatment with LR12, the expression 
level of TREM‑1 in the lung tissue samples was significantly 
decreased  (Fig. 7A). The expression levels of anti‑inflam-
matory mediator sTREM‑1 in the serum were significantly 
increased following treatment with LR12 compared with the 
LPS + scramble group (Fig. 7B).

Discussion

Inflammatory disorders, the activities and inappropriate 
accumulation of leukocytes and platelets, activation of 
uncontrollable coagulation pathways, and the changes 
of permeability of alveolar epithelial and endothelial 
barriers are the core pathophysiological characteristics of 
ALI/ARDS (33,34). Furthermore, the glycolipid of the outer 
membrane of gram‑negative bacteria, LPS, is a pathogenic 
factor of ALI/ARDS (35). Intratracheal instillation of LPS is 
a commendable model for ALI, which mimics gram‑negative 
pulmonary infection in the clinical development of ALI (36).

First reported in the year 2000 (7), TREM‑1 amplified 
the inflammatory response and contributed to the innate and 
adaptive immune responses  (11,37‑39). Under a variety of 
inflammatory conditions, the TREM‑1 expression level was 
upregulated  (25,40) and it has been demonstrated that the 
expression level of TREM‑1 in ALI mice was increased (41). 
The present study demonstrated that the expression level of 
TREM‑1 in lung tissue samples was increased and that TREM‑1 
contributed significantly to mediating inflammatory cell 
recruitment following LPS‑induced ALI. Its therapeutic modu-
lation achieved via LR12 administration conferred protection 

Figure 3. LR12 treatment decreased the number of total cells and neutrophils, but not macrophages in BALF. The number of (A) total cells, (B) neutrophils 
and (C) monocytes/macrophages in BALF. Data are presented as means ± standard error of the mean (n=5). *P<0.05 and **P<0.01 vs. sham group; ##P<0.01 vs. 
LPS + scramble group. BALF, bronchoalveolar lavage fluid; LPS, lipopolysaccharide.
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in mice. LR12, a 12‑amino acid sequence representative of 
residues 94‑105, was one of the TLT‑1 derived peptides (31). 
Previously, it was observed that TLT‑1 binds and impedes 
TREM‑1 engagement (28). Intraperitoneal injection of LR12 
(5 mg/kg) was used in a study by Boufenzer et al (30), which 
determined a reference dose for the present study. The present 
study confirmed that LPS‑induced ALI may be alleviated by 
LR12. The present data indicated that LR12 treatment signifi-
cantly alleviated pathological damage, reduced pulmonary 
edema, decreased the infiltration and activity of neutrophils, 

reduced LPS‑induced production of proinflammatory cyto-
kines and chemokines (TNF‑α, IL‑6, IL‑1β, MCP‑1 and KC), 
and increased the release of anti‑inflammatory cytokines 
(IL‑10 and sTREM‑1). Therefore, the present results indicate 
that LR12 confers protection against LPS‑induced ALI.

NF‑κB, as a nuclear transcription factor, participates 
in LPS‑induced generation of proinflammatory cytokines, 
chemokines and adhesion molecules  (42‑44). Cytokines, 
such as TNF‑α, IL‑1β, IL‑6 and IL‑8, are transcriptionally 
regulated by NF‑κB in vitro (43). NF‑κB activation enhances 

Figure 4. Infiltration and activity of neutrophils in the lung tissue samples were decreased following treatment with LR12. (A) MPO expression levels in lung 
tissue samples were detected by immunohistologic assay (magnification, x200). (B) MPO expression was qualified by integral optical density. (C) Lung MPO 
activity assay. (D) Immunofluorescent staining for MPO (magnification, x200). Data are presented as means ± standard error of the mean (n=5). **P<0.01 vs. 
sham group; ##P<0.01 vs. LPS + scramble group. MPO, myeloperoxidase; LPS, lipopolysaccharide; DAPI, 4',6‑diamidino‑2‑phenylindole.
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the transcription of TNF‑α and IL‑1β, and these cytokines 
activate NF‑κB. Other mediators, such as IL‑6 and IL‑8, are 
released later and lead to more sustained elevations. These 
later mediators may depend largely on TNF‑α and IL‑1β 
to stimulate their production. Inflammatory stimuli, such 
as endotoxin, TNF‑α and IL‑1β stimulate the production of 
counterregulatory cytokines, such as IL‑10, that suppress the 
production of proinflammatory cytokines. It was shown that 
IL‑10 inhibits cytokine production in monocytes by blocking 
endotoxin‑induced NF‑κB activation (45). When bound by the 
IκB family proteins, NF‑κB is inactivated and sequestered in 
the cytoplasmic compartment. Once certain inflammatory 
stimuli appear, degradation of IκB family proteins is induced, 
which leads to the release of NF‑κB, followed by its trans-
location from the cytosol to the nucleus, where it initiates 
transcription of proinflammatory genes. It has been shown 
that NF‑κB signaling is important in mediating LPS‑induced 
ALI (46,47). Evidence has indicated that the NF‑κB signaling 
pathway is involved in TREM‑1‑mediated inflammatory 

responses  (48). As TREM‑1 contributed to LPS‑induced 
ALI via promotion of neutrophil infiltration, and produc-
tion of proinflammatory cytokines and chemokines in the 
present study, it is hypothesized that TREM‑1 may mediate 
LPS‑induced ALI via activation of the NF‑κB signaling 
pathway. In addition, TREM‑1 aggravates inflammation in ALI 
by activating the NLRP3 inflammasome (26). NF‑κB inhibi-
tion leads to a dose‑dependent reduction of NLRP3 protein 
induction by LPS, which indicates a key role for NF‑κB in 
priming the NLRP3 inflammasome (49). However, it was not 
verified by the administration of a TREM‑1 inhibitor (LP17) 
or a NF‑κB inhibitor (Bay 11‑7082) in the present study. Future 
studies are required to confirm these findings.

sTREM‑1, a 27‑kDa glycosylated peptide that is 
detected in biological fluids and tissues in response to infec-
tion (18,50,51), is most likely produced by cleavage of the 
extracellular domain from the membrane‑bound form of 
matrix metalloproteinases (52). sTREM‑1 is unable to transfer 
signals, but acts as a decoy receptor to prevent the binding 

Figure 5. Treatment with LR12 significantly attenuated the LPS‑induced significant increase in proinflammatory cytokines. (A) The changes of inflammatory 
cytokines in BALF (A) TNF‑α, (B) IL‑1β, (C) IL‑6, (D) IL‑10, (E) KC and (F) MCP‑1. Data are presented as means ± standard error of the mean (n=5). *P<0.05 
and **P<0.01 vs. sham group; #P<0.05 and ##P<0.01 vs. LPS + scramble group. LPS, lipopolysaccharide; BALF, bronchoalveolar lavage fluid; TNF‑α, tumor 
necrosis factor‑α; IL, interleukin; KC, keratinocyte chemokine; MCP‑1, monocyte chemoattractant protein‑1.
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of its ligand to membrane‑bound TREM‑1, inhibit the effect 
of TREM‑1 activation and attenuate inflammation (53). The 
current results revealed that the expression level of sTREM‑1 
increased following treatment with LR12, and it acted as an 
anti‑inflammatory mediator, similar to IL‑10 (54). The present 
data indicate that an increase of sTREM‑1 expression level 
after LR12 treatment could inhibit TREM‑1‑mediated ALI for 
the first time.

In conclusion, the current results clearly reveal a previously 
uncharacterized property of LR12, that is, the LR12‑mediated 
anti‑inflammatory effects in LPS‑induced ALI. Alleviating 
the expression level of TREM‑1, increasing the release of 
sTREM‑1 and inhibiting activation of the NF‑κB signaling 
pathway may be involved in this process. The present study 
provides a theoretical basis and a novel therapeutic approach 
for ALI/ARDS. The NF‑κB signaling pathway was exclusively 
investigated in the present study, therefore, further studies are 
required to investigate other signaling pathways involved in 
this process.
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Figure 7. Expression level of TREM‑1 in the lung tissue samples was decreased, 
whereas the expression level of sTREM‑1 in the serum was increased after 
treatment with LR12. (A) Western blotting analysis for quantitative detection 
of TREM‑1 expression in the lung tissue samples. (B) The expression levels of 
sTREM‑1 in serum were detected by ELISA. Data are presented as means ± stan-
dard error of the mean (n=5). *P<0.05 and **P<0.01 vs. sham group; #P<0.05 and 
##P<0.01 vs. LPS + scramble group. TREM‑1, triggering receptor expressed on 
myeloid cells‑1; sTREM‑1, soluble TREM‑1; LPS, lipopolysaccharide.

Figure 6. LR12 treatment inhibited activation of nuclear factor‑κB. (A) Western blotting analysis for the expression levels of p65 in the nucleus. Histone H3 
served as a loading control. (B) Western blotting analysis for the expression level of p65 in the cytoplasm. β‑Actin served as a loading control. (C) Western 
blotting analysis for the expression of IκB in the cytoplasm. β‑Actin served as a loading control. (D) p65 DNA‑binding activity. The p65/DNA binding activity 
in nuclear extracts from lung tissue samples was detected by electrophoretic mobility shift assay. (E) Immunofluorescence staining for p65 in the nucleus 
(magnification, x200). Data are presented as means ± standard error of the mean (n=5). **P<0.01 vs. sham group; #P<0.05 and ##P<0.01 vs. LPS + scramble 
group. IκB, inhibitor of nuclear factor‑κB; LPS, lipopolysaccharide; DAPI, 4',6‑diamidino‑2‑phenylindole.
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