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Abstract. Sirtuin (SIRT)1, a member of the SIRT family, is 
a highly conserved NAD+‑dependent histone deacetylase, 
which has a regulatory role in numerous physiological and 
pathological processes by removing acetyl groups from 
various proteins. SIRT1 controls the activity of numerous tran-
scription factors and cofactors, which impacts the downstream 
gene expression, and eventually alleviates oxidative stress 
and associated damage. Numerous studies have revealed that 
dysfunction of SIRT1 is linked with ocular diseases, including 
cataract, age‑associated macular degeneration, diabetic reti-
nopathy and glaucoma, while ectopic upregulation of SIRT1 
protects against various ocular diseases. In the present review, 
the significant role of SIRT1 and the potential therapeutic 
value of modulating SIRT1 expression in ocular development 
and eye diseases is summarized.
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1. Introduction

Epigenetic alterations have critical roles in various physiological 
and pathological processes (1). Histone deacetylases (HDACs) 
are among the most important epigenetic regulators, which 
deacetylate lysine residues on specific histone and non‑histone 
proteins (2). According to the homologies of the respective 

yeast orthologues, human HDACs have been divided into four 
classes (3,4). The human sirtuin (SIRT) family, belonging to 
class‑III HDACs, is a class of NAD+‑dependent deacetylases 
and contains seven members  (SIRT1‑7)  (5). Among them, 
SIRT1 has been most widely studied. The human SIRT1 
protein contains 747 amino acids and is composed of three 
major regions (Fig. 1) (6,7). The level and activity of SIRT1 
is regulated at the transcriptional and post‑transcriptional 
level  (8), with post‑translational modifications including 
phosphorylation  (9), sumoylation  (10), methylation  (11), 
S‑nitrosylation  (12) and carboxylation  (13). Besides, the 
activity of SIRT1 distinctly depends on the NAD+/NADH 
ratio and may be affected by nucleocytoplasmic shuttling (14). 

The SIRT family has been identified to be highly 
evolutionarily conserved in various organisms from bacteria 
to humans (15). SIRT1, maintaining the silenced chromatin 
state and genomic stability  (16), has been associated with 
various physiological and pathological processes and condi-
tions, including DNA repair, metabolic regulation, aging, 
oxidative stress, angiogenesis, inflammation, neurodegenera-
tive diseases and cardiovascular dysfunction. Previous reviews 
have indicated the major roles of SIRT1 in retinal and ocular 
aging  (17‑19). Increasing evidence has demonstrated that 
SIRT1 is also involved in other eye diseases, which are not 
limited to aging. The present review focuses on the current 
understanding and the potential therapeutic value of SIRT1 in 
ocular disorders.

2. Developmental roles and distribution of SIRT1 in the eye

It has been reported that mice carrying two null alleles of 
SIRT1 (also known as SIR2a in lower organisms) are small, 
and most of them die shortly after birth. Outbred SIRT1‑null 
animals usually survived until adulthood, but were sterile (20). 
In SIRT1‑deficient mice, eyelids remained closed accompa-
nied by abnormalities of the cornea, lens and retina (20,21), 
and eyes were smaller, with the optic fissure being abnormally 
closed  (22). Furthermore, there were significantly thinner 
retinal cell layers and disordered inner and outer nuclear layers. 
In addition, it was difficult to identify the inner and outer 
segments of photoreceptor cells. These eye defects occurred 
in early embryos, which implied that SIRT1 regulated ocular 
morphogenesis and retinal development  (22). In addition, 
SIRT1 was reduced in the retina of mice with knockout of E2fs, 
which are essential positive cell cycle regulators, resulting in 
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hyperacetylation of p53, a pro‑apoptotic factor downstream 
of SIRT1, and increased retinal progenitor cell apoptosis (23). 
Treatment of pregnant mice with resveratrol, an activator of 
SIRT1, significantly blocked the apoptosis at P0 (23). Thus, 
the pro‑survival role of E2f/SIRT1/p53 in retinal development 
has been established.

SIRT1 was detected in the cornea, lens, ciliary body, 
retinal pigment epithelium (RPE) and neuroretina in mice 
and humans, and in human normal conjunctival epithe-
lium (24‑26). Jaliffa et al (24) firstly reported that SIRT1 was 
predominantly localized in the nuclei of ocular cell, including 
corneal epithelial cells, ciliary process cells and ciliary 
epithelial cells, the epithelial and fiber cells of the lens, RPE 
cells and melanocytes, and exclusively in the nuclei of cells of 
the outer nuclear layer (ONL), inner nuclear layer (INL) and 
ganglion cell layer (GCL) but never in the cytoplasm. They 
also detected SIRT1 in the cytoplasm of corneal epithelial 
cells and choroidal vessel endothelial cells (24). Another study 
reported that SIRT1 was mainly expressed in the cytoplasm 
in the GCL, inner plexiform layer (IPL), outer plexiform layer 
(OPL), and inner segments of photoreceptors (26). In addi-
tion, SIRT1 was identified to be exclusively expressed in the 
cytoplasm of mouse retinal progenitor cells (RPCs), while it 
was present in the nuclei and cytoplasm in human RPCs (26). 
These apparently different SIRT1 distributions in different cell 
types of different species suggest that SIRT1 expression may 
be variable during different periods of retinal development and 
cell differentiation. 

3. SIRT1 and eye diseases

SIRT1 and corneal diseases. Under normal conditions, the 
corneal epithelium is important for the maintenance of the 
physiological corneal function, rendering the cornea highly 
resistant to microbial invasion. A high‑glucose (HG) environ-
ment led to the downregulation of SIRT1 and upregulation of 
acetylated p53 (Ac‑p53) and insulin‑like growth factor binding 
protein‑3  (IGFPB3) in primary human corneal epithelial 
cells as well as corneas from insulin (Ins)2Akita/+ mice (27). 
Overexpression of SIRT1 in corneal epithelial cells and 
Ins2Akita/+ mice significantly led to a downregulation of Ac‑p53 
and IGFPB3, and an upregulation of the levels of phosphory-
lated (p)‑AKT and IGF‑1 receptor precursor. In addition, SIRT1 
overexpression in corneal epithelium promoted the wound 
healing process under HG conditions, which may involve 
reinforcement of the IGFBP3/IGF‑1/AKT pathway with the 
decrease of Ac‑p53 (27). With the progression of diabetic dry 
eye (DE) in a mouse model, SIRT1 expression in the cornea 
rose in the first stage and then decreased. Furthermore, the 
expression of forkhead box O3 (FOXO3), which ameliorated 
the response to oxidative stress as a substrate of SIRT1, and 
the antioxidant enzyme Mn‑superoxide dismutase (MnSOD) 
protein had a similar tendency with SIRT1, which suggests 
a role of SIRT1 in the resistance to oxidative stress (28). In 
summary, SIRT1 activation may be an effective approach for 
treating diabetic keratopathy.

Recent studies have demonstrated that microRNAs 
(miRNAs) may regulate corneal development and diseases. 
miRNA‑204 directly downregulated SIRT1 in the cornea, and 
overexpression of miRNA‑204 in human corneal epithelial 

cells inhibited cell cycle progression, cell proliferation and 
cell migration during the healing of wounded corneal epithe-
lium in mice (29,30). Furthermore, miR‑204‑5p antagomir 
promoted the wound healing process via SIRT1 regulation in 
type 1 diabetic Ins2Akita/+ mice (30). Wang et al (31) reported 
that miRNA‑182 was the downstream miRNA target of SIRT1 
under HG conditions, and protected against peripheral damage 
of trigeminal ganglions and keratopathy in diabetic db/db 
mice by decreasing the expression of one of its target genes, 
NADPH oxidase 4. Therefore, SIRT1 may protect the cornea 
through the miRNA‑mRNA regulatory network.

SIRT1 and cataract. Age‑associated cataract (ARC) is a condi-
tion characterized by multiple mechanisms and has various 
risk factors, including genetic, metabolic, nutritional and 
environmental factors, as well as other ocular diseases (32). 
Previous studies have indicated that resveratrol is able to protect 
human lens epithelial cells from oxidative damage induced by 
H2O2 (33,34) and suppress experimental cataract formation in 
rats (35). The SIRT1 levels in the lens were identified to be 
significantly decreased in individuals aged ≥51 years, and to 
be negatively correlated with ARC in humans (36). Of note, 
SIRT1 was significantly increased in patients aged >50 years 
with ARC compared with that in age‑matched subjects 
without ARC (37), and SIRT1 levels in the aqueous humor of 
ARC patients were positively correlated with the severity of 
nuclear cataract (38). Furthermore, while the expression of the 
downstream components of SIRT1, FOXO3a and FOXO4, was 
downregulated with age, it exhibited relative increases in ARC 
patients  (37). By contrast, the expression of p53 increased 
with age, but active Ac‑p53 was decreased in older patients 
with cataract compared with that in old individuals without 
cataract (37). These studies indicate that the increased SIRT1 
may function as a compensation to alleviate ARC formation 
through inhibiting its downstream p53 acetylation and acti-
vating the FOXO pathway (37). Another study indicated that 
the enhanced interaction between SIRT1 and 8‑oxoguanine 
(8‑oxoG)‑DNA glycosylase 1 (OGG1) and/or insufficient inter-
action between the histone acetyltransferase p300 and OGG1 
may decrease the acetylation of OGG1 in the lens of patients 
with ARC, resulting in abnormal accumulation of 8‑oxoG, a 
biomarker of oxidative damage, in the lens (39). Eventually, 
these changes accelerate the development of ARC, implying 
a destructive role of SIRT1 upregulation (39). These divergent 
results are possibly attributed to the difference in research 
methods and subjects. More comprehensive studies focusing 
on the precise mechanisms of SIRT1 in the pathogenesis of 
ARC are required. 

SIRT1 and age‑associated macular degeneration. Age‑
associated macular degeneration (AMD) manifests as either 
drusen/geographic atrophy or choroidal neovasculariza-
tion (CNV). The pathophysiology and risk factors of AMD are 
complex (40). Chen et al (41) investigated three variants of the 
SIRT1 gene associated with AMD in Chinese Han individuals, 
and identified that the rs12778366 polymorphism within the 
promoter region of SIRT1 was significantly associated with 
AMD in recessive and codominant models. Expression of 
SIRT1 was more frequent in RPE and vascular endothelial 
cells (VECs) in human CNV membranes (42). By contrast, 
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another study indicated that the expression and self‑renewal 
ability of SIRT1 in retinal stem cells (RSCs) (43), human retina 
and RPE cells (44) obviously declined with age.

Dysfunction of RPE cells is a major risk factor for the devel-
opment of AMD. In aged RPE cells, overexpression of SIRT1 
and octamer binding transcription factor 4, a POU‑domain 
transcription factor, reprogrammed the cells into retinal 
progenitor‑like cells and enhanced their antioxidant enzymatic 
activities (44). The expression of p53 increased in aged RPE, 
and in young RPE cells, sirtinol (a SIRT1 inhibitor) increased 
p53 acetylation and phosphorylation, but only had a marginal 
effect on p53 expression and increased caspase‑3 activation, 
which contributed to apoptosis of RPE cells (45). Furthermore, 
resveratrol obviously prevented p53 acetylation and phosphor-
ylation, and eventually alleviated caspase‑3‑dependent RPE 
cell apoptosis (45). Recently, Golestaneh et al (46) developed 
an in vitro disease model of AMD through the generation 
of induced pluripotent stem cells (iPSCs) from RPE from 
patients with AMD and differentiation of these iPSCs into 
RPE (AMD RPE‑iPSC‑RPE), and observed the downregula-
tion of SIRT1 and peroxisome proliferator activated receptor‑γ 
co‑activator-1α (PGC‑1α) in AMD RPE‑iPSC‑RPE compared 
with that in normal RPE‑iPSC‑RPE. The study indicated 
that dysfunctional SIRT1/PGC‑1α may decrease mitochon-
drial activity and increase reactive oxygen species  (ROS) 
production in AMD RPE‑iPSC‑RPE, and contribute to the 
pathophysiology of AMD (46).

Oxidative stress accelerates the progression of AMD. 
Overexpression of SIRT1 or treatment with resveratrol 
protected against oxidative stress‑induced RPE cell senes-
cence through downregulation of p53 K382 acetylation and 
p21Waf1/Cip1 accumulation (47), and increased the viability of 
H2O2‑treated rat RSCs (43). On the contrary, knockdown of 
SIRT1 or application of SIRT1 inhibitors including nicotin-
amide (48) and sirtinol enhanced the toxicity of H2O2, making 
RPE cells hyper‑sensitive to oxidative stress (47). Furthermore, 
SIRT1 rescued complement factor H (CFH) expression through 
increasing recruitment of signal transducer and activator of 
transcription 1 and decreasing the occupancy of the repressor 
FOXO3 in the CFH promoter of H2O2‑treated ARPE‑19 cells, 
which may prevent the oxidative stress‑induced aging and 
cell damage and decrease the risk of AMD (49). A further 
experimental study indicated that SIRT1 levels were reduced 
in human RPE cells after treatment with amyloid β  (Aβ), 
which is one of the constituents of drusen (50). Treatment with 
SRT1720, a potent SIRT1 agonist that suppresses the nuclear 
factor  (NF)‑κB signaling system, significantly decreased 
Aβ‑mediated upregulation of inflammatory cytokines in RPE 
cells, and balanced the morphology and barrier function of 

RPE cell monolayers, which was obviously suppressed by 
knockdown of SIRT1 (50).

The expression of SIRT1 mRNA exhibited daily variations 
under the light‑dark cycle conditions in the retina and was 
obviously upregulated in the dark phase (51). Considering that 
retinal cells consume more energy in the dark, the study linked 
SIRT1 regulation with the response to light stimuli and meta-
bolic dysfunction in age‑associated retinal diseases including 
AMD (51). In an in vitro study, ultraviolet B activated the 
phosphoinositide‑3 kinase/AKT/extracellular signal‑regulated 
kinase (ERK) pathway by reducing the expression of SIRT1 
in a dose‑dependent manner in ARPE‑19 cells and suppressed 
the growth of the cells (52). In a mouse model of light‑induced 
retinal degeneration, retinal SIRT1 activity was significantly 
reduced  (53). Systemic administration of resveratrol not 
only significantly recovered retinal SIRT1 activity, but also 
restored histological and functional damage to the retina (53). 
Likewise, gene transfer of SIRT1 decreased retinal cell loss and 
improved the light‑induced electroretinographic damage in rat 
retinas (44). In addition, the levels of activator protein (AP)‑1 
subunit c‑fos were elevated in the retina of light‑exposed mice 
and reduced by application of resveratrol (53). These studies 
suggest that SIRT1 activators or overexpression of SIRT1 
protect the retina from light damage through inhibiting AP‑1 
bioactivity (53) and suppressing AKT and ERK phosphoryla-
tion (52).

CNV formation is a typical characteristic of wet AMD. 
Previous studies have indicated the regulative roles of SIRT1 
in angiogenesis (54,55). Expression of SIRT1 was higher in 
human CNV membranes from AMD patients than in eyes 
from donors without AMD (42). In vitro studies demonstrated 
that hypoxia‑induced upregulation of SIRT1 levels augmented 
hypoxia‑inducible factor (HIF)‑2α expression in choroidal 
endothelial cells, which in turn activated and released vascular 
endothelial growth factor (VEGF)  (56). Thus, SIRT1 may 
promote CNV formation. However, other studies indicated that 
SIRT1 activation by resveratrol inhibited various inflamma-
tory cytokines, transforming growth factor (TGF)‑β‑mediated 
VEGF secretion and hypoxia‑mediated choroidal VEC 
proliferation through downregulation of HIF‑1α (57,58). A 
study by our group indicated that resveratrol inhibited the 
HIF‑1α/VEGF/VEGF receptor 2 signaling axis partly through 
SIRT1  (59). Khan  et al  (60) demonstrated that resveratrol 
inhibited the proliferation and migration of VECs and led to 
severely blunted neovascularization through activating eukary-
otic elongation factor‑2 kinase instead of the SIRT1‑dependent 
pathway. The difference in drugs and experimental models 
may produce discrepant results regarding the function of 
SIRT1. The mechanisms of the effects of SIRT1 on CNV 

Figure 1. Schematic representation of the 1‑dimensional structure of human SIRT1 protein. Human SIRT1 protein comprises 747 amino acids divided into 
three major regions: The central core, possessing the deacetylase domain, which consists of a large NAD+‑binding subdomain and a smaller subdomain 
composed of a helical module and a Zn2+‑binding module, and the N‑ and C‑terminal domains, containing regulatory elements and binding domains for SIRT1 
co‑activators or repressors. SIRT, sirtuin.
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formation require more comprehensive elucidation. The role 
of SIRT1 in the pathogenesis of AMD is summarised in Fig. 2.

SIRT1 and diabetic retinopathy (DR). DR is a severe compli-
cation of diabetes mellitus. Progression of diabetic blood 
glucose control suggests a ‘metabolic memory’ phenom-
enon (61,62). The expression of SIRT1 was reduced in the 
retinas of diabetic mice (63‑66). Zheng et al (67) observed 
a decrease in SIRT1 and an increase of NF‑κB, the pro‑
apoptotic gene B‑cell lymphoma 2‑associated X protein (Bax), 
poly ADP‑ribose polymerase (PARP) and ROS in bovine 
retinal endothelial cells (RECs) cultured under HG after 
glucose normalization. SIRT1 overexpression mediated liver 
kinase B1 (LKB1)/AMP‑activated protein kinase (AMPK) 
activity, which inhibited ROS pathway activation in HG in 
RECs, resulting in the suppression of NF‑κB, Bax and PARP 
expression. In addition, ROS‑induced PARP activity, at least in 
part, led to the downregulation of SIRT1 expression and ampli-
fied an auto‑feedback loop regulating SIRT1 expression. These 
results implied that SIRT1 mediated a metabolic memory 
effect induced by HG through the SIRT1/LKB1/AMPK/ROS 
cascade (67). Another study reported that transient hypergly-
cemia caused persistent endothelial cell senescence through 
the imbalance between SIRT1, and that P300 induced the 
upregulation of Ac‑p53 and its downstream p21 (68). Recently, 
Zhao  et  al  (69) identified that increased expression of 
miR‑23b‑3p directly downregulated SIRT1, which increased 
Ac‑NF‑κB levels in human RECs with a metabolic memory 
effect induced by HG. Similar results were obtained in rats with 
streptozotocin‑induced diabetic retinopathy as a metabolic 
memory model, in which vascular permeability was signifi-
cantly suppressed by miR‑23b‑3p inhibitor (69). Furthermore, 
metformin, a blood glucose‑lowering therapeutic, fenofibrate, 
a lipid‑lowering therapeutic and resveratrol suppressed the 

memory of hyperglycemic stress via the SIRT1‑dependent 
signaling pathway (67,68,70).

The overproduction of mitochondrial ROS and cytokines 
promotes the development of DR (71,72). Reduced SIRT1 
in HG‑cultured RECs obviously enhanced the acetylation 
of NF‑κB p65 and AP‑1, which binds to the promoter of 
matrix metalloproteinase (MMP)‑9, which eventually acti-
vates MMP‑9 (64,73). SIRT1 overexpression decreased the 
transcription of MMP‑9 in REC  (64,73) and ameliorated 
NF‑κB/Rac1/NADPH oxidase‑mediated mitochondrial 
damage in diabetic rat retina  (65). SIRT1 overexpression 
suppressed the upregulation of endothelin 1, TGF‑β1, collagen 
1α and fibronectin, and prevented glucose‑induced endothelial 
permeability and increases in total ROS/RNS levels in the 
retina of diabetic mice (74). In addition, systemic administration 
of resveratrol to the diabetic animals suppressed leukostasis 
and the upregulation of intercellular adhesion molecule‑1 and 
VEGF (66). Exendin‑4, a glucagon‑like peptide 1 analogue, 
moderated ROS‑mediated retinal cell death and recovered 
visual function by upregulating SIRT1 and SIRT3 expression in 
early‑stage diabetic rats (75). Furthermore, SIRT1 may protect 
proliferative DR progression by inhibiting interleukin‑17 (76). 
Another study indicated that miR‑195 antagomir normalised 
tissue damage mediated by SIRT1 reduction in a rat model of 
DR (77). 

Mice with oxygen‑induced ischemic retinopathy  (OIR) 
exhibit certain features of neovascularization that are charac-
teristic of proliferative DR in humans (78). Increased SIRT1 in 
avascular retinal neurons of OIR mice mediated physiological 
revascularization of ischemic areas through modulating the 
HIF signaling pathway and secretion of pro‑angiogenic and 
neuroprotective factors  (79). However, ectopic overexpres-
sion of SIRT1 in mouse retinas or oral administration of 
SIRT1 activator did not alter the vaso‑obliteration, pathologic 

Figure 2. Role of SIRT1 in the pathogenesis of AMD. Factors and medicines (left) affected different cells and tissues function (right) through various pathways 
regulated by SIRT1 (middle), which ultimately induced the generation of AMD. SIRT, sirtuin; ROS, reactive oxygen species; RPE, retinal pigment epithelium; 
NF, nuclear factor; AP, activator protein; ERK, extracellular signal‑regulated kinase; HIF, hypoxia‑inducible factor; VEGFR, vascular endothelial growth 
factor receptor; TGF, transforming growth factor; AMD, age‑associated macular degeneration; CFH, complement factor H.
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neovascularization or retinal neuron degeneration in OIR (80). 
The protective role of SIRT1 in OIR requires more compre-
hensive study.

SIRT1 and glaucoma. Glaucoma is a group of chronic eye 
diseases ascribed to the irreversible death of retinal ganglion 
cells (RGCs) and progressive optic neuropathy, and results 
in serious vision loss and blindness. RGCs transmit light 
signals from the retina along their axons to the brain. Various 
types of stimuli, including trauma, ischemia, increased intra-
ocular pressure, oxidative stress and inflammation, have been 
reported to lead to RGC death (81). SIRT1 has been linked 
with Alzheimer's and Huntington's disease in respective 
animal models and exerted a neuroprotective role in these 
diseases (82). Further studies have indicated the neuropro-
tective effects of SIRT1 on RGCs. For instance, resveratrol 
protected RGC‑5 cells against serum deprivation‑induced 
apoptosis by promoting the expression of SIRT1 and facili-
tating the translocation of PGC‑1α from the cytoplasm to the 
nucleus (83,84). In addition, oral resveratrol administration or 
overexpression of SIRT1 following optic nerve crush injury in 
mice reduced RGC loss and ROS accumulation in the optic 
nerve (85). However, resveratrol was unable to prevent RGC loss 
after optic nerve crush injury in the eyes of SIRT1‑knockout 
mice (85), which confirmed the necessity of SIRT1 expression 
for resveratrol‑mediated neuroprotection. Furthermore, SIRT1 
increased the viability of RGCs under hypoxic conditions 
through inhibiting stress‑activated protein kinase/c‑Jun 
N‑terminal kinase and caspase‑3 activation (86), in ischemic 

mouse retinas, mangiferin prevented RGC loss via SIRT1, 
which was suppressed by sirtinol (87), suggesting a neuropro-
tection role of SIRT1 on RGCs under hypoxic condition.

SIRT1 and optic neuritis. RGC loss also has been demonstrated 
in several experimental models of optic neuritis, including 
experimental autoimmune encephalomyelitis (EAE), which is 
an animal model of multiple sclerosis (MS). SIRT1 activator‑
associated suppression of RGCs loss delayed the onset of EAE 
and attenuated neuronal damage in EAE mice (88‑90). The 
fact that the protective effect on RGCs by SIRT1 activators was 
blocked by sirtinol further suggests the neuroprotection role of 
SIRT1 activation (88,90). Pre‑treatment with SIRT1 activators, 
resveratrol and SRTAW04, significantly reduced ROS and cell 
death caused by H2O2 in RGC‑5 cells (91). Furthermore, SIRT1 
activators induced a significant increase in SOD2 and succi-
nate dehydrogenase expression in stressed RGC‑5 cells and 
enhanced deacetylation and activation of PGC‑1α (91). Similar 
protective mechanisms were observed in a mouse hepatitis 
virus A59‑induced MS model (92). However, administration of 
SIRT1 activators neither suppressed the gross level of inflam-
mation in the optic nerve nor attenuated the development of 
clinical EAE  (88‑90,92). During disease remission, EAE 
patients retain proper axonal density, suggesting that SIRT1 
activator prevents permanent neurological dysfunction and 
neuronal damage in MS after acute spinal cord inflammation is 
resolved (90). In addition, resveratrol, through promoting SIRT1 
expression and cholesterol synthesis, restored the number of 
surviving RGCs in the rats with optic nerve injury (93). Most 

Figure 3. Roles of SIRT1 in eye diseases and development. The diagram depicts that SIRT1 plays significant role in ocular diseases by influencing various 
physiological and pathological processes such as inflammation, angiogenesis, aging, oxidative stress, neuroprotection and so on. ↓, suppression; ↑, enhance-
ment. SIRT, sirtuin; AMD, age‑associated macular degeneration; NF, nuclear factor; HIF, hypoxia‑inducible factor; MMP, matrix metalloproteinase; SOD, 
superoxide dismutase; SDH, succinate dehydrogenase; JNK, c‑Jun N‑terminal kinase; ROS, reactive oxygen species; IL, interleukin; ICAM, intercellular 
adhesion molecule; AP, activator protein; ERK, extracellular signal‑regulated kinase; Ac‑p53, acetylated p53; CFH, complement factor H; FOXO, forkhead 
box O; RP, retinitis pigmentosa; RPE, retinal pigment epithelium; OSSN, ocular surface squamous neoplasia; OIR, oxygen‑induced ischemic retinopathy; 
PGC, peroxisome proliferator‑activated receptor γ coactivator; SAPK, stress‑activated protein kinase; DE, diabetic dry eye; DR, diabetic retinopathy.
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importantly, the neuroprotective effects of SIRT1 activators 
without immunosuppression may imply a potential benefit of 
combining anti‑inflammatory therapies for optic neuritis as 
well as for non‑inflammatory optic nerve diseases. 

SIRT1 and uveitis. Uveitis is characterized by a process of 
intraocular inflammation resulting from multiple factors. 
Corticosteroids and immunosuppressive drugs are effective 
for relieving diverse uveitis, but have severe side effects, 
which limits their clinical application (94). Alternative, novel 
drugs or treatments are therefore required. Recent studies 
have applied SIRT1 activators in the treatment of uveitis 
animal models. For instance, oral application of resveratrol 
to mice with endotoxin‑induced uveitis (EIU) led to inhibi-
tion of oxidative damage and significant increases in SIRT1 
activity in the RPE‑choroid, resulting in the suppression of 
NF‑κB‑mediated inflammation in the eye (95). Resolvin D1, a 
lipid‑derived protein for intravitreal injection, prevented EIU 
in rats through increasing SIRT1‑mediated downregulation 
of Ac‑p53 and FOXO1 (96). Furthermore, treatment of mice 
with experimental autoimmune uveoretinitis  (EAU) with 
SIRT1 activator SRT2379 alleviated inflammation through 
suppressing T cell proliferation, pro‑inflammatory cytokine 
production and leukocyte infiltration (97). Gardner et al (98) 
reported that tumor necrosis factor (TNF)‑α mediated the 
cleavage and inactivation of SIRT1 to drain lymph node effector 
cells in EAU, and that combined application of a suboptimal 
TNF‑α blockade and SIRT1 activation had a synergistic 
suppressive effect on EAU. In addition, in an in vitro model 
of antibody‑mediated autoimmune retinopathy, resveratrol 
treatment led to an upregulation of SIRT1 and Ku70 in retinal 
cells, blocked the influx of intracellular calcium and the entry 
of pro‑apoptotic Bax from the cytoplasm to the mitochondria, 
to subsequently prevent caspase‑3 activation and protect cells 
from apoptotic death induced by antibodies against recoverin 
and α‑enolase (99). These studies demonstrated that activation 
of SIRT1 may be a potential treatment option for ocular uveitis.

3. Perspective

The present review mainly focused on the emerging evidence 
of the association between SIRT1 and the eyes. As summa-
rized in  Fig.  3, SIRT1 serves a significant role in ocular 
diseases by influencing various physiological and pathological 
processes such as inflammation, angiogenesis, aging, oxida-
tive stress, neuroprotection. Although the potential protective 
role of SIRT1 has been demonstrated in numerous in vitro and 
in vivo models of ocular diseases, further studies are neces-
sary to confirm the accurate mechanism and the most effective 
administration of SIRT1 activators and inhibitors in these 
diseases (100). In addition, it is required to determine whether 
the data obtained using animal models are applicable to human 
ocular diseases. In summary, SIRT1 may be considered as a 
valuable therapeutic target in ocular diseases.
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