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Abstract. We evaluated the key genes related with recur-
rent respiratory tract infections (RRTIs), and then elucidated 
the possible molecular mechanisms of RRTIs. Neutrophil 
was isolated from peripheral bloods of the recurrent lower 
respiratory tract infection patients and healthy volunteers, 
respectively. The next generation sequencing information was 
obtained after RNA extraction, purification, library construc-
tion and sequencing. The sequencing information was 
preprocessed. Bioinformatics analysis including analysis of 
differentially expressed genes (DEGs), Gene Ontology (GO) 
and pathway enrichment analysis, protein-protein interac-
tion  (PPI) analysis and transcription factors analysis were 
performed. The key genes were verified by real-time PCR. 
In total, 17 significant DEGs were obtained in case group 
compared with the control group by bioinformatics analysis. 
Then, 6 of 17 genes were detected by real-time PCR. There 
was statistical significance between case and control groups 
for peroxisome proliferator-activated receptor-γ  (PPARG), 
prostaglandin-endoperoxide synthase  2  (PTGS2), trans-
ferrin (TF) and interleukin-10 (IL-10) (P<0.05), and there was 
no statistical significance between case and control groups 
for TIMP metallopeptidase inhibitor 1 (TIMP1) and matrix 
metallopeptidase 1 (MMP1). PPARG, PTGS2, TF and IL-10 
are key genes associated with the progression of RRTIs. We 
speculate that TIMP1 and MMP1 may also be involved in the 
progression of RRTIs, but further studies with large number of 
samples are needed for verification.

Introduction

Recurrent respiratory tract infections  (RRTIs) are not 
uncommon in children in the 1st year of life, mainly caused 

by immaturity of the immune system and exposure to patho-
gens (1). It is said that a person diagnosed with RRTIs should 
meet at least one of the following criteria: not less than 6 respi-
ratory infections per year; not less than 3 respiratory infections 
per year involving the lower airways or not less than 1 respi-
ratory infection per month involving the upper airways from 
September to April (2). Up to 25% of children <1 year of age 
and ~18% of children aged 1 to 4 years suffer from RRTIs in 
developed countries (3). It occurs both in children and adults 
(4,5). Thus, early diagnosis of RRTIs and understanding of its 
pathogenesis are urgently needed.

Some prevention strategies for RRTIs including the use 
of immunostimulants and vaccines and the reduction of risk 
factors have been developed  (1). One study indicated that 
treated with vitamin D3 may be able to reduce disease burden 
of patients with frequent respiratory tract infections  (6). 
Pleuran (β-glucan from Pleurotus ostreatus) has a potential 
anti-allergic effect for children with RRTIs  (7). Human 
milk probiotic Lactobacillus fermentum CECT5716 may be 
useful for the prevention of upper respiratory tract infections 
in infants (8). De Benedetto and Sevieri showed that OM-85 
could decrease exacerbation frequency of respiratory tract 
infections in children and adults at risk (5). Though many 
prevention and treatment measures have been found, the 
molecular mechanisms of RRTIs are not clear. Understanding 
of the molecular mechanisms can help us find more effective 
treatment for RRTIs.

In the process of infection and anti-infection, innate 
immune system, which serves as the first line of defense, plays 
the roles of limiting the spread of infection and reducing the 
tissue damage caused by the inflammatory reaction (9). As a 
major member of the innate immune system, neutrophil plays 
important parts in that process. In this present study, periph-
eral blood neutrophil was used to study the possible molecular 
mechanisms of RRTIs. We first used the bioinformatics 
methods to find the key genes associated with RRTIs. Then, the 
real-time PCR was used to verify the results of bioinformatics. 
We aimed to find the key genes related with RRTIs, and then 
elucidate the possible molecular mechanisms of RRTIs.

Materials and methods

Samples. Fresh peripheral blood was obtained from 9 patients 
with recurrent lower respiratory tract infection and 9 healthy 
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controls with 5  ml for every case. The demographic and 
clinical characteristics of subjects are shown in Table I. The 
mean age of patients was 51.5, and the mean age of healthy 
controls was 54. Heparin (10 U/ml) was used to exert antico-
agulant effect for blood, and then the blood was stored at 4̊C. 
Informed consent was obtained from subjects before blood 
sample collection. The present study was approved by Ethics 
Committee of First Hospital, Jilin University (no. 2014‑078). 
Single RNA sample was not up to the requirements of seque
ncing, thus 3  cases of blood samples were extracted and 
mixed into 1 sample for sequencing. Therefore, the samples 
included 3 recurrent lower respiratory tract infection samples 
and 3 control samples. Neutrophil was isolated from periph-
eral bloods of the recurrent lower respiratory tract infection 
patients and healthy control samples, respectively.

Processing and quality assessment of raw data. The next 
generation sequencing information was obtained after RNA 
extraction, purification, library construction and sequencing, 
and was stored in a FASTQ file. The quality of the data was 
assessed using FastQC v0.11.4 (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc). Base content distribution 
was used to detect whether there was AT, GC separation in 
sequencing data, and AT, GC separation could affect the results 
of subsequent bioinformatics analysis. GC content distribution 
was mainly used for detecting whether the GC distribution of 
the data was normal. Sequence base quality was used to detect 
the average quality of the sequencing data.

The sequencing data included some adapters and low 
quality reads, and these sequences could cause a great deal 
of interference for subsequent analysis. Thus, the removal of 
adapter sequences and quality filtering were performed. The 
adapter sequences at least 10 bp overlap at the 3' end were 
removed with cutadapt (version 1.2.1) (10), and the quality 
filtering was performed by 5 bp window method with average 
quality score of window ≥Q20, the length at least 50 bp and no 
uncertain bases (‘N’) in sequences.

Reference genome information and comparative analysis. The 
sequencing data was compared to the genome. The compara-
tive analysis was performed with Bowtie2 2.1.0/TopHat2 2.1.0 
(http://tophat.cbcb.umd.edu/). The reference genome index 
was constructed by Bowtie2, and then reads after filtering were 
compared to the reference genome by using TopHat2 software.

Standardization of gene expression. The read count compared 
to every gene and obtained by HTSeq 0.6.1p2 (http://www-
huber.embl.de/users/anders/HTSeq) was regarded as original 
expression of genes. The standardization of gene expression 
was carried out with FPKM (fragment per kilo bases per 
million fragments).

Analysis of differentially expressed genes (DEGs). edgeR (http://
www.bioconductor.org/packages/release/bioc/html/edgeR.html) 
is a Bioconductor software package used to analyze the differen-
tial expression of repeated counting data. edgeR was used for the 
detection of differential expression in this study. The read count 
was preprocessed with TMM normalization provided by limma 
in R package (11,12), and the preprocessed data was transformed 
into gene expression matrix with voom (13). |log2FC| >1 and 

P-value <0.05 were used as cut-off criterion. Then, the heat map 
of DEGs was drawn using gplots in R package (14).

Gene Ontology (GO) and pathway enrichment analyses. GO 
is a tool used for gene annotation by collecting defined, struc-
tured, controlled vocabulary, mainly including 3 categories, 
molecular function (MF), biological process (BP) and cellular 
component (CC) (15). GO slim is a simplified version of GO, 
only including a part of GO. GO is used for a general under-
standing of the content of Ontology. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) is a database used to put associ-
ated gene sets into each of their pathway.

We made GO annotation (http://www.bioconductor.org/
packages/release/bioc/html/RamiGO.html), GO slim annota-
tion [OWLTools (Map2Slim) (https://github.com/owlcollab/
owltools/wiki/Map2Slim)] and KEGG pathway enrichment 
analyses for DEGs. Fisher's exact test was used to calculate 
the P-values. The P-value cut-off was 0.05 for GO analysis and 
P-value was 0.1 for KEGG analysis.

Protein-protein interaction (PPI) network analysis. Search 
Tool for the Retrieval of Interacting Genes (STRING) (16) 
database can provide information on the predicted and experi-
mental interactions of proteins. The prediction method of this 
database came from neighborhood, gene fusion, co-occurrence, 
co-expression experiments, databases and textmining. The 
input gene sets were DEGs, and the species was Homo. PPI 
score was set to 0.4, and all the protein nodes interacted with 
each other were DEGs. PPI networks were constructed with 
Cytoscape software (17).

Analysis of key nodes in network. Four methods including 
degree centrality (18), betweenness centrality (19), subgraph 
centrality (20) and closeness centrality (21) were used to study 
key genes. The scores that network nodes obtained in the 
4 methods were observed.

Cytoscape plug-in CytoNCA (parameter setting, network 
without weight) (22) was used to calculate network centrality. 
The higher the degree value and the subgraph value of the 

Table I. The demographic and clinical characteristics of the 
subjects.

Paremeters	 Patients	 HC

Number	 9	 9
Age (years)	 51.5 (32-76)	 54 (15-76)
mean (range)
Sex, M/F	 5/4	 5/4
WBC (x109/l)	 10.86 (4.43-25.9)a	 7.20 (3.35-12.13)
PLT (x109/l)	 175.6 (103-479)a	 244.6 (187.3-295)
D-dimer (µg/l)	 448.7 (155-742.9)a	 129.1 (74.9-238)
PCT (µg/ml)	 1.07 (0.51-2.06)a	 0.06 (0.01-0.3)
CRP (mg/l)	 37.3 (20.0-87.7)a	 3.22 (0.71-10.02)

M, male; F, female; WBC, white blood cell; PLT, platelet; PCT, pro-
calcitonin; CRP, C-reactive protein. aP<0.05 vs. the HC.
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node are, the more important the nodes are in the network. 
The higher the betweenness values are, the greater the impact 
of the node in the network is. The higher closeness value indi-
cates that the node is more closely related to the other nodes.

Nodes with the higher scores in 4 methods were predicted 
as key genes, and clustering effect of these key genes was 
observed by combining with gplots package.

Analysis of pathways enriched by key genes. KEGG pathways 
significantly enriched by the key genes were analyzed with 
R package clusterProfiler (23). The P-value was adjusted by 
Benjamini-Hochberg (BH) (24), and pathways with adjusted 
P-value <0.05 were selected.

Analysis of transcription factors of key nodes. We used Cyto
scape plug-in iRegulon (25) to analyze transcription factors 
of key genes. IRegulon integrated some transcription factor 
databases (Transfac, Jaspar, Encode, Swissregulon and Homer) 
information, and predicted transcription factors through calcu-
lating transcription factor and gene binding motif enrichment 
analysis. Multiple position weight matrix (PWM) was used in 
motif enrichment analysis, then sort and score was carried out, 
and the preferred motif was used to predict the final transcrip-
tion factor. Parameter setting was minimum identity between 
orthologous genes=0.05, and maximum false discovery rate 
on motif similarity=0.001. The output result was normalized 
enrichment score (NES). The higher the scores were, the more 
reliable the results were. The transcription factor and target 
gene pairs with NES >3.5 were selected.

Verification of gene expression. According to both the 
centrality score of 17 key genes and transcription factor regu-
lation network of key nodes, the prostaglandin-endoperoxide 
synthase  2  (PTGS2), peroxisome proliferator-activated 
receptor-γ (PPARG), transferrin (TF), interleukin-10 (IL-10), 
TIMP metallopeptidase inhibitor  1  (TIMP1) and matrix 
metallopeptidase 1 (MMP1) were chosen for validation.

Neutrophil was isolated from peripheral blood of the recur-
rent lower respiratory tract infection patients (6 cases) and 
healthy volunteers (6 cases), respectively. RNA was isolated 
from peripheral blood by using RNAiso plus (9109; Takara, 
Tokyo, Japan), RNA was reversely transcribed into cDNA 
by using PrimeScript™ RT Master Mix (RR036A; Takara), 
and the experiment was performed according to the manufac-
turer's instructions. Real-time PCR was carried out with the 
help of SYBR-Green kit. The real-time PCR program started 
with 3 min of incubation at 50̊C, 3 min at 95̊C, followed by 
40 cycles of 10 sec at 95̊C and 30 sec at 60̊C. After that, a 
melting curve was constructed for verification of specificity of 
PCR products by increasing the temperature from 60 to 95̊C 
for increment 0.5̊C for 10 sec.

The forward and reverse primers for each gene were 
designed as follows: 5'-TCGATGCTGCTCTTTCTGAG-3' 
and 5'-GATAACCTGGATCCATAGATCGTT-3' for MMP1; 
5'-CTCGTCATCAGGGCCAAGTT-3' and 5'-GTAGGTCTT 
GGTGAAGCCCC-3' for TIMP1; 5'-GCCGTGGCCGCAGA 
TTT-3' and 5'-TGGCATCTCTGTGTCAACCA-3' for PPARG; 
5'-ACACAGTCTTCTCATCACTTCGTTT-3' and 5'-AATAG 
CAGTCCTGAGCTGAGGTTTA-3' for PTGS2; 5'-GTCTAC 
ATAGCGGGCAAGT-3' and 5'-TTCCAGCCAGCGGTTCT-3' 

for TF; 5'-TGGAGGACTTTAAGGGTTAC-3' and 5'-TGATG 
TCTGGGTCTTGGTT-3' for IL-10; 5'-TGACAACTTTGGT 
ATCGTGGAAGG-3' and 5'-AGGCAGGGATGATGTTCTG 
GAGAG-3' for GAPDH.

All the data were expressed as mean ± SEM, and were 
made into tables. Statistical analysis method was t-test and 
the software used for data analysis was GraphPad Prism 
(GraphPad Software, Inc., San Diego, CA, USA). P<0.05 was 
considered to be statistically significant.

Results

Processing and quality assessment of raw data. The results 
for single base quality distribution, base content distribution, 
GC content distribution and sequence base quality distribution 
are shown in Fig. 1.

DEGs analysis. After processing of the raw data, 35,663 genes 
were obtained to select DEGs. The gene was detected in at 
least one sample. The heat map was standardized data, the 
difference of expression was large for different genes in 
sequencing data, and thus it was not appropriate to use raw 
score. Then, in total 866 DEGs including 438 upregulated 
and 428 downregulated genes were obtained in case group 
compared with control group. The heat map and volcano plot 
are shown in Fig. 2.

GO and pathway enrichment analyses. The results of GO 
slim and KEGG pathway enrichment analyses are shown 
in Fig 3. GO-BP (Fig. 3A) was mainly enriched in epithe-
lium development, cell motility, programmed cell death and 
localization of the cell. GO-CC (Fig. 3B) was mainly enriched 
in intrinsic component of the membrane, and the membrane 
parts. GO-MF (Fig. 3C) was mainly enriched in ion binding, 
receptor activity, identical protein binding and anion binding. 
The first 3 significantly enriched KEGG pathways (Fig. 3D) 
were cytokine-cytokine receptor interaction, thyroid cancer 
and prostate cancer.

PPI network analysis, and key nodes and pathway analyses 
in network. As shown in Fig. 4, there were 279 nodes and 
575 protein pairs in the network. The first 12 nodes with the 
highest scores were taken from each centrality method, and 
17 genes were obtained after merging and removing dupli-
cates. The 17 genes were epidermal growth factor receptor 
(EGFR), cyclin D 1  (CCND1), TIMP1, MMP1, PPARG, 
PTGS2, histone deacetylase 9 (HDAC9), IL-10, fms-related 
tyrosine kinase  1  (FLT1), heme oxygenase  1  (HMOX1), 
cyclin‑dependent kinase inhibitor 1A (CDKN1A), Wnt family 
member 1 (WNT1), CD40 molecule (CD40), tensin 3 (TNS3), 
α2-macroglobulin (A2M), RAR-related orphan receptor C 
(RORC) and TF. The case samples and control samples were 
clustered by these 17 key genes. The centrality score of these 
17 key genes is shown in Table II. As shown in Fig. 5, the path-
ways significantly enriched by these 17 genes were pathways 
in cancer, bladder cancer, cytokine-cytokine receptor interac-
tion, and focal adhesion.

Transcription factors of key node analysis. As shown in 
Fig. 6, transcriptional regulation network included 27 nodes 
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and 78 interaction pairs. In total, 10 transcription factors were 
obtained with NES >3.5. TGIF2LY regulated MMP1, RORC, 
HDAC9, PPARG, WNT1, CCND1 and CDKN1A. SRF regu-
lated MMP1, TNS3, A2M, CCND1 and CDKN1A. POU3F1 
regulated CDKN1A, TNS3, WNT1, CCND1, HDAC9 and 

PPARG. NKX2-2 regulated PPARG, CDKN1A, CCND1 and 
RORC. IRX4 regulated EGFR, PPARG, CCND1, WNT1 and 
CDKN1A. PRDM1 regulated RORC, TF, CDKN1A, A2M, 
HDAC9, CCND1 and CD40. HDX regulated 14 genes (all 
17 genes except IL-10, PTGS2 and TF). PAX3 regulated FLT1, 

Figure 2. (A) Heat map of differentially expressed genes (DEGs). The green represents lower expression level; the red represents higher expression level; the 
black indicates that there is no differential expression among the gene. (B) Volcano plot.

Figure 1. (A) The results for single base quality distribution, (B) base content distribution, (C) GC content distribution and (D) sequence base quality distribu-
tion. (A) Horizontal ordinate, position in reads (5'->3'); longitudinal coordinates, q-value statistics; red line represents, median; blue line, average number; 
yellow lines, the range of 25-75%; tentacles, the range of 10-90%. (B) Horizontal ordinate, position in reads (5'->3'); longitudinal coordinates, the proportion of 
a base. (C) Horizontal ordinate, mean GC content; longitudinal coordinates, the number of reads; red, actual distribution curve; blue, theoretical distribution 
curve. (D) Horizontal ordinate, quality (phred score); longitudinal coordinates, the number of reads.
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Figure 3. Gene Ontology (GO) slim and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for differentially expressed 
genes (DEGs). (A) GO-biological process (BP) (top 50) and (B) GO-cellular component (CC). 
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CD40, TNS3, PPARG, CDKN1A, HDAC9 and HMOX1. 
FOS regulated 15 genes (all 17 genes except TF and PTGS2). 
CEBPG regulated CCND1, FLT1, EGFR, HDAC9, WNT1, 
PTGS2, PPARG and CDKN1A.

Verification of gene expression. The results of real-time PCR are 
shown in Fig. 7. In total 6 of 17 genes were detected. However, 
there was statistical significance between case and control 
groups for PTGS2, PPARG, TF and IL-10 (P<0.05), and there 
was no statistical significance between case and control groups 
for TIMP1 and MMP1 (Table III). All samples came from the 
same type of infections. It may be because the interference of 

external conditions leads to the unstable results. Thus, in our 
study, 6 samples were used as case and 6 samples for control.

Discussion

In the present study, in total 17  key genes in case group 
compared with the control group were identified by bioinfor-
matics analysis. Then, 6 of 17 genes were detected by real-time 
PCR. However, there was statistical significance between 
case and control groups for PPARG, PTGS2, TF and IL-10 
(P<0.05), and there was no statistical significance between 
case and control groups for TIMP1 and MMP1.

Figure 3. Continued. Gene Ontology (GO) slim and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for differentially 
expressed genes (DEGs). (C) GO-molecular function (MF) and (D) KEGG pathways.
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Our study showed that PTGS2 and PPARG were key 
genes associated with RRTIs. Nuclear factor-κB (NF-κB) 
is necessary for the roles of proinflammatory factors such 
as Cox-2 and IL-6 expression, and OM85-BV cause the 
translocation and activation of NF-κB (26). As previously  
mentioned, OM-85 can decrease exacerbation frequency of 
respiratory tract infections in children and adults at risk (5). 
Furthermore, PTGS2 (Cox-2) mediates the anti-inflammatory 
response during Leishmania donovani infection (27). Cox-2, 
as a significant mediator, involves in respiratory syncytial 
virus‑induced inflammation  (28). In colorectal cancer, 
non‑steroidal anti‑inflammatory drugs can inhibit cancer stem 
cells through activating PPARG and suppressing PTGS2 and 
NOTCH/HES1 (29). Thus, PTGS2 may play important roles 
in the development of RRTIs. Besides, Bank et al indicated 
that PPARG involved in the regulation of inflammation (30). 
Malur et al suggested that PPARG played negative regula-
tion roles for chronic granulomatous inflammation  (31). 
Therefore, our results are in line with former research and 
show that PTGS2 and PPARG play significant parts in the 
progression of RRTIs.

Furthermore, bioinformatics analysis showed that TF 
was a key gene related with RRTIs, and it also was verified 

by real‑time PCR in our present study. TF controls the free 
iron levels in biological fluids (32). TF is related with innate 
immune system. It can create low free iron environment and 
impede the survival of bacteria. The level of TF decrease in 
inflammation (33). Besides, a study showed that the injection 
of coenzyme A had important effect on the TF in elderly acute 
upper RTI patients (34). Thus, TF also play important roles in 
patients with RRTIs.

In addition, in the present study, IL-10 was also a key 
gene associated with RRTIs. Sun et al indicated that IL-10 
played dual roles in immune response to respiratory syncy-
tial virus (28). On the one hand, IL-10 inhibits respiratory 
syncytial virus induced inflammation; on the other hand, it 
induces the Th2-dominant immune responses. Furthermore, 
in physically active individuals, high IL-10 is a risk factor for 
the progression of upper RTIs (35). Besides, Bont et al indi-
cated that increased production of IL-10 was related with the 
development of recurrent wheezing after respiratory syncytial 
virus bronchiolitis (36). Thus, our results are in accord with 
the former studies and suggest that IL-10 is associated with the 
development of RRTIs.

In this study, the bioinformatics analysis identified 17 genes, 
and 6 of these genes including PPARG, PTGS2, TF, IL-10, 

Figure 4. Protein-protein interaction (PPI) network of differentially expressed genes (DEGs). Light color nodes, downregulated genes; deep color nodes, 
upregulated genes.
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TIMP1 and MMP1 were detected by real-time PCR. But there 
was no statistical significance between case and control groups 
for TIMP1 and MMP1. Besides, previous studies showed that 
MMPs and their tissue inhibitors of TIMP1 and TIMP2 were 
involved in tissue remodeling during inflammation (37-39). We 
speculate that TIMP1 and MMP1 also may be involved in the 
progression of RRTIs. But, further studies with large number 
of samples are needed for verification.

The obvious advantage of this study is that the results 
of bioinformatics analysis are verified by real-time PCR. 
However, the disadvantage is that several genes identified 

Table II. The centrality score of 17 key genes.

Genes	 Subgragh	D egree	 Betweenness	C loseness

EGFR	 41129.95	 41	 21125.9	 0.035257
CCND1	 29876.16	 31	 8902.149	 0.035039
TIMP1	 23954.49	 25	 3898.972	 0.034938
MMP1	 22258.21	 24	 3890.898	 0.034955
PPARG	 19492.27	 25	 10108.1	 0.035021
PTGS2	 10549.89	 15	 3224.803	 0.034815
HDAC9	 10406.45	 20	 5808.442	 0.034767
IL-10	 9644.303	 20	 10592.6	 0.034881
FLT1	 8960.905	 17	 2048.353	 0.034612
HMOX1	 8760.095	 13	 1930.259	 0.034802
CDKN1A	 8346.486	 18	 4548.326	 0.034711
WNT1	 7728.413	 15	 1505.885	 0.034599
CD40	 5181.088	 19	 7817.111	 0.034828
TNS3	 358.5152	 10	 7723.212	 0.034466
A2M	 2485.854	 11	 5437.33	 0.034478
RORC	 129.5831	 3	 3904	 0.034014
TF	 6344.649	 11	 841.7473	 0.034707

EGFR, epidermal growth factor receptor; CCND1, cyclin D 1; 
TIMP1, TIMP metallopeptidase inhibitor  1; MMP1, matrix metal-
lopeptidase 1; PPARG, peroxisome proliferator-activated receptor-γ; 
PTGS2, prostaglandin-endoperoxide synthase  2; HDAC9, histone 
deacetylase  9; IL-10, interleukin-10; FLT1, fms‑related tyrosine 
kinase 1; HMOX1, heme oxygenase 1; CDKN1A, cyclin‑dependent 
kinase inhibitor 1A; WNT1, Wnt family member 1; CD40, CD40 mol-
ecule; TNS3, tensin 3; A2M, α2-macroglobulin; RORC, RAR‑related 
orphan receptor C.

Table III. The result of statistical analysis for verification of 
gene expression.

	C ase group	C ontrol group
	 ------------------------------------	 ---------------------------------
Item	N	  mean ± SEM	N	  mean ± SEM	 t-test	 P-value

TIMP1	 18	 1.068±0.305	 18	 1.068±0.337	 0.001	 0.999
MMP1	 18	 16.581±24.360	 18	 11.560±5.973	 0.849	 0.406
PPARG	 17	 1.347±0.452	 18	 5.738±2.405	 7.605	 <0.001
PTGS2	 18	 0.745±0.341	 18	 0.311±0.173	 4.820	 <0.001
TF	 18	 1.239±0.524	 18	 0.744±0.459	 3.020	 0.005
IL-10	 18	 1.539±0.682	 18	 3.452±2.877	 2.744	 0.013

P<0.05 was considered to be statistically significant. TIMP1, TIMP 
metallopeptidase inhibitor  1; MMP1, matrix metallopeptidase  1; 
PPARG, peroxisome proliferator-activated receptor-γ; PTGS2, 
prostaglandin‑endoperoxide synthase 2; TF, transferrin; IL-10, inter-
leukin-10.

Figure 5. The pathways significantly enriched by 17 genes.
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by bioinformatics are not verified by real-time PCR possibly 
because of the small sample size.

In  conclusion, PPARG, PTGS2, TF and IL-10 are key 
genes associated with the progression of RRTIs. PPARG, 

Figure 6. Transcriptional regulation network of key genes. Light color nodes, downregulated genes; deep color nodes, upregulated genes; triangle, transcription 
factor.

Figure 7. The results of real-time PCR for TIMP metallopeptidase inhibitor 1 (TIMP1), matrix metallopeptidase 1 (MMP1), peroxisome proliferator-activated 
receptor-γ (PPARG), prostaglandin-endoperoxide synthase 2 (PTGS2), transferrin (TF) and interleukin-10 (IL-10). (A) MMP1; (B) TIMP1; (C) PTGS2 
(P<0.05); (D) PPARG (P<0.05); (E) TF (P<0.05) and (F) IL-10 (P<0.05).
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PTGS2, TF and IL-10 may be regarded as a therapeutic target 
of RRTIs. We speculate that TIMP1 and MMP1 may also be 
involved in the progression of RRTIs, but further studies with 
large number of samples are needed for verification.
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