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Abstract. Antibody‑mediated rejections (AMRs) are one of 
the most challenging complications that result in the dete-
rioration of renal allograft function and graft loss in a large 
majority of cases. The purpose of the present study was to 
characterize a meta‑signature of differentially expressed 
RNAs associated with AMR in cases of kidney transplanta-
tion. Gene Expression Omnibus (GEO) dataset searches up to 
September 11, 2017, using Medical Subject Heading terms and 
keywords associated with kidney transplantation, AMR and 
mRNA arrays were downloaded from the GEO dataset. Using 
a computational analysis, a meta‑signature was determined 
that characterized the significant intersection of differentially 
expressed genes (DEGs). Gene‑set and network analyses were 
also performed to identify gene sets and sub‑networks associ-
ated with the AMR‑related traits. A statistically significant 
mRNA meta‑signature of upregulated and downregulated gene 
expression levels that were significantly associated with AMR 
was identified. C‑X‑C motif chemokine ligand 10 (CXCL10), 
CXCL9 and guanylate binding protein 1 were the most signifi-
cantly associated with AMR. DEGs were efficiently identified 
and were found to be able to predict the occurrence of AMR 
according to a meta‑analysis approach from publicly available 
datasets. These methods and results can be applied for a more 
accurate diagnosis of AMR in transplant cases.

Introduction

Kidney transplantation is the preferred renal replacement 
therapy for patients with chronic renal failure  (1). The 
development of immunosuppressive medications targeting 
T cell‑mediated immunity has led to fewer incidences of 
and a more effective treatment for acute cellular rejection of 
kidney allografts (2). However, the currently available immu-
nosuppressive medications do not target humoral adaptive 
immunity. Therefore, antibody‑mediated rejection (AMR) is 
now one of the most challenging complications, often resulting 
in the deterioration of renal allograft function and graft loss 
in a large majority of cases (3‑5). Further improvements in 
long‑term graft survival will require a clear understanding 
of the mechanisms of tissue injury and the identification of 
biomarkers that can be used to predict AMR (6).

Allograft rejection following transplantation is currently 
diagnosed by histological features in biopsies. However, 
there remains considerable inter‑observer disagreement (7,8). 
Therefore, a more accurate assessment of rejection would aid 
the attempt to reduce the failure of transplants  (3,9). The 
limitations of donor‑specific antibody (DSA) assessments 
and histopathological evaluations have led to increased focus 
on the investigation of various biomarkers to diagnose trans-
plantation rejections. A novel approach, which combines a 
biopsy histopathology approach with the gene expression 
profiling of kidney allografts, provides a more accurate 
prediction for graft loss. Using a series of investigations, 
several studies documented the fact that the key transcripts 
upregulated in AMR reflect endothelial changes in the renal 
microcirculation characteristics and in natural killer (NK) 
cells (10‑12).

Several genes implicated in AMR have been disclosed. A 
total of 23 endothelial DSA‑selective transcripts (DSASTs) and 
AMR molecular scores have reflected changes in the micro-
circulatory endothelium, which were not previously detected 
during routine DSA histopathology‑based assessments. These 
provide independent values in terms of risk stratification and 
prognosis (11,13). Additionally, studies recently demonstrated 
that microvasculature injury (MVI) scores of two or more 
were significantly associated with a histological diagnosis of 
AMR, with increased DSASTs providing plausibility to the 
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Banff MVI threshold for a complement component 4d nega-
tive AMR diagnosis (14,15).

Due to the difficulty associated with obtaining samples, 
particularly from human tissues, and the associated costs 
involved, small samples sizes are often used for microarray 
experiments. Integration of multiple microarray dataset 
has been advocated to improve the gene signature selection 
process (16). Meta‑analyses are the most typically applied in 
order to detect differentially expressed genes (DEGs) (17), 
which may serve as candidate gene signatures for the further 
refinement of clinically useful biomarkers or gene signa-
tures (18).

One previous study showed that integrating gene expres-
sion data from a number of sources or meta‑analyses could 
lead to an increase in the statistical power of DEG detection 
while allowing for heterogeneity assessments. These analysis 
types may result in accurate, robust and reproducible predic-
tions (19).

In the present study, a meta‑analysis of array‑based gene 
expression datasets from kidney transplantation studies was 
conducted to determine gene expression changes associated 
with AMR.

Materials and methods

Datasets. Microarray datasets from kidney transplant patients 
with AMR were identified by searching the Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo). The search was conducted in September 2017. The key 
word used in the search was ‘kidney transplantation’ and the 
Homo sapiens search filter was applied. Each dataset was 
manually curated to select biopsy or peripheral blood samples 
from Homo sapiens. Only original experimental articles that 
compared the expression levels of mRNAs between patients 
with AMR and those without AMR (controls) were retained. 
All eligible publications met the following inclusion criteria: 
i) The studies were associated with the diagnostic value of 
mRNA for a diagnosis of AMR; and ii) the studies provided 
sufficient data with which to assess the diagnostic value of 
mRNA in AMR. The exclusion criteria included: i) Duplicate 
publications; ii) studies without sufficient data; and iii) letters, 
reviews, editorials, meeting abstracts and case reports. Two 
researchers independently screened the list of publications and 
evaluated the possibility of inclusion. Inter‑rater agreement 
was assessed with Cohen's κ statistic.

Data extraction. The following information was extracted 
from each identified study: The GEO accession number, plat-
form, sample type, number of cases and controls, references 
and expression data. Two independent reviewers extracted 
data from the original studies and a consensus was reached, 
or a third reviewer would resolve any discrepancies between 
the two reviewers. The studies used the gene expression plat-
forms HG‑U133 Plus 2.0, HuGene‑1_0‑st (both Affymetrix; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) and 
Agilent‑014850 (Agilent Technologies, Inc., Santa Clara, 
CA, USA). In total, 9 studies were initially identified. The 
remaining 6 studies (GSE36059, GSE44131, GSE50084, 
GSE51675, GSE64261 and GSE93658) were included in the 
final analysis. The detailed information about the downloaded 

datasets is summarized in Table  I. GSE36059, GSE44131, 
GSE50084 and GSE51675 were used for the discovery set, 
while GSE64261 and GSE93658 were used for the replication 
set. After analyzing each set, the combined dataset was used 
for the analysis.

Gene expression analysis. Each individual dataset was 
preprocessed using the log2 transformation and normaliza-
tion approach. To combine the results of the individual 
studies and to obtain a list of more robust DEGs between 
the control and AMR cases, the guidelines provided by 
Ramasamy  et  al  (2008)  (19) for a meta‑analysis of gene 
expression microarray datasets were followed. The R packages 
MetaQC (20) and MetaDE (17,21‑23) were used for quality 
control (QC) and for the identification of DEGs, respectively. 
MetaQC implements the 6  quantitative QC measures of 
internal QC (IQC), external QC (EQC), accuracy QC of the 
featured genes (AQCg), accuracy QC of the pathway (AQCp), 
consistency QC in the ranking of featured genes (CQCg) and 
consistency QC in the ranking of the pathway (CQCp). In 
addition, the mean rank of all QC measures in each dataset 
was computed as a quantitative summary score by calculating 
the ranks of each QC measure among all included datasets. All 
probe sets on the three different platforms were re‑annotated to 
the most recent National Center for Biotechnology Information 
Entrez Gene Identifiers (Gene IDs), and the Gene IDs were 
used to cross‑map genes among the three different platforms. 
When multiple probes matched the same gene symbol, probes 
presenting the greatest inter‑quartile range were selected. Only 
genes present in all of the selected platforms were considered. 
The moderated t‑statistic was used to calculate the P‑values 
in each dataset, and a meta‑analysis was conducted with the 
MetaDE package to identify DEGs using the Fisher's (24), 
maximum P‑value (maxP) (25), rth ordered P‑value (roP) (26), 
Stouffer (27) and naive rank summation (SR) (28) methods.

Gene set analysis (GSA) of DEGs. In order to select genes and 
pathways associated with AMR, genes were annotated using 
GSA, as conducted by GSA‑SNP software version 1.0 (29). 
The GSA‑SNP analysis uses Gene Ontology (GO)  (30), 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database  (31,32) and the Molecular Signatures Database 
(MSigDB) (33). Genes that showed nominal significance levels 
of P<0.05 were selected.

Construction of a disease‑related gene co‑expression network. 
To identify the phenotype‑related modules and protein‑protein 
interactions (PPIs), the PPI databases BioGRID  (34) and 
Agile Protein Interactomes Data Server  (35) were down-
loaded, and the list of the identified genes from the present 
study was imported into Cytoscape version 3.5.1 (36). The 
molecular complex detection (MCODE) clustering algorithm 
was used to identify sub‑network modules (37). A network 
score was calculated based on the complexity and density 
of each sub‑graph. A module with an MCODE score >2 was 
considered significant. Post‑filtering was performed to remove 
low‑quality modules. During the filtering process, the parts 
of each module that showed consistent expression and high 
connectivity levels were selected to constitute the final module 
through a manual review.
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Results

Short overview of included studies. The study selection 
process is presented in Fig.  1. Following the search and 
selection process, the 6 studies of GEO36059, GEO44131, 
GSE50084, GSE51675, GSE64261 and GSE93658 from 
whole blood or peripheral blood mononuclear cells and 
biopsy samples of renal transplant patients met the inclusion 
criteria. The value of Cohen's κ coefficient was 0.81, indicating 
a sufficient level of agreement (coefficient value >0.80). All 
probe sets were re‑annotated with the most recent Gene IDs 
and then mapped, yielding 27,047  common genes across 

three different platforms. The resulting dataset contained 
328 samples from the control and 132 samples from the AMR 
cases for the discovery set, and 21 samples from the control 
and 38 samples from the AMR cases for the replication set. 
Principal component analysis plots for the discovery set were 
plotted with MetaQC to visualize the quality of the studies via 
a systematic analysis (Fig. 2). The first two PCs captured 99% 
of the variance.

DEGs in antibody‑mediated rejection. Five systematic anal-
ysis methods were performed by combining the P‑values in the 
MetaDE package. These were the Fisher's, maxP, roP, Stouffer 
and SR methods. A total of 608 DEGs were selected by the 
maxP and roP methods (P<0.05) in the discovery set (Fig. 3); 
291 genes were upregulated in AMR cases compared with 

Table I. Information of the gene expression datasets from GEO.

GSE	 Platform	 Sources	C ontrol, n	 AMR, n

Discovery set
  GSE36059	 HG‑U133_Plus_2	 Biopsy	 281	 65
  GSE44131	 HuGene‑1_0‑st	 Biopsy	 12	 11
  GSE50084	 HuGene‑1_0‑st	 Biopsy, whole blood 	 25	 46
  GSE51675	 Agilent‑014850	 PBMCs	 10	 10
Replication set
  GSE64261	 Agilent‑014850	 PBMCs	 5	 5
  GSE93658	 HuGene‑1_0‑st	 Biopsy	 16	 33

GEO, Gene Expression Omnibus; GSE, GEO Series Experiments; HG‑U133_Plus_2, Affymetrix Human Genome U133 Plus  2.0 Array; 
HuGene‑1_0‑st, Affymetrix Human Gene 1.0 ST Array; Agilent‑014850, Whole Human Genome Microarray 4x44K G4112F; PBMCs, periph-
eral blood mononuclear cells; AMR, antibody‑mediated rejection.

Figure 1. Study workflow. Identification of eligible gene expression datasets 
for a meta‑analysis of AMR in KT. GEO, Gene Expression Omnibus; AMR, 
antibody‑mediated rejection; KT, kidney transplantation.

Figure 2. Principal component analysis biplot of the quality control set, 
including IQC, EQC, AQCg, AQCp, CQCg and CQCp measures in the four 
datasets of the discovery set. QC, quality control; IQC, internal QC; EQC, 
external QC; AQCg, accuracy QC of the featured genes; AQCp, accuracy QC 
of the pathway; CQCg, consistency QC in the ranking of the featured genes; 
CQCp, consistency QC in the ranking of the pathway.
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those in the control cases, while 317 genes were downregu-
lated in AMR cases compared with those in the control cases. 

C‑X‑C motif chemokine ligand 10 (CXCL10), CXCL9 and 
guanylate binding protein 1 (GBP1) were most significantly 

Figure 3. Heat map identifying differentially expressed genes in antibody‑mediated rejection cases and controls of the discovery set subjected to a maxP 
systematic analysis when the false discovery rate was <0.05. A, antibody‑mediated rejection; C, control.
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upregulated among the AMR cases in the discovery set. 
A total of 317 DEGs were selected by the maxP and roP 
methods (P<0.05) in the replication set; 219 genes were upreg-
ulated in AMR cases compared with those in the control cases, 
while 98 genes were downregulated in AMR cases compared 
with those in the control cases. CXCL10, CXCL9 and GBP1 
were most significantly associated with AMR in the replica-
tion set. The 20  top‑ranked differentially downregulated 
genes associated with AMR in the replication set are listed 
in Table II. In total, 608 DEGs were identified by the maxP 
and roP methods  (P<0.05) in the combined discovery and 
replication sets; 248 genes were upregulated in AMR cases 
compared with those in the control cases, while 360 genes 
were downregulated in AMR cases compared with those in 
the control cases. Among the genes that showed a significant 
association with AMR in the present study, CXCL10, CXCL9, 
GBP1, complement C1q A chain (C1QA), complement C2 and 
interferon‑induced protein with tetratricopeptide repeats 2 
(IFIT2) were most significantly upregulated, while renin 
binding protein  (RENBP), kynurenine  3‑monooxygenase 
(KMO), thyroid hormone receptor interactor 6 (TRIP6) and 
glutathione S‑transferase θ1 (GSTT1) were most significantly 
downregulated (Table III).

GSA of DEGs. In the combined discovery and replication sets, 
the GO algorithm identified >231 gene sets associated with 
AMR (all P<0.05). The highly ranked gene sets are shown in 
Table IV. The KEGG pathway identified 31 gene sets associated 

with AMR (all P<0.05). The MSigDB identified >1,720 gene 
sets associated with AMR (all P<0.05). The regulation of 
the immune response gene set, in this case β2‑microglobulin 
(B2M), baculoviral IAP repeat‑containing 3 (BIRC3), C1QA, 
CD3e molecule (CD3E), CD79A, major histocompatibility 
complex class II DM α (HLA‑DMA), HLA‑DOA, HLA‑DOB, 
HLA‑DPB1, HLA‑DQA1 and HLA‑DRA, was significantly 
associated with AMR (P<1x10‑5). Allograft rejection genes, 
in this case HLA‑DMA, HLA‑DOA, HLA‑DOB, HLA‑DPB1, 
HLA‑DQA1, HLA‑DRA, HLA‑DMB, tumor necrosis factor 
(TNF) and granzyme B, were also significantly associated 
with AMR (P<1x10‑5). Hallmark interferon‑γ response genes, 
specifically transporter 1, ATP binding cassette subfamily B 
member (TAP1), MX dynamin‑like GTPase  2, CXCL10, 
GBP4, CXCL9, interleukin 10 receptor subunit α, SAM and 
HD domain containing deoxynucleoside triphosphate triphos-
phohydrolase 1 and intercellular adhesion molecule 1, were 
also significantly associated with AMR (P<1x10‑5).

Construction of a disease‑related gene co‑expression network. 
There were two modules with a MCODE score of >2 in AMR 
cases. Fig. 4 shows the sub‑network modules. One module 
consisted of immunoglobulin heavy constant γ1 (G1m marker) 
(IGHG1), Fc fragment of IgG receptor IIIa (FCGR3A), FCGR3B, 
amyloid P  component serum (APCS) and glycerol kinase 
(GK), and the other module consisted of CD74, HLA‑DMA, 
HLA‑DMB, HLA‑DRA, HLA‑DRB1, GBAA0374, proteasome 
subunit β5 (PSMB5), PSMB8, PSMB9, TAP1 and TAP2.

Table II. Top‑ranked differentially upregulated genes associated with antibody‑mediated rejection in kidney transplant cases in 
the combined discovery set with the replication set.

Gene symbol	 Fisher's	 maxP, roP	 Stouffer	 SR

CXCL10	 1.00x10‑20 	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20

CXCL9	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20

GBP1	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20

C1QA	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20

C2	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20	 1.21x10‑5

IFIT2	 1.00x10‑20	 1.00x10‑20	 1.00x10‑20	 2.17x10‑5

STAT1	 1.00x10‑20	 3.22x10‑6	 1.00x10‑20	 1.61x10‑6

GNG11	 1.00x10‑20	 3.22x10‑6	 1.00x10‑20	 4.11x10‑5

CD180	 1.00x10‑20	 3.22x10‑6	 1.00x10‑20	 7.81x10‑5

TBX21	 1.00x10‑20	 3.22x10‑6	 4.03x10‑6	 3.27x10‑4

WARS	 1.00x10‑20	 4.03x10‑6	 1.00x10‑20	 8.06x10‑7

ANKRD22	 1.00x10‑20	 4.03x10‑6	 1.00x10‑20	 3.22x10‑6

OAS3	 1.00x10‑20	 4.83x10‑6	 1.00x10‑20	 3.96x10‑4

DOCK4	 1.00x10‑20	 7.25x10‑6	 8.06x10‑20	 5.94x10‑4

PARP14	 1.00x10‑20	 8.86x10‑6	 1.00x10‑20	 5.64x10‑6

PIK3AP1	 1.61x10‑6	 1.21x10‑5	 1.00x10‑20	 2.82x10‑5

IFI44L	 1.00x10‑20	 1.29x10‑5	 1.00x10‑20	 1.35x10‑4

MX2	 1.00x10‑20	 1.69x10‑5	 1.00x10‑20	 1.37x10‑5

BST2	 1.00x10‑20	 1.85x10‑5	 1.85x10‑5	 4.03x10‑6

DDX60	 7.41x10‑5	 2.17x10‑5	 1.61x10‑5	 2.13x10‑3

maxP, maximum P‑value method; roP, rth ordered P‑value method; SR, naive rank summation method.
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Table III. Top‑ranked differentially downregulated genes associated with antibody‑mediated rejection in kidney transplant cases 
in the combined discovery set with the replication set.

Gene symbol	 Fisher's	 maxP, roP	 Stouffer	 SR

RENBP	 8.94x10‑4	 8.86x10‑6	 1.53x10‑4	 4.72x10‑3

KMO	 3.54x10‑5	 1.61x10‑5	 6.44x10‑6	 2.18x10‑4

TRIP6	 2.21x10‑5	 1.85x10‑5	 6.59x10‑4	 1.02x10‑2

GSTT1	 2.50x10‑5	 3.46x10‑5	 7.25x10‑6	 8.63x10‑4

KCNJ10	 9.51x10‑5	 5.40x10‑5	 3.38x10‑5	 2.34x10‑3

CA2	 1.86x10‑4	 7.97x10‑5	 3.30x10‑5	 2.43x10‑3

PINK1	 4.91x10‑3	 1.10x10‑4	 1.46x10‑3	 1.10x10‑2

MCAT	 5.78x10‑4	 1.18x10‑4	 1.28x10‑4	 4.36x10‑3

SLC10A2	 5.70x10‑3	 1.46x10‑4	 1.69x10‑3	 1.21x10‑2

MYO7A	 1.85x10‑3	 1.89x10‑4	 4.54x10‑4	 6.55x10‑3

SDC2	 3.83x10‑4	 1.76x10‑4	 1.14x10‑4	 6.19x10‑3

MYO7A	 1.85x10‑3	 1.89x10‑4	 4.54x10‑4	 6.55x10‑3

AGAP1	 1.42x10‑3	 1.93x10‑4	 3.85x10‑4	 7.91x10‑3

ERBB2	 9.26x10‑5	 3.25x10‑4	 4.11x10‑5	 2.92x10‑3

JUP	 1.36x10‑4	 3.38x10‑4	 3.95x10‑5	 1.19x10‑2

ZNF358	 6.66x10‑3	 3.83x10‑4	 2.85x10‑3	 2.09x10‑2

AHCY	 6.33x10‑4	 4.14x10‑4	 2.75x10‑4	 5.04x10‑3

TMEM37	 1.19x10‑3	 4.22x10‑4	 3.79x10‑4	 5.27x10‑3

UCHL1	 2.32x10‑3	 5.09x10‑4	 7.55x10‑4	 1.46x10‑2

XYLB	 1.02x10‑3	 5.36x10‑4	 3.75x10‑4	 6.67x10‑3

maxP, maximum P‑value method; roP, rth ordered P‑value method; SR, naive rank summation method.

Table IV. Top‑ranked gene sets associated with antibody‑mediated rejection traits in kidney transplant cases.

Set name	 z‑score

Gene Ontology
  MHC protein complex	 14.003
  Regulation of immune response	 13.938
  Immune response‑activating cell surface receptor signaling pathway	 13.358
  Antigen receptor‑mediated signaling pathway	 12.653
  Positive regulation of immune response	 12.517
  Interferon‑γ‑mediated signaling pathway	 12.211
KEGG pathway
  hsa04612_Antigen processing and presentation	 12.096
  hsa05330_Allograft rejection	 12.087
  hsa04145_Phagosome	 11.901
  hsa04514_Cell adhesion molecules (CAMs)	 10.889
  hsa04650_Natural killer cell‑mediated cytotoxicity	 7.916
  hsa04620 _Toll‑like receptor signaling pathway	 7.598
MsigDB
  Hallmark_allograft_rejection	 18.105
  Ichiba_graft_versus_host_disease_35d_up	 15.368
  Rodwell_aging_kidney_up	 14.291
  Flechner_biopsy_kidney_transplant_rejected_vs_ok_up	 14.205
  Hallmark_interferon_γ_response	 13.654
  GSE10325_CD4_Tcell_vs_Bcell_DN	 12.701

KEGG, Kyoto Encyclopedia of Genes and Genomes; MSigDB, Molecular Signatures Database.
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Discussion

Βiopsy histopathology combined with gene expression 
profiling in kidney allografts can provide more accurate 
predictions of graft loss compared with histopathology alone. 
A meta‑analysis of a gene expression profile is a powerful 
tool for elucidating gene signatures, and this method has 
been widely applied to augment statistical power and provide 
validated conclusions (17). In the present study, DEGs were 
identified that were associated with AMR in kidney transplant 
cases using a meta‑analysis from GEO data.

The results showed that the upregulated expressed genes 
of CXCL10, CXCL9, GBP1 and C1QA were associated with 

the occurrence of AMR in kidney transplant cases. The 
CXCR3 ligand chemokines, CXCL9 and CXCL10, which 
are interferon‑γ  (IFNG)‑induced small cytokines, can act 
as biomarkers and are being increasingly investigated as 
screening tools for the early diagnosis of renal transplantation 
dysfunction (38,39). Once the antibody recruits NK cells by 
virtue of IgG‑Fc and complement receptors, NK cells can 
release IFNG. In the present study, the meta‑analysis revealed 
that the upregulated expressions of the IFNG response genes 
of signal transducer and activator of transcription 1, IFI30 
lysosomal thiol reductase, PSMB 8‑9‑10 and GBP1 were 
associated with acute rejection, which is consistent with the 
findings of a previous study (40).

Figure 4. AMR‑related network modules. The solid lines indicate the interactions between a protein and a protein. The oval‑shaped nodes are proteins that 
interact. (A) Modules showing proteins of CD74, HLA‑DMA, HLA‑DMB, HLA‑DRA, HLA‑DRB1, GBAA0374, PSMB5, PSMB8, PSMB9, TAP1 and TAP2, 
which are associated with AMR in kidney transplant cases. (B) Modules showing proteins encoded by IGHG1, FCGR3A, FCGR3B, APCS and GK, which are 
associated with AMR. AMR, antibody‑mediated rejection.
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Genes that were downregulated, including RENBP, 
KMO, TRIP6, and GSTT1 were associated with acute rejec-
tion in the present study. The dominant negative mutant or 
RNA‑mediated interference of TRIP6 reportedly inhibits 
nuclear factor‑κB activation by TNF, IL‑1, Toll‑like receptor 2 
or Nucleotide‑binding oligomerization domain‑containing 
protein  1  (41). Detection of anti‑GSTT1 antibodies in a 
recipient with a GSTT1‑null genotype prior to transplantation 
was reported to be predictive of graft rejection in the event of 
a GSTT1‑positive donor (42).

The GSA method has been used for the identification of 
meaningful associations between markers and diseases or traits 
of interest in a large set of genes or proteins (29). When a GSA 
analysis of disease conditions was conducted in the present 
study, genes or pathways commonly involved with the immune 
response were found. A network analysis also identified the 
HLA family. DSA against the HLA antigens is critical with 
regard to the diagnosis of AMR (43). Additionally, IGHG1, 
FCGR, APCS and GK were noted. Mice that were deficient 
in molecules essential for the recognition, internalization 
or lysosomal DNA degradation of apoptotic cells, including 
serum amyloid P, were previously reported to develop systemic 
autoimmune disorders (44).

In conclusion, the present study identified DEGs associated 
with AMR in kidney transplant cases using a meta‑analysis from 
publicly available datasets. Although additional challenges are 
encountered when attempting to define the role of genes that 
affect the pathophysiological mechanism of AMR, it is hoped 
that these results will lead to a more in‑depth understanding 
of the molecular mechanism of AMR. Promising genes or 
pathways can be utilized as drug targets. Future studies are 
required to validate the identified DEGs and pathways.
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