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Abstract. Clear cell renal cell carcinoma (ccRCC) is the most 
frequent type of renal cell carcinoma (RCC). The present 
study aimed to examine prognostic markers and construct 
a prognostic prediction system for ccRCC. The mRNA 
sequencing data of ccRCC was downloaded from The Cancer 
Genome Atlas (TCGA) database, and the GSE40435 dataset 
was obtained from the Gene Expression Omnibus database. 
Using the Limma package, the differentially expressed 
genes (DEGs) in the TCGA dataset and GSE40435 dataset 
were obtained, respectively, and the overlapped DEGs were 
selected. Subsequently, Cox regression analysis was applied for 
screening prognosis-associated genes. Following visualization 
of the co-expression network using Cytoscape software, the 
network modules were examined using the GraphWeb tool. 
Functional annotation for genes in the network was performed 
using the clusterProfiler package. Finally, a prognostic predic-
tion system was constructed through Bayes discriminant 
analysis and confirmed with the GSE29609 validation dataset. 
The results revealed a total of 263 overlapped DEGs and 
161 prognosis‑associated genes. Following construction of the 
co‑expression network, 16 functional terms and three pathways 
were obtained for genes in the network. In addition, red, yellow 
(Involving chemokine ligand 10 (CXCL10), CD27 molecule 
(CD27) and runt-related transcription factor 3 (RUNX3)], 
green (Involving angiopoietin-like 4 (ANGPTL4), stannio-
calcin 2 (STC2), and sperm associated antigen 4 (SPAG4)], 
and cyan modules were extracted from the co-expression 
network. Additionally, the prognostic prediction system 
involving 44 signature genes, including ANGPTL4, STC2, 
CXCL10, SPAG4, CD27, matrix metalloproteinase (MMP9) 
and RUNX3, was identified and confirmed. In conclusion, the 
44-gene prognostic prediction system involving ANGPTL4, 

STC2, CXCL10, SPAG4, CD27, MMP9 and RUNX3 may be 
utilized for predicting the prognosis of patients with ccRCC.

Introduction

Renal cell carcinoma (RCC), which is derived from the lining 
of the proximal convoluted tubule, represents 90‑95% of 
cases of kidney cancer (1). The early symptoms of RCC are 
usually undetected, which leads to advanced disease stages 
in patients newly diagnosed with RCC (2). With the progres-
sion of RCC, tumor cells may metastasize to other organs, 
including the liver, lymph nodes, lungs, brain, adrenal glands 
and bones (3). RCC has a relatively higher incidence in men 
than women, particularly in those >65 years old (4). Clear cell 
RCC (ccRCC), characterized by the clear cytoplasm in cells, is 
the most frequent type of RCC (5). Therefore, examining the 
pathogenesis of ccRCC is necessary and of significance.

There are several studies reporting the molecular mecha-
nisms of ccRCC. For example, metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1) is upregulated in 
patients with ccRCC, which may be utilized to predict overall 
survival (OS) and serve as a promising therapeutic target for 
the disease (6,7). Hypoxia‑inducible factor‑1α, which is involved 
in tumoral adaptation to hypoxic conditions, can be a critical 
prognostic factor in metastatic ccRCC (8). The overexpres-
sion of cannabinoid receptor 2 is important in the cell cycle, 
cellular proliferation and migration of RCC cells, and predicts 
poor outcomes for patients with RCC (9). Previous studies have 
demonstrated that X-linked inhibitor of apoptosis protein is a 
potential prognostic marker in RCC, and that its downregulation 
may weaken immune resistance (10,11). Carbonic anhydrase 9 
belongs to the carbonic anhydrase family, and its low expres-
sion is correlated with the poor prognosis of patients with 
ccRCC (12,13). However, these studies are insufficient and the 
prognostic mechanisms of ccRCC remain to be fully elucidated. 
In addition, the majority of the aforementioned results obtained 
from these microarray data were not validated by other datasets.

Bioinformatics analysis has been increasingly applied for 
revealing the genetic changes in the high-throughput data of 
tumors (14,15). In the present study, comprehensive bioin-
formatics analyses for gene expression data were performed 
to construct a prognostic prediction system for ccRCC with 
specific signature genes. Additionally, these predicted genes 
were validated by another dataset. The aim of the present study 
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was to provide additional, and reliable, prognostic markers for 
patients with ccRCC, and shed light on the molecular mecha-
nisms of disease progression.

Materials and methods

Data source and data preprocessing. From The Cancer 
Genome Atlas (TCGA; https://cancergenome.nih.gov/) 
database, the mRNA sequencing data of ccRCC, which was 
sequenced on the Illumina HiSeq 2000 RNA Sequencing 
platform, were downloaded with relevant clinical informa-
tion on December 18th, 2016. There were a total of 606 
samples, and 605 of these had information on sample 
source (normal or tumor tissues), including 533 ccRCC and 
72 normal samples. The expression profile dataset GSE40435 
(GPL10558 platform) in the Gene Expression Omnibus 
(GEO; http://www.ncbi.nlm.nih.gov/geo/) database was 
also obtained, which included 101 ccRCC and 101 normal 
samples. According to the annotation platform, probes 
in the raw data of GSE40435 were converted into gene 
symbols. If multiple probes matched one gene, the average 
expression value of the gene was obtained. Subsequently, 
the expression data underwent logarithmic transformation 
using the R package Limma (http://www.bioconductor.
org/packages/release/bioc/html/limma.html) (16), to reach 
an approximately normal distribution from the skewed distri-
bution. Thereafter, the median normalization method (17) 
was utilized to normalize the data.

Analysis of differentially expressed genes (DEGs). The TCGA 
data was combined with the 19,004 protein coding gene 
annotation information in the HUGO Gene Nomenclature 
Committee (HGNC) database (18), and mRNAs in the TCGA 
dataset were identified. The differential expression analysis 
of genes or mRNAs was then performed between ccRCC and 
normal samples in the TCGA dataset and GSE40435 dataset 
separately, using the R package Limma (16). Subsequently, 
the false discovery rate (FDR) values were calculated by 
the R package multtest (http://www.bioconductor.org/pack-
ages/release/bioc/html/multtest.html) (19). An FDR <0.05 and 
|log2fold change (FC)|>0.585 were the thresholds for selection 
of the DEGs. In addition, the overlapped DEGs in the TCGA 
and GSE40435 datasets were identified for the following 
analyses.

Screening of prognosis‑associated genes. From the TCGA 
dataset, 596 samples (525 ccRCC samples and 71 normal 
samples) that matched with survival information (survival 
time and survival status) were identified. Subsequently, 
the 525 ccRCC samples were used for screening prog-
nosis-associated genes. Cox regression analysis in the survival 
package (20) was applied for selecting prognosis-associated 
genes, and the log-rank test (21) was then utilized to calculate 
significant p‑values. The top six genes were selected according 
to -logRank (P-value), following which Kaplan-Meier (KM) 
survival curves (22) were produced for the six genes.

Co‑expression network analysis for significant prognostic 
genes and functional annotation. The expression values were 
extracted from TCGA database for the prognosis-associated 

genes, following which the correlation coefficients between 
the expression values of two genes were calculated using 
the COR function (23) in R. P<0.05 and a correlation coef-
ficient |r|≥0.6 were used for selecting gene co‑expression 
interactions. Subsequently, the co-expression network was 
visualized using Cytoscape software 3.4.0 (http://www.cyto-
scape.org/) (24). 

Using Fisher's exact test method in the R package 
clusterProfiler (http://bioconductor.org/packages/release/ 
bioc/html/clusterProfiler.html) (25), the significant Gene 
Ontology (GO) terms and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways were enriched for the gene nodes 
in the co-expression network. In addition, the transcription 
factors (TFs) significantly associated with the nodes in the 
co-expression network were searched using The Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
https://david.ncifcrf.gov/) (26). Additionally, sub modules in 
the co-expression network were examined using the GraphWeb 
tool (http://biit.cs.ut.ee/graphweb/) (27).

Construction of the prognostic prediction system. The 525 
ccRCC samples with survival information in the TCGA 
dataset were considered as the training dataset for the 
prognostic prediction system. First, the above samples were 
classified into two groups based on their survival status: 
Alive and deceased groups. Subsequently, combining 
survival status with survival times, the samples were 
further divided into good prognosis (alive and survival time 
≥15 months) and bad prognosis (succumbed to mortality 
and survival time <15 months) groups. As the median 
OS time was ~15 months for all the ccRCC samples, the 
cut-off value for grouping was set as 15 months. The prior 
probability based on the Bayesian approach was then 
determined. The nodes of the co-expression network were 
ranked (-logRank P-values from largest to smallest). Using 
the discriminant Bayes function in the e1071 package 
of R (https://cran.r-project.org/web/packages/e1071/index.
html) (28). Bayes discriminant analysis was performed for 
the network nodes through adding genes one by one and 
removing the genes that influenced prediction accuracy.

The prognostic score was defined as the discriminant coef-
ficient of each sample when the prediction accuracy was the 
highest, and the gene set was considered as signature genes. 
The prediction system under the highest prediction accuracy 
was defined as the prognostic prediction system.

Validation of the prognostic prediction system. To examine 
the predictive effect of the constructed prediction system, KM 
survival analysis (22) was performed for the TCGA dataset 
to assess the association between the classification results of 
the prognostic prediction system and the real survival time 
and survival status. In addition, GSE29609 in the GEO data-
base was obtained as the validation dataset, which included 
39 ccRCC samples (32 samples with survival information). 
The expression values of the aforementioned signature genes 
were extracted from the GSE29609 dataset, and the prognostic 
scores of the 32 samples were obtained based on the prognostic 
prediction system. Subsequently, the 32 samples were divided 
into good prognosis and bad prognosis groups according to the 
aforementioned criteria. In addition, the correlations between 
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the classification results of the prognostic prediction system 
and the actual survival time and survival status were detected 
by KM survival analysis (22).

Results

DEG analysis. Based on the HGNC database, the expres-
sion values of 18,531 protein-coding mRNAs were obtained 
from the TCGA dataset. A total of 12,669 mRNAs remained 
following removal of the mRNAs with low-abundance expres-
sion. There were numerous mRNAs expressed at low levels 
prior to filtering, but the peak of expression density was mark-
edly elevated following filtering (Fig. 1).

Through differential expression analysis, a total of 621 
and 2,764 DEGs were identified in the TCGA dataset and 
GSE40435 dataset, respectively. Among them, 263 overlap-
ping DEGs in both the TCGA dataset and GSE40435 dataset 
were selected. 

According to the logFC values, the top 50 DEGs (top 25 
upregulated and top 25 downregulated) in the TCGA dataset 
(Fig. 2A) and GSE40435 dataset (Fig. 2B), respectively, were 
selected and subjected to bidirectional hierarchical clustering 
analysis. The heatmap showed that it was possible to divide the 
samples into two groups by the above DEGs.

Screening of prognosis‑associated genes. A total of 161 
prognosis‑associated genes were identified using Cox regres-
sion analysis from the TCGA dataset. According to -logRank 
(P-value), the top six genes [transcription factor AP-2a 
(TFAP2A); family with sequence similarity 167, member A 
(FAM167A); interleukin 20 receptor b (IL20RB); leucine-rich 
repeat LGI family, member 4 (LGI4); sodium channel, 
nonvoltage-gated 1b (SCNN1B); and solute carrier family 17, 
member 2 (SLC17A2)] were selected. The KM survival curves 
were generated (Fig. 3). It was shown that low expression of 
these genes was linked to high survival time, indicating that 
these six genes may be used as predictors for prognosis.

Co‑expression network analysis and functional annotation. 
Following the selection of gene co-expression interactions for 
the prognosis-associated genes, the co-expression network 
(involving 141 nodes and 1,937 edges) was constructed (Fig. 4). 

Table I. Information of the 44 signature genes in The Cancer 
Genome Atlas dataset. 

Gene logFC P-value FDR

C10orf99 ‑2.344 6.88x10‑64 3.23x10‑61

ADAMDEC1 ‑1.896 1.81x10-55 6.03x10-53

HS3ST2 ‑1.641 2.44x10-48 5.72x10‑46

IL20RB -1.514 3.55x10-47 7.49x10-45

SLC17A2 -1.182 7.10x10-28 5.23x10‑26

LAG3 ‑0.863 6.59x10-22 3.17x10-20

SPAG4 ‑0.856 1.76x10‑29 1.43x10-27

CD27 -0.820 2.44x10-22 1.24x10-20

SH2D1A -0.804 1.55x10-18 5.34x10-17

STC2 -0.802 7.73x10-32 7.47x10-30

MMP9 ‑0.797 5.24x10-22 2.54x10-20

ANGPTL4 ‑0.786 5.94x10-37 7.60x10-35

OSCAR ‑0.753 2.63x10-17 7.89x10‑16

HHLA2 -0.742 1.70x10-24 9.79x10-23

RASD2 ‑0.734 6.34x10-20 2.43x10-18

NKG7 -0.728 2.15x10-21 9.80x10-20

INHBB -0.723 1.73x10-24 9.92x10-23

CD96 -0.718 1.58x10-18 5.42x10-17

NOD2 ‑0.687 2.47x10-14 5.39x10-13

P2RX7 ‑0.674 1.82x10‑16 5.02x10-15

PGF ‑0.655 7.44x10-22 3.54x10-20

RASAL3 ‑0.627 5.19x10‑16 1.36x10-14

ST8SIA4 ‑0.627 2.64x10‑19 9.66x10-18

CDCA7 ‑0.624 1.16x10-11 1.96x10-10

CHSY3 ‑0.624 3.61x10-13 7.12x10-12

CXCL10 ‑0.622 4.34x10-17 1.27x10-15

CD6 ‑0.622 1.38x10-14 3.09x10-13

RUNX3 ‑0.615 1.35x10‑16 3.79x10-15

SLC1A3 ‑0.609 6.02x10‑16 1.56x10-14

CXCL9 ‑0.609 2.13x10-18 7.18x10-17

TRIM9 ‑0.605 5.80x10-15 1.36x10-13

SEMA5B ‑0.599 3.69x10-20 1.47x10-18

PDGFRA 0.605 9.58x10-21 4.11x10‑19

ADH1B 0.667 8.24x10‑26 5.35x10-24

G6PC 0.693 3.07x10-21 1.37x10‑19

KRT7 0.718 3.93x10‑29 3.09x10-27

TMEM30B 0.754 1.11x10‑29 9.13x10-28

FAM167A 0.911 8.99x10-37 1.13x10-34

TFAP2A 0.948 4.13x10‑36 5.13x10-34

SLC13A3 1.009 9.21x10‑49 2.29x10‑46

TMEM45B 1.036 1.43x10-47 3.12x10-45

C1orf116 1.062 5.48x10-47 1.14x10-44

SCNN1B 1.404 2.16x10-85 2.74x10-82

ATP6V1B1 1.456 1.36x10‑92 1.91x10‑89 

FC, fold change; FDR, false discovery rate.

Figure 1. Expression density distributions of the mRNAs prior to (solid line) 
and following (dotted line) filtering.
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In addition, four significant network modules were iden-
tified, including a red module, a yellow module, involving 
chemokine ligand 10 (CXCL10), CD27 molecule (CD27), and 
runt-related transcription factor 3 (RUNX3), a green module, 
involving angiopoietin-like 4 (ANGPTL4), stanniocalcin 2 
(STC2), and sperm associated antigen 4 (SPAG4), and a 
cyan module. Nervous system development, immune system 
process, regulation of secretion, and NAD metabolic process 
were the most significantly enriched terms for genes in the red, 
yellow, green and cyan modules, respectively (Fig. 4).

By performing functional and pathway enrichment 
analysis, a total of 16 GO terms, including immune response, 
three KEGG pathways, including cytokine-cytokine receptor 
interaction, and 11 TFs, including nuclear factor-kB, were 
obtained for genes in the network nodes (Fig. 5A and B).

Construction and validation of prognostic prediction system. 
The 525 ccRCC samples in the TCGA dataset were divided into 
good prognosis (202 samples) and bad prognosis (323 samples) 
groups. Through a series of processes (Fig. 6A), the prognostic 
prediction system containing 44 signature genes, including 
ANGPTL4, STC2, CXCL10, SPAG4, CD27, matrix metallo-

peptidase 9 (MMP9), and RUNX3, were constructed (Table I). 
The 44-gene prediction system had the highest prognostic 
accuracy for the patients with ccRCC.

The prognostic scores of the samples varied between 
-1.5 and 1.5 (good prognosis group between -1.5 and 0; bad 
prognosis group between 0 and 1.5; Fig. 6B). The discriminant 
scoring system of the prognostic prediction system was as 
follows:

Prognostic score = α̇  4     4i=1(Bayes discriminant) = [0-1.5, bad; 
-1.5-0, good], where α̇  represents the prognostic score, and i 
means gene.

To assess the effect of the prediction system, KM survival 
analysis was performed in the TCGA dataset first. The result 
showed that the survival ratio of the good prognosis group 
was significantly higher than that of the bad prognosis group 
(P=7.008x10-15; Fig. 6C). 

In addition, in the GSE29609 validation dataset, the 
survival ratio of the good prognosis group was also signifi-
cantly higher that of the bad prognosis group (P=8.46x10-8; 
Fig. 6D). These results suggested that the prognostic prediction 
system was able to accurately and practically classify ccRCC 
samples according to their prognosis.

Figure 2. Bidirectional hierarchical clustering heatmaps for the top 50 genes differentially expressed between clear cell renal cell carcinoma and normal 
samples in (A) The Cancer Genome Atlas dataset and (B) GSE40435 dataset. The blue and yellow colors in the sample strip represent normal samples and 
tumor samples, respectively.
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Discussion

Previously, several studies have utilized microarray analysis 
to identify prognostic genes for ccRCC. By genome-wide 
expression analyses of the expression profiles of patients with 

primary ccRCC with different disease-free survival rates, 
platelet and endothelial cell adhesion molecule 1, endothelin 
receptor type B and tetraspanin 7 have been considered as 
prognostic markers potentially involved in tumor metas-
tases (29). Based on array‑comparative genomic hybridization, 

Figure 3. Kaplan-Meier survival curves for the top six prognosis-associated genes of (A) TFAP2A, (B) FAM167A, (C) IL20RB, (D) LGI4, (E) SCNN1B, and 
(F) SLC17A2. Red and black lines represent samples with high expression and low expression, respectively. HR, hazard ratio; TFAP2A, transcription factor 
AP-2α; FAM167A, family with sequence similarity 167, member A; IL20RB, interleukin 20 receptor β; LGI4, leucine-rich repeat LGI family, member 4; 
SCNN1B, sodium channel, nonvoltage-gated 1β; SLC17A2, solute carrier family 17, member 2.
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the genetic clustering of ccRCC was considered as a potential 
prognostic indicator in patients with RCC that is closely asso-
ciated with DNA methylation alteration (30). However, these 
studies are insufficient for prognostic marker identification in 
ccRCC. In the present study, there were a total of 263 DEGs 
overlapped in the TCGA dataset and GSE40435 dataset, and 
161 of these were associated with prognosis. Enrichment 
analysis showed that they were correlated with three KEGG 
pathways, including the cytokine-cytokine receptor interac-
tion pathway. In addition, four significant network modules 
(red, yellow, green, and cyan modules) were identified from 
the co-expression network. Notably, ANGPTL4, STC2 and 
SPAG4 were present in the green module; whereas CXCL10, 
CD27 and RUNX3 were present in the yellow module. 
Through a series of bioinformatics methods, a prognostic 
prediction system was established comprising 44 signa-
ture genes, including ANGPTL4, STC2, CXCL10, SPAG4, 
CD27, MMP9, and RUNX3, and its prediction accuracy was 
confirmed.

ANGPTL4, which is a member of the angiopoi-
etin/ANGPTL family, has a high expression and can be 
used as a diagnostic marker in primary ccRCC (31,32). It is 
suggested that an increased serum level of ANGPTL4 may 
function as a promising diagnostic and prognostic marker 
for patients with RCC (33). The overexpression of STC2 is 
involved in the metastasis of RCC and may be an indicator 
for the shorter OS of patients with RCC (34,35). In addition, 
multilevel whole-genome analysis has revealed that STC2 is 
one of the genes hypomethylated in copy number gains in 
ccRCC (36). SPAG4 is upregulated in human RCC and has 
influences on the growth and invasion capability of tumor 
cells (37,38). The mRNA expression of SPAG4 is negatively 

correlated with tumor stage, grade and size, suggesting that 
SPAG4 can act as a marker for the diagnosis and prognosis 
of RCC (39). SPAG4 contributes to the survival of cancer 
cells via suppressing hypoxia-induced tetraploid formation, 
and thus SPAG4 can independently predict poor prognosis in 
RCC (40). In the present study, ANGPTL4, STC2 and SPAG4 
were all involved in the green module. Therefore, ANGPTL4, 
STC2 and SPAG4 may function in ccRCC through their 
co-expression, making them the prognostic factors for 
ccRCC.

CXCL10 inhibits tumor growth in RCC via restraining 
angiogenesis and decreasing the expression levels of vascular 
endothelial growth factor, platelet derived growth factor, 
fibroblast growth factor, and MMP9 (41). In addition, the 
interferon-inducible CXCR3 ligands score based on expres-
sion levels of CXCL9, CXCL10 and CXCL11, is suggested 
to be linked with different risk subgroups of recurrence and 
mortality in patients with ccRCC (42). CD27+ lymphocyte 
infiltration and the overexpression of CD70 are correlated 
with poor prognosis in ccRCC, and an elevated serum level 
of CD27 may be used for anti-CD70 therapy by predicting 
CD70-expressing ccRCC (43,44). RUNX3 is closely associ-
ated with RCC progression, and its high expression can 
significantly suppress the migration, invasion and angio-
genesis in RCC (45-47). RUNX3 inhibits RCC migration 
and invasion through mediating the microRNA‑6780a‑5p/
E‑cadherin/epithelial‑mesenchymal transition signaling 
pathway, therefore, RUNX3 serves as a potential prognostic 
factor of RCC (48). In terms of the association of this gene 
with ccRCC, RUNX3 is decreased in ccRCC tissues, and it 
functions as an inhibitor of ccRCC cell growth and metastasis 
via regulating cyclins and tissue inhibitors of matrix metal-

Figure 4. Co-expression network of the prognosis-associated genes. The circles indicate red, yellow, green and cyan modules. The annotations represent the 
most significantly enriched terms for each module. Red and grey lines represent negative and positive correlation coefficients, respectively. Inverted and 
regular triangles represent downregulated and upregulated genes, respectively.
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Figure 5. Functional and pathway enrichment analysis. (A) Functional terms and pathways enriched for the network nodes. (B) Transcription factors targeting 
the network nodes.
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loproteinase 1 (TIMP1) (49). In the present study, CXCL10, 
CD27 and RUNX3 were all involved in the yellow module, 
indicating that these co-expressed genes may also be associ-
ated with the prognosis of patients with ccRCC.

MMPs and their inhibitors (TIMPs) have an important 
function in the maintenance of extracellular matrix homeo-
stasis. In RCC, the mRNA or protein expression of MMP2, 
MMP3, MMP9, TIMP1 and TIMP2 are relevant to the clini-
copathological parameters (50). MMP9 correlates with high 
metastasis and poor survival rates in RCC, indicating that 
MMP9 may be utilized for predicting the disease-free survival 
rates of patients with RCC (51,52). The Notch ligand d-like  4 
(DLL4) is tied up with tumor invasion and metastasis. It has 
been found that DLL4 facilitates RCC cell migration and 
invasion via upregulating MMP2 and MMP9 (53). It is known 
that, in the majority of ccRCC cases, inaction of the von 
Hippel‑Lindau (VHL) tumor suppressor gene is an important 
hallmark, and the protein isoform of VHL coordinately regu-

lates the metastasis‑associated genes CXCR4/CXCL12 and 
MMP2/MMP9 (54). MMP9 has been selected as one of the 10 
important genes in the protein-protein interaction network that 
associates with the progression of ccRCC (55). In the present 
study, this gene was one of the 44 signature genes predicting 
ccRCC prognosis, suggesting it may be used as a prognostic 
factor for patients with ccRCC.

Previously, a study reported that cytokine-cytokine 
receptor interaction was the most significant pathway for 
DEGs in RCC tissue (56). In the present study, this pathway 
was also significantly enriched for DEGs identified in ccRCC 
samples, suggesting that these crucial DEGs may function 
through the regulation of this pathway.

The predictive accuracy of the 44-signature gene-prognostic 
prediction system was confirmed by the validation dataset 
(GSE29609), indicating this system may be applied for the 
prognosis of patients with ccRCC. Although comprehensive 
bioinformatics analysis was performed, and hundreds of 

Figure 6. Construction and validation of prognostic prediction system. (A) Construction processes of the prognostic prediction system based on the TCGA 
dataset. (B) Prognostic scores of the samples in the good and bad prognosis groups. Kaplan-Meier survival curves for validating the prognostic prediction 
system based on the (C) TCGA dataset and (D) GSE29609 dataset. Blue and green lines represent good and bad prognosis, respectively. TCGA, The Cancer 
Genome Atlas.
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samples were used in the present study, a limitation remained 
that the validation dataset had a relatively small sample size, 
and thus the results require experimental validation, particu-
larly the co‑expression of genes identified in the same module.

In conclusion, the 44-gene prognostic prediction system, 
involving ANGPTL4, STC2, CXCL10, SPAG4, CD27, MMP9, 
and RUNX3, may be important in predicting the prognosis 
of patients with ccRCC. However, these key genes and the 
44-gene prognostic prediction system require further valida-
tion by experimental investigations.
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