CZ2HF mitigates β-amyloid 25-35 fragment-induced learning and memory impairment through inhibition of neuroinflammation and apoptosis in rats

LINGRONG ZENG1,2, JIANMEI GAO3, YUANYUAN DENG1,2, JINGSHAN SHI1,2 and QIHAI GONG1,2

1Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University; 2Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University; 3Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China

Received August 19, 2017; Accepted October 19, 2018

DOI: 10.3892/ijmm.2018.3952

Abstract. Cu-zhi-2-hao-fang (CZ2HF), a traditional Chinese medicine, has been used clinically for the treatment of amnesia. However, whether CZ2HF is capable of alleviating learning and memory impairment in Alzheimer’s disease (AD) remains to be elucidated. The present study was designed to explore the effect and mechanism of CZ2HF on β-amyloid 25-35 (Aβ25-35)-induced impairment in the learning and memory of rats. Morris water maze test was used to determine spatial learning and memory ability in Aβ25-35-induced AD rats and hippocampal neuronal damage and apoptosis were observed using hematoxylin and eosin staining, Nissl staining and terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) assays, respectively. The levels of β-amyloid 1-42 (Aβ1-42), pro-inflammatory factors, such as cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and apoptosis-associated genes including B cell leukemia/lymphoma 2 (Bcl-2), Bcl-2-associated X, apoptosis regulator (Bax), pro-caspase-3, inhibitor of κB (IkB-κ) degradation and phosphorylated-nuclear factor-κB p65 (p-NF-κB p65) activation were analyzed using western blotting. The findings of the present study revealed that CZ2HF treatment significantly attenuated Aβ25-35-induced cognitive impairments in rats. Subsequently, CZ2HF treatment markedly inhibited neuronal damage and deletions. Furthermore, CZ2HF reduced TNF-α, IL-1β, COX-2 protein expression levels, Bax/Bcl-2 ratio, and reduced Aβ1-42 and active-caspase-3 levels. In addition, IκB-α degradation and p-NF-κB p65 activation were reduced by CZ2HF. These findings suggested that CZ2HF treatment improved Aβ25-35-induced learning and memory impairment and hippocampal neuronal injury, and its underlying mechanism may be due to the inhibition of neuroinflammation and neuronal apoptosis. CZ2HF may be a potential agent for the treatment of AD.

Introduction

Alzheimer’s disease (AD) is a major type of dementia in the elderly, which is characterized by progressive learning and memory impairment. The present consensus is that the typical pathological features of AD are extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain, accompanied by neuronal damage or loss (1,2). Due to an increase in the aging population in recent years, there are currently ~46 million dementia patients worldwide and the number of patients enrolled in 2,050 is expected to increase to 135 million, which will put a great economic burden on society and patients’ families (3). The pathogenesis of AD is complex, and remains to be fully elucidated. It has been previously established that the Aβ cascade theory has an important role in the development of AD (4). Aβ is derived from β-secretase and γ-secretase and the deposition of Aβ, particularly Aβ1-42, leads to neurotoxicity and neurodegeneration during the progress of AD (5). Physiologically, the formation and removal of Aβ in the brain is maintained in a dynamic equilibrium state; however, when this balance is dysregulated, it may lead to abnormal deposition of Aβ and disturb the physiological activity of the neuronal cells (6). A previous study showed that Aβ deposition produced a sequence of cascade reactions, such as exacerbation of the inflammatory response, including increased interleukin-1β (IL-1β), tumor necrosis factor
(TNF-α), cyclooxygenase-2 (COX-2) expression and levels of nuclear factor-κB (NF-κB) (7). Additionally, these inflammatory factors may increase β-amyloid precursor protein (APP) expression in the brain and upregulate the activity of γ-secretase; therefore, the levels of Aβ were increased in turn (8). In addition, a previous study indicated that Aβ deposition in the brain may induce neuronal apoptosis, which may lead to further learning and memory impairment. B-cell lymphoma-2 (Bcl-2) gene family members, such as Bcl-2 and Bcl-2-associated X, apoptosis regulator (Bax), have important roles in the process of apoptosis (9). It is of note that it has been previously demonstrated that the learning and memory impairment of the Aβ1-42-induced AD rats may be ameliorated through regulation of the apoptosis-associated genes, such as Bax and Bcl-2. Therefore, inhibition of neuroinflammation and neuronal apoptosis may be used as a promising strategy for the clinical treatment of AD.

Evidence from clinical and experimental trials revealed that cholinesterase inhibitors such as donepezil, tacrine and galantamine, and a N-methyl-D-aspartate receptor antagonists, such as memantine may be used as AD-treatment agents (10–12). However, these drugs had limited use in a clinical setting due to their single target, their price and multiple side effects (13). Therefore, Traditional Chinese Medicine (TCM) may be a promising treatment method for AD as it has advantages of multi-targets and reduced side effects.

The cu-zhi-2-hao-fang (CZ2HF) decoction, an empirical formula of TCM, which consisted of *Herba Epimedium*, *Rhizoma curculiginis*, *Morinda officinalis*, *Acorus gramineus*, *Lycium barbarum*, *Scrophularia ningpoensis*, *Cinnamomum cassia* Presl, *Rhizoma zingiberis* (Table I). According to TCM theory, *Herba Epimedium* is the primary component in this decoction, which is one of the traditional Chinese herbs for treating various diseases, such as AD and its main active ingredients, icariin and icariide II downregulate Aβ1-40 and Aβ1-42 expression levels in the brain of Tg2576 transgenic mice to mitigate learning and memory impairment and reduce TNF-α, COX-2, IL-1β expression levels and neuronal apoptosis to improve Aβ1-42-induced learning and memory impairments in rats (14–16). CZ2HF was used to clinically prevent and treat amnesia. However, whether CZ2HF may alleviate Aβ1-42-induced learning and memory impairment and its underlying mechanism remains to be elucidated. Therefore, the present study was designed to investigate the effect of CZ2HF on Aβ1-42-induced learning and memory impairment and further elucidate its possible action mechanism.

Materials and methods

Agents. Donepezil hydrochloride (1511010) was obtained from Affiliated Hospital of Zunyi Medical University (Zunyi, China), Aβ1-42 (the amino acid sequence is Gly-Ser-Asn-Lys-Gly-A la-Ile-Ile-Gly-Leu-Met) was purchased from Sigma-Aldrich (cat. no. A4559; Merck Millipore, Darmstadt, Germany), primary antibodies of COX-2 (cat. no. ab15191), active-caspase-3 (cat. no. ab3847), Bax (cat. no. ab7977), Bcl-2 (cat. no. ab7973), IL-1β (cat. no. ab9787), TNF-α (cat. no. ab66579), Aβ1-42 (cat. no. ab10148) were acquired from Abcam (Cambridge, UK), pro-caspase-3 antibody (cat. no. sc-7148) was obtained from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA), primary antibodies of inhibitor of xB (IkB-α; cat. no. 9242), phosphorylated (p)-nuclear factor (NF)-κB p65 (cat. no. 3033), NF-κB p65 (cat. no. 8242) were acquired from Cell Signaling Technology, Inc. (Danvers, MA, USA).

Preparation of CZ2HF decoction. CZ2HF consisted of 8 ingredients, as presented in Table I. CZ2HF was provided by Affiliated Hospital of Zunyi Medical University and identified by Professor Jianwen Yang (School of Pharmacy, Zunyi Medical University, Zunyi, China). Briefly, a mixture of 9 g *Herba Epimedium*, 9 g *Rhizoma curculiginis*, 9 g *Morinda officinalis*, 9 g *Acorus calamus*, 9 g *Lycium barbarum*, 9 g *Scrophularia ningpoensis*, 5 g *Cinnamomum cassia* Presl, 5 g *Zingiberis rhizome* was soaked for 60 min with 1,000 ml distilled water and boiled for 1.5 h. Subsequently, the filtrate was gathered and the residue was boiled again for an additional 1 h with distilled water. The extraction was further condensed, combined and lyophilized according to the protocol as previously described (17). The yield was 21.6% relative to the original crude quantity.

Preparation of animal model and drug treatment. A total of 98 healthy male Sprague-Dawley (SD) rats (250–300 g) were purchased from the Laboratory Animal Center of the Third Military Medical University (Chongqing, China; certificate no. SCXK2012-0011). The rats were housed in specific pathogen-free conditions, under a 12-h light/dark cycle, temperature was 22±1˚C, humidity was 60±2% and were given free access to food and water. All experiments were approved by the Ethics Committee and performed according to the current guide for the care and use of laboratory animal standard, which was set up by Zunyi Medical University Animal Studies Committee (argument number [2015] 2-043). The rats were randomly divided into 7 groups as follows: i) Sham; ii) sham+AD (400 mg/kg); iii) model (Aβ25-35); iv) Aβ25-35+CZ2HF (100 mg/kg); v) Aβ25-35+donepezil (1.0 mg/kg) as the positive drug group (n=14 rats per group. Briefly, Aβ25-35 (1 mg) was dissolved in 500 µl saline, configured as 2.0 µg/µl solution, placed in 37˚C incubator for 4 days, in order to induce a clustered state to enhance its toxicity (18). Subsequently, SD rats were anesthetized with an intraperitoneal injection of 2% pentobarbital sodium, the rat’s brain was fixed in a stereotaxic device, and the following hippocampus needle coordinates were used: 3.5 mm posterior to the bregma, 2.5 mm lateral to the sagittal suture, 3.5 mm beneath the surface of brain. The needle was retained in the bilateral hippocampi for 5 min and the 5 µl Aβ25-35 was injected. Various doses of CZ2HF were administered orally daily for a continuous period for 15 days. The rats in CZ2HF group were treated with CZ2HF alone, and the sham group were given double-distilled water at an equal volume to the CZ2HF solution.

Morris water maze test. The Morris water maze test (MWM) was performed in order to determine the learning and memory function of the rats from the 7 groups as described in our previous study (19). The rats were trained and exposed to 4 successive memory acquisition trials in the MWM to analyze their capacity to escape and find the platform, which was performed daily between days 11 and 16 after the
Aβ25-35 injection. On day 16, the spatial probe experiment was performed to detect the ability of spatial memory. All SD rats were subjected to anesthesia by 0.3 ml of 2% pentobarbital sodium injection after intraperitoneal examination of the MWM.

Hematoxylin and eosin (H&E) staining. Following fixation in 4% for 48 h (pH 7.4), the brains were removed, fixed with 4% paraformaldehyde at 4°C, dehydrated and embedded in paraffin. Subsequently, 3-µm thick frozen sections were prepared and H&E staining at room temperature for 12 min was used to detect pathological changes in the CA1 region of hippocampal tissue by an independent pathologist. Images of the histopathological examination were observed using a light microscope. Three rats per group were used for H&E staining.

Nissl staining. Brains were fixed with 4% paraformaldehyde at 4°C for 48 h and subsequently embedded in paraffin. Sections (3-µm thick) of rat brain tissue were stained with toluidine blue 4°C for 48 h and subsequently embedded in paraffin. Sections were subsequently treated with DAB substrate solution and washed again with PBS. A total of 3 images were captured randomly for each section and counted using a fluorescent microscope as described in our previous study (19).

Western blotting. Expression levels of TNF-α, IL-1β, COX-2, IkB-α, NF-κB p65, p-NF-κB p65, Bax, Bel-2, caspase-3, Aβ1-42 were determined using western blotting. Briefly, three rats were randomly selected from each group and sacrificed, the hippocampal tissues were dissected and immediately frozen at -80°C. Then, the subsequent procedures were performed as described in our previous study (20). The corresponding proteins in this study were analyzed using primary antibodies against TNF-α (1:2,000), IL-1β (1:1,000), COX (1:1,000), IkB-α (1:2,000), NF-κB p65 (1:1,000), p-NF-κB p65 (1:1,000); Bax (1:500), Bel-2 (1:500), pro-caspase-3 (1:1,000), active-caspase-3 (1:1,000) and Aβ1-42 (1:2,000). The membranes were incubated overnight with the primary antibodies at 4°C. Subsequently, the membranes were washed twice with TBST and incubated with secondary antibodies goat anti-rabbit IgG H&L (cat. no. ab6702; 1:1,000; Abcam) for 2 h at room temperature. The blots were visualized using Davinch-Chemi™ imaging system and the relative band optical intensity was quantified using Quantity One 1-D analysis software version 4.52 (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Table I. Composition of cu-zhi-2-hao-fang.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Latin name</th>
<th>Quantity (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herba Epimedium</td>
<td>Epimedium brevicornu Maxim.</td>
<td>9</td>
</tr>
<tr>
<td>Rhizoma curculiginis</td>
<td>Curculigo orchioides Gaertn.</td>
<td>9</td>
</tr>
<tr>
<td>Morinda officinalis</td>
<td>Morinda officinalis How.</td>
<td>9</td>
</tr>
<tr>
<td>Acorus gramineus</td>
<td>Acorus tatarinowii.</td>
<td>9</td>
</tr>
<tr>
<td>Lycium barbarum</td>
<td>Lycium barbarum L.</td>
<td>9</td>
</tr>
<tr>
<td>Scrophularia ningpoensis</td>
<td>Scrophularia ningpoensis Hemsl.</td>
<td>9</td>
</tr>
<tr>
<td>Cinnamomum cassia Presl</td>
<td>Cassia Twig</td>
<td>5</td>
</tr>
<tr>
<td>Rhizoma zingiberis</td>
<td>Zingiber officinalce Roscoe</td>
<td>5</td>
</tr>
</tbody>
</table>

Statistical analysis. Data were expressed as the mean ± standard error of the mean and analyzed using SPSS version 17.0 (SPSS, Inc., Chicago, IL, USA). Data were analyzed by one-way analysis of variance and differences among means were analyzed using Dunnett’s test or Tukey-Kramer’s multiple comparison test. P<0.05 was considered to indicate a statistically significant difference.

Results

CZ2HF mitigates Aβ25-35-induced learning and memory impairment in rats. In order to investigate whether CZ2HF may alleviate the learning and memory impairment induced by Aβ25-35 in rats, the spatial learning and memory function of rats was determined using the MWM test, which was performed from day 11 to day 16 after the Aβ25-35 injection (Fig. 1A). The findings revealed that the model group rats had a notably elevated escape latency compared with the sham group, indicating that injection of Aβ25-35 impaired their ability of spatial learning. However, CZ2HF attenuated escape latency compared with model group (F6,85=2.217; P<0.05; Fig. 1B). Following the hidden platform training on day 16, a spatial probe test was performed to determine spatial memory abilities by counting the time spent in the target quadrant of the rats of various groups (14). The findings revealed that the rats in the model group spent shorter time in the target
quadrant compared with the sham group rats. However, CZ2HF increased the retention time in the target quadrant compared with the model group (Fig. 1C). No significant difference was identified between the swimming speed of the different treatment rat groups (Fig. 1D), indicating that CZ2HF and donepezil did not affect the motor function of rats.

CZ2HF reduces Aβ25-35-induced neuronal injury of hippocampus. H&E and Nissl staining were used to evaluate the effects of CZ2HF on the morphology of hippocampal neurons and neuronal injury. The current findings revealed that the neurons in the CA1 region of the hippocampus of rats in the sham group had high density, the nuclei and cytoplasm were homogeneous and the edges were clear. However, in the model group, the neurons were disordered, their density was low and a large number of cells were nucleated, indicating that Aβ25-35 damaged the neuronal cells in the rat hippocampus. However, CZ2HF (100, 200, 400 mg/kg) and donepezil treatment notably ameliorated the neuronal structure and density (Fig. 2). Furthermore, the results of Nissl staining revealed that the neurons in CA1 region of sham were arranged neatly and densely. Additionally, the nuclei and cytoplasm were stained uniformly and the structure of neuron was clear and complete (Fig. 3A). However, the cellular structure became unclear, the cell density was lower and the neurons were disordered in the model group, indicating that Aβ25-35 damaged the hippocampal...
neurons. CZ2HF treatment ameliorated the Aβ25-35-induced injury of neuronal structure (Fig. 3A). Meanwhile, these effects were also confirmed by the number of pyramidal cells counted in the CA1 hippocampal region of the rats (Fig. 3B).

CZ2HF attenuates the level of hippocampal Aβ1-42 induced by Aβ25-35. Western blotting was used to detect the level of Aβ1-42 in the rat hippocampus induced by Aβ25-35 exposure (Fig. 4A). The present study determined that the level of Aβ1-42 was significantly increased in model group; however, CZ2HF (100, 200, 400 mg/kg) and donepezil notably reduced the level of Aβ1-42 in the rat hippocampus injected with Aβ25-35, suggesting that CZ2HF and donepezil may block Aβ25-35-induced Aβ1-42 increase (F6,14=6.283; P<0.01; Fig. 4B).

CZ2HF represses Aβ25-35-induced neuroinflammatory factors in rats. In order to determine the role of neuroinflammation during the process of Aβ25-35-induced cognitive impairment in rats, the inflammatory factors in hippocampi were determined using western blotting (Fig. 5A). It was shown that TNF-α, IL-1β, and COX2 expression levels were increased in the model group, suggesting that Aβ25-35 triggered the inflammatory response. However, CZ2HF (200, 400 mg/kg) and donepezil drastically reduced the expressions of inflammatory factors compared to the model group (Fig. 5B).

Figure 3. Effect of CZ2HF on hippocampal neuronal injury induced by Aβ25-35 in rats. (A) Representative images of Nissl staining. Scale bar, 50 µm. (B) Number of pyramidal cells in the CA1 hippocampal region. *P<0.01 vs. sham; **P<0.05; ***P<0.01 vs. the Aβ25-35 (n=4). CZ2HF, cu-zhi-2-hao-fang; Aβ25-35, β-amyloid 25-35.

Figure 4. Effect of CZ2HF on the levels of Aβ1-42 in hippocampus induced by Aβ25-35 in rats. (A) Representative western blot analysis of Aβ1-42. (B) Quantification of Aβ1-42 protein expression levels. *P<0.01 vs. sham; **P<0.05 vs. the Aβ25-35 (n=3). CZ2HF, cu-zhi-2-hao-fang; Aβ1-42, β-amyloid 1-42; Aβ25-35, β-amyloid 25-35.
donepezil treatment significantly reduced the increase in these inflammatory factors including COX-2, IL-1β, and TNF-α protein expression. Quantification of (B) COX-2, (C) IL-1β, and (D) TNF-α protein expression levels. **P<0.01 vs. sham; *P<0.05, ##P<0.01 vs. Aβ25-35 (n=3). CZ2HF, cu-zhi-2-hao-fang; Aβ25-35, β-amyloid 25-35; COX-2, cyclooxygenase-2; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α.

CZ2HF inhibits Aβ25-35-induced hippocampal neuronal apoptosis in rats. The effect of CZ2HF on the apoptosis of neurons was determined by examining the expression levels of IκB-α and p-NF-κB p65 in hippocampus induced by Aβ25-35. (A) Representative images of western blotting for IκB-α and p-NF-κB p65 levels. Quantification of (B) IκB-α and (C) p-NF-κB p65 levels. **P<0.01 vs. the sham; *P<0.05, ##P<0.01 vs. the Aβ25-35 (n=3). CZ2HF, cu-zhi-2-hao-fang; Aβ25-35, β-amyloid 25-35; p-, phosphorylated; NF-κB p65, nuclear factor-κB p65; IκB-α, inhibitor of NF-κB.
hippocampal neurons exposed to Aβ25-35 was evaluated using TUNEL staining (Fig. 7A). The findings demonstrated that the number of apoptotic cells in the model group was significantly increased compared with the sham group. However, the different doses of CZ2HF markedly attenuated the number of apoptotic cells (Fig. 7B).

CZ2HF suppresses the increase in Bax and caspase-3 and the decrease in Bcl-2 expression levels.

To further investigate the possible effects of CZ2HF on apoptosis-associated proteins in Aβ25-35-induced hippocampal neuronal apoptosis, the Bax and Bcl-2 protein levels, and active-caspase-3 level were determined by western blotting (Fig. 8). The present study determined that CZ2HF (100, 200 and 400 mg/kg) downregulated Bax expression and upregulated Bcl-2 expression; therefore, the ratio of Bax/Bcl-2 was reduced, which reversed the Aβ25-35-induced increase in the Bax/Bcl-2 ratio (F6,14=2.955, P<0.05; F6,14=3.063, P<0.05). Additionally, CZ2HF (200, 400 mg/kg) also reduced the level of active-caspase-3 and limited the decrease of pro-caspase-3 compared with the model group (F6,14=7.867; P<0.01). These findings suggested that CZ2HF may reduce Aβ25-35-induced hippocampal neuronal apoptosis by regulating apoptosis-associated proteins (Fig. 8).

Discussion

The findings in the current study suggested that CZ2HF may be a promising agent for the treatment of AD. CZ2HF significantly attenuated Aβ25-35-induced cognitive impairments and inhibited neuronal damage and deletions in rats. Additionally, CZ2HF reduced the protein expression of TNF-α, IL-1β, COX-2, the Bax/Bcl-2 ratio, and reduced the levels of Aβ1-42 and active-caspase-3. Furthermore, IκB-α degradation and p-NF-κB p65 activation was repressed by CZ2HF.

Accumulating evidence demonstrated that Aβ25-35 is the key fragment of full-length Aβ1-42 and the acute injection of Aβ25-35 into rat cerebral ventricle may lead to neurotoxic effects similar to those produced by the Aβ1-40; however, the presence of the Aβ25-35 fragment in the AD brains remains to be determined (21,22). Previous studies indicated that bilateral hippocampal injection of Aβ25-35 may induce an AD learning and memory impairment model in rats, which has been widely used in AD research (23,24). Therefore, Aβ25-35-induced AD rat model was used to investigate the effects and mechanism of CZ2HF on learning and memory impairment in the current study using methodology described in our previous study (14). Additionally, a MWM test was performed to identify the primary effect of CZ2HF on Aβ25-35-induced learning and memory function injury in the rats. As Aβ25-35-induced learning and memory function exhibits self-limitation, Contextual and Cued Fear Conditioning Test, which may confirm the association between hippocampal dependence and learning, and memory function will be performed in future studies. In addition, as the present study was preliminary in order to determine the effect of CZ2HF on Aβ25-35-induced AD; therefore, 3 or 4 rats were used from each group in the present study. Therefore, the number of rats used for each molecular or histological experiment was 3 or 4. The current findings revealed that CZ2HF significantly ameliorated learning and memory dysfunction in AD rats using the MWM test.
Figure 8. Effect of CZ2HF on the protein expression of Bax, Bcl-2 and caspase-3 induced by Aβ25-35 in rats. (A) Representative western blotting images of Bax, Bcl-2, pro-caspase-3 and active-caspase-3. Quantification of (B) Bax, (C) Bcl-2, (D) Bax/Bcl-2 ratio, (E) pro-caspase-3 and (F) active-caspase-3. **P<0.01 vs. sham; #P<0.05, ##P<0.01 vs. Aβ25-35 (n=3). CZ2HF, cu-zhi-2-hao-fang; Aβ25-35, β-amyloid 25-35; Bax, Bcl-2-associated X, apoptosis regulator; Bcl-2, B cell leukemia/lymphoma 2.

Figure 9. Schematic representation of the effect and underlying mechanism of CZ2HF on Aβ25-35 induced the learning and memory impairment in rats. The crosstalk between neuroinflammation and apoptosis signaling pathway is involved in the inhibitory effect of CZ2HF on Aβ25-35-induced hippocampal neuronal damage. CZ2HF, cu-zhi-2-hao-fang; Aβ25-35, β-amyloid 25-35; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; NF-xB, nuclear factor-xB; IκB-α, inhibitor of xB.
Furthermore, CZ2HF inhibited the Aβ25-35-induced reduction of the number of neurons, which was observed by the H&E and Nissl staining. This indicated that CZ2HF had beneficial effects on learning and memory impairment, attenuation of hippocampal neuronal damage or loss. Nevertheless, the underlying mechanism of CZ2HF must be further elucidated.

It has been previously established that Aβ is derived from the ordered hydrolysis of APP and Aβ fragments of 39-43 amino acids were formed in this process, including Aβ1-40 and Aβ1-42 (25). The present study showed that Aβ1-42 with highest toxicity were significantly increased in Aβ25-35-induced learning and memory impairment in the rat brains, which was consistent with the report that Aβ25-35-induced learning and memory impairment was accompanied with a greater Aβ1-42 protein level (26). Previous studies indicated that the inflammatory factors, including COX-2, IL-1 and TNF-α may be agglutinated by upregulating Aβ1-42 in the central nervous system and subsequently lead to a learning and memory disorder (27). The findings in the present study demonstrated that Aβ1-42 and COX-2, IL-1β and TNF-α levels were increased in Aβ25-35-induced AD rats, which was consistent with the fact that the inflammatory cytokines increase the activity of β-secretase and the content of APP, leading to increased Aβ1-42 levels, which creates a positive feedback effect aggravates cognitive dysfunction (28). However, CZ2HF and donepezil significantly downregulated TNF-α, IL-1β and COX-2 protein expression, indicating that CZ2HF reduced the decrease in Aβ25-35-induced learning and memory impairment both through reducing Aβ1-42 level and the inflammatory factors, such as COX-2, IL-1β and TNF-α.

Additionally, NF-κB, a vital nuclear transcription factor, is located in the cytoplasm and binds to IκB (29). When the cells are stimulated, IκB is phosphorylated and degraded, which activates NF-κB p65, and upregulates inflammatory factors during the inflammatory process. Additionally, NF-κB is also identified to be upstream of the inflammatory factors (30). The present findings revealed that degradation of IκB-α and the subsequent activation of NF-κB p65 were increased by the Aβ25-35 injection treatment. However, CZ2HF significantly reduced the degradation of IκB-α and inhibited NF-κB p65 phosphorylation in Aβ25-35-induced AD rats. Therefore, it is possible that CZ2HF ameliorated the learning and memory impairment, at least partly, through regulation of the NF-κB signaling pathway.

Previous studies have indicated that the NF-κB pathway may induce an inflammatory response to release inflammatory factors and lead to neuronal apoptosis, which also contributes to the development and progression of AD (31,32). Bcl-2 family proteins such as the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax have a key role in the process of neuronal apoptosis. Additionally, caspase-3 is the key terminal cleavage enzyme during apoptosis and also executes apoptosis, thereby leading to neuronal cell death (33). The present findings revealed that Bcl-2 was reduced, whereas Bax and caspase-3 were increased in Aβ25-35-induced AD rats, which was consistent with a previous report which stated that Aβ25-35 may increase the ratio of Bax/Bcl-2 and activate caspase-3, inducing neuronal cell apoptosis (34). However, CZ2HF reversed the aforementioned effects, which confirmed that the beneficial effects of CZ2HF on learning and memory impairment may be associated with inhibition of neuronal cell apoptosis. Additionally, the present findings also indicated that inflammatory response and neuronal apoptosis have an imperative role in the progression of AD and there is a connection between Aβ deposition, neuroinflammation and apoptosis. However, since aqueous extract of TCM contained a large number of polysaccharides, CZ2HF did not exhibit a dose-dependent effect for the treatment of Aβ25-35-induced symptoms in AD-like rats. It is of note that on the protein level, CZ2HF exerted beneficial effects in a dose-dependent manner, which may be associated with a potential indirect effect; therefore, compared with other doses, CZ2HF at a dose of 400 mg/kg promoted the apoptosis. The in-depth mechanism of CZ2HF on learning and memory impairment requires further investigation. Additionally, considering that the components of CZ2HF were complex, the mechanism which allows CZ2HF or its exact components to pass through the blood-brain barrier should be investigated in future studies.

In conclusion, the present study demonstrated that CZ2HF ameliorates Aβ25-35-induced learning and memory impairment in rats and inhibits the damage of hippocampal neurons. To the best of our knowledge the present study was the first to determine the underlying mechanisms, which may be attributed, at least in part, to repressing the inflammatory response and apoptosis (Fig. 9). The present study provided a scientific foundation and information for the use of CZ2HF for the treatment of AD.

Acknowledgements

Not applicable.

Funding

The current study was supported by the Natural Science Foundation of China (grant no. 81560585), Program for Excellent Young Talents of Zunyi Medical University (grant no. 15zy-002), Science and Technology Innovation Talent Team of Guizhou Province (grant no. 20154023), The ‘Hundred’ Level of High-Level Innovative Talents in Guizhou Province (grant no. QKHRCPT 20165684) and Program for Changjiang Scholars and Innovative Research Team in University, China (grant no. IRT17R113).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

QG and JS designed the experimental approaches. LZ performed all the other studies described herein, except the western blotting conducted by YD and JG. LZ and JG wrote the manuscript with the help from QG. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The present study was approved by the Ethics Committee of Zunyi Medical University (Zunyi, China).
Competing interests

The authors declare that they have no competing interests.

References

