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Abstract. Type 2 diabetes mellitus (T2DM) is a disease 
associated with a number of metabolic disturbances, including 
protein metabolism. In the present study, blood samples were 
obtained from Bahraini subjects, including 6 patients with 
T2DM and 6 age‑ and sex‑matched, non‑diabetic, healthy 
controls. Depleted and non‑depleted sera were prepared 
from the collected blood, and the global protein expression 
changes were evaluated by liquid chromatography tandem 
mass spectrometry. Only significantly and markedly 
differentially‑expressed proteins (P<0.05, analysis of variance; 
maximum fold change ≥1.5) were considered as candidate 
proteins for informatics analysis. Accordingly, a total of 
62 proteins were identified to be differentially expressed in 
T2DM, compared with control subjects, and they were grouped 
functionally into 16 classes of proteins. The largest class was 
that of the immune‑associated proteins. Additionally, ~25 of 
these proteins (40%) had previously been associated with DM; 
however, the association of the other 37 proteins with T2DM 
was a novel observation. The majority of the identified proteins 
were upregulated in T2DM. The identified proteins could be 
involved in the pathogenesis of the disease or serve as disease 
biomarkers. Further validation of the identified proteins in a 
large study cohort is required, in order to fully access their 
potential clinical usefulness.

Introduction

Diabetes mellitus (DM), a chronic metabolic disorder with 
multiple etiologies, is characterized by hyperglycemia and 
other metabolic abnormalities attributed to defects in insulin 
secretion, actions on target tissues or both (1). The global report 
on diabetes in 2016, reported that type 2 DM (T2DM) affects 
millions of people globally, including the Middle East (2); in 
the latter, a high prevalence has been identified in Bahrain, 
although no recent data has been published (3). In 2015, the 
International Diabetes Federation estimates indicate that the 
states of the Gulf Co‑operation Council have the highest 
T2DM rates at a global level (4).

The aim of the present study was to elaborate on the 
metabolic changes, particularly the blood proteome in T2DM. 
Proteomics and bioinformatics are complementary molecular 
tools that have revolutionized biomedical research (5). The 
robustness of proteomics is enhanced by the continuous 
upgrading and development of liquid chromatography tandem 
mass spectrometry (LC‑MS/MS) with built‑in statistical and 
graphical software (6,7). Such tools are of the utmost impor-
tance for understanding the natural history of multifactorial 
complex disorders, including cancer, autoimmune diseases 
and DM. The heterogeneous nature of T2DM (8) makes it a 
suitable subject for proteomic analysis. However, the applica-
tions of proteomics in DM studies to date have fallen short 
of expectations, as revealed from a literature search. In the 
present study, LC‑MS/MS was used to examine the protein 
profile of T2DM using serum samples from Bahraini subjects.

The T2DM pathogenesis involves complex interactions 
between genetic and environmental attributes  (8). Insulin 
resistance is the hallmark of T2DM, although a number of 
individuals may have normal, decreased or elevated insulin 
levels (9). Generally, a metabolic malfunction is rarely attributed 
to a single molecule or etiology, and it is more frequently 
the combined input of numerous altered molecules, largely 
proteins. The majority of individuals suffering from T2DM 
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have the polygenic heterogeneous variants with multiple genes 
involved but in different combinations, resulting in different 
T2DM subsets (8). Therefore, studies that use ‘omics’ analysis 
platforms to assess the protein profile changes in T2DM may 
identify clinically beneficial panels of protein biomarkers. 
Generally, ‘omics’ platforms allow for the investigation of more 
complex interactions of biological systems (10). Proteomics 
and peptidomics have a number of advantages over genomics, 
as they investigate a global protein profile that accounts for 
>2,000,000 proteins, compared with the undetermined number 
of genes (expected to be 20‑100,000) (11). The analysis of such 
a large number of data and variables presents a challenge 
for ‘omics’ platforms. Quantitative expression proteomics 
profiling is expected to advance the understanding of the 
pathophysiological mechanisms of T2DM, and may generate 
results demonstrating variations in numerous individual 
proteins, particularly in communities with a high prevalence 
of T2DM, such as Bahraini.

T2DM is a systemic disease affecting multiple organs, 
including skin, liver, kidney and eye (12). Since all tissues 
come into contact with blood, proteins secreted or leaking 
from different tissues are reflected in the blood protein profile. 
The blood is therefore the ideal for proteomic analysis in 
T2DM. The information regarding these proteins may result 
in an improved approach for disease prediction and diag-
nosis, as well as an improved understanding of the disease 
pathology, and thus a more effective treatment (13). Previously, 
proteomics profiling of serum and plasma has become a focus 
of growing interest, and the characterization of their protein 
content has enabled the discovery of an increasing number of 
reliable markers indicative of the disease (14). In the present 
study, label‑free quantitative protein expression profiling was 
used for the discovery of proteins that may potentially serve as 
biomarkers for T2DM.

Patients and methods

Study subjects. The peripheral blood samples used in the 
present study were selected from a larger number of samples 
collected from Bahraini subjects with T2DM (cases) and 
healthy individuals (controls) in the period between January 
and February 2015 for the study of T2DM biomarkers. The 
samples selected for this study were obtained from 12 subjects, 
including 6 with T2DM (3 males and 3 females) and 6 age‑, 
sex‑ and ethnic background‑matched, healthy, non‑diabetic 
subjects (3 males and 3 females) (Table I).

The patients with T2DM were clinically diagnosed 
according to the World Health Organization criteria (15). The 
inclusion criteria for cases were: Male or female Bahraini 
subjects with confirmed T2DM. The exclusion criteria were: 
Individuals with other metabolic, cancerous or chronic disease, 
chronic infections, other major diseases, alcoholism/smoking, 
non‑Bahraini subjects or T1DM. The cases were selected 
randomly from patients reporting to Salmanyia Medical 
Complex (SMC; Manama, Bahrain). The healthy controls were 
recruited by an email advertisement sent to the members of 
College of Health Sciences of Bahrain University (Manama, 
Bahrain) and extended to their families and friends. The 
exclusion criteria for the controls were: DM and fasting blood 
glucose levels of >5.2 mmol/l, in addition to the exclusion 

criteria used for cases. All study participants provided their 
verbal informed consent prior to blood collection. The study 
design was in compliance with the terms of the Declaration 
of Helsinki and was approved by the Research and Ethics 
Committees of Arabian Gulf University and SMC.

Sample collection. Fasting blood samples were collected from all 
study subjects after 10‑12 h of overnight fasting. Subsequently, 
~10 ml venous blood samples were collected from peripheral 
vessels into a heparinized collection tube for plasma and into 
separation gel tubes (both from Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) for serum collection. All tubes were gently 
mixed and centrifuged using a UNIVERSAL 320 (Andreas 
Hettich GmbH & Co.KG, Tuttlingen, Germany) (10 min at 
3,000 x g at 25˚C) for serum separation. The plasma was sepa-
rated using Ficoll gradient centrifugation (10 min at 3,000 x g 
at  25˚C). Serum was used for lipid analysis and stored as 
aliquots at ‑80˚C for later use in protein profiling. Plasma was 
used for fasting glucose concentration measurements and stored 
as aliquots at ‑80˚C for other experiments.

Biochemical tests
Blood glucose and glycated hemoglobin (HbA1c) determi‑
nation. Blood glucose levels were analyzed using Clinical 
Analyzer Roche COBAS Integra®  800 (Roche Applied 
Science, Rotkreuz, Switzerland). The results were expressed 
using SI units (mmol/l).

The assay for HbA1c measurement involved the use of 
four reagents: Total Hb, HbA1c R1 antibody and HbA1c R2 
agglutinate reagents, and Hb denaturant (Beckman Coulter, 
Inc., Brea, CA, USA). The ratio of HbA1c to total Hb was 
expressed as a percentage, HbA1c %.

Serum lipid profile. The lipid profile parameters, including 
total cholesterol, triglyceride, and low‑and high‑density lipo-
protein cholesterol, were measured at the SMC Biochemistry 
Laboratory using Clinical Analyzer Roche COBAS Integra 800 
(Roche Applied Science).

Protein profiling using LC‑MS/MS
Protein depletion and serum preparation. To overcome the 
serum protein complexity, human serum albumin (HSA) 
and the major subclasses of γ globulin (IgG) were removed 
from the serum. Pierce Albumin/IgG Removal kit (Thermo 
Fisher Scientific, Inc.) was used and the depletion protocol was 
followed according to the manufacturer's protocols. The filtrate 
containing the sample depleted from HSA and IgG subclasses 
was considered a depleted sample, and the unprocessed 
serum a non‑depleted sample. The proteins were precipitated 
using 1 M NaCl. The depleted samples were concentrated 
using Amicon® Ultra‑0.5 Centrifugal Filter Devices (EMD 
Millipore, Billerica, MA, USA). The non‑depleted samples 
were first desalted with 1 M NaCl and then concentrated 
similar to the depleted samples.

Protein determination. The Bradford method  (16) was 
used to determine the exact quantity of proteins in the serum, 
in order to calculate the amount of sample required for protein 
analysis, a prerequisite for LC‑MS/MS analysis. Briefly, the 
assay was performed in a 96‑well micro‑titer plate. The stock 
solution used for this assay contained bovine serum albumin 
(BSA; Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) 
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as Stock I, 1:10 (v/v) RapiGest™ SF (Waters Corporation, 
Milford, MA, USA) as Stock II and 1:100 (v/v) RapiGest SF 
as blank solution. A set of 8 diluted BSA standards (0.50, 0.85, 
1.40, 2.40, 4.00, 7.00, 11.80 and 20.00 µg/100 µl) in a final 
volume of 50 ml with Stock 1 were prepared. The absorbance 
for the samples was measured at 590 nm using a spectropho-
tometer (Bio‑Rad Laboratories, Inc., Hercules, CA, USA). The 
estimated protein concentration for each sample was deter-
mined using a standard curve.

All serum samples were diluted at a 1:1 ratio with 
0.1% RapiGest SF prior to protein determination assay, in 
order to achieve a protein concentration for the diluted samples 
within the working range of the standards (0.5‑20 µg/µl). The 
RapiGest SF solution was prepared from 50 mM ammonium 
bicarbonate (AmBic), bezamidine and 20 mM phenylmethyl-
sulfonyl fluoride (all from Sigma‑Aldrich; Merck KGaA). The 
diluted samples were stored at ‑80˚C prior to protein analysis.

In‑solution protein digestion prior to LC‑MS/MS. For 
LC‑MS/MS analysis, the non‑depleted and depleted sera 
were diluted at a 1:1 ratio with 0.1% RapiGest SF and study 
samples were pooled together. Accordingly, the duplicates of 
the 12 sera samples (12 depleted and 12 non‑depleted) were 
each pooled into 4 sets of samples (T2DM males/females and 
control males/females). The total load for each pooled sample 
used for analysis was 100 µg in a final volume of 25 µl. The 
volume of each sample to be included in the pooled sample 
was calculated from the protein concentration in each sample. 
The final volume was achieved by adding 0.1% RapiGest SF 
in 50 mM AmBic solution. The proteins in the pooled samples 
were denatured at 80˚C for 15 min in a Thermo‑mixer R 
(Eppendorf, Hamburg, Germany) at a speed of 8 x g. The 
denatured proteins were reduced by 100 mM dithiothreitol 
at 60˚C for 30 min and then alkylated by 200 mM iodoacet-
amide (both from Sigma‑Aldrich; Merck KGaA) at room 
temperature for 40 min in the dark. Finally, the proteins were 
digested using Trypsin at a 1:50 ratio (Promega Corporation, 
Madison, WI, USA). The samples were incubated at 37˚C over-

night in an Eppendorf Thermo‑mixer R (8 x g). Subsequently, 
the digestion was stopped by acidification (12 M HCl at 37˚C 
for 15 min) and centrifugation (15,682 x g at 4˚C for 10 min). 
The samples were diluted at a 1:1 ratio with the dilution solu-
tion (1% acetonitrile, 0.1% formic acid and 99% H2O LC/MS 
grade). The protein digest was then analyzed using Synapt G2 
MS (Waters Corporation).

Protein identification by LC‑MS/MS. Label‑free quan-
titative expression protein profiling was performed using 
1‑dimensional Nano Acquity liquid chromatography coupled 
with LC‑MS/MS on a Synapt G2 instrument (Waters 
Corporation). The instrument settings for electrospray 
ionization MS analysis were optimized on the tune page, as 
previously described  (17,18). Briefly, detectors set up was 
adjusted using 0.5 ng/µl leucine‑enkephalin (556.277 Da). 
Mass (m/z) calibration was achieved on a separate infusion of 
500 fmol Glu‑fibrinopeptide B (785.843 Da), using the Mass 
Lynx 4.1 SCN870. The setting of other parameters was as 
follows: Capillary voltage 3.5 kV, sample cone 35 V, extraction 
cone 4 V, source temperature 85˚C, cone gas 10 l/h, Nano flow 
gas 0.6 bar and purge gas 600 l/h. All analyses were conducted 
on Trizaic Nano source (Waters Corporation).

A total of 3 µg protein digest was loaded on LC‑MS/MS 
column and all samples were spiked with yeast alcohol dehydro-
genase (Sigma‑Aldrich; Merck KGaA) as an internal standard 
to the digests, to provide 200 fmol per injection for absolute 
quantitation. All the analyzed samples were processed using 
the Acquity sample manager with mobile phase consisting of 
A1 (99% water, 0.1% formic acid and 1% acetonitrile) and B1 
(100% acetonitrile and 0.1% formic acid) solutions with a sample 
flow rate of 0.500 µl/min. Data independent acquisition (DIA) 
and ion mobility separation experiments were performed, and 
data was acquired over a range of m/z 50‑2,000 Da with a scan 
time of 1 sec, at a ramped transfer collision energy of 25‑50 V 
with a total acquisition time of 120 min in DIA analysis. All 
peptides within a defined m/z range were subjected to fragmen-
tation, resulting in accurate protein quantification.

Table I. Clinical, biochemical and demographic characteristics of the study subjects.

		C  linical		  Age	 Glucose	 HbA1c	 LDLC	 HDLC	 TGs	 T CHOL
Serial no.	 Sample ID	 diagnosis	 Sex	 (years)	 (mmol/l)	 (%)	 (mmol/l)	 (mmol/l)	 (mmol/l)	 (mmol/l)

  1	 M1	 T2DM	 F	 42	 6.3	 49	 3.6	 1.3	 1.8	 3.6
  2	 S4	C ontrol	 F	 42	 5.7	 ND	 3.3	 1.5	 1.2	 5.3
  3	 M18	 T2DM	 F	 41	 7.2	 30	 3.3	 1	 1.7	 5.1
  4	 S8	C ontrol	 F	 41	 5.4	 ND	 2.5	 1.7	 1	 4.7
  5	 ES12	 T2DM	 F	 47	 7.4	 71	 4.4	 1	 1.6	 6.1
  6	 SR	C ontrol	 F	 47	 4.9	 ND	 3.73	 1.6	 0.8	 5.7
  7	 ES27	 T2DM	 M	 42	 7.3	 53	 3.6	 0.9	 1.4	 5.1
  8	 S52	C ontrol	 M	 42	 5.1	 ND	 2.5	 0.98	 1.4	 4.1
  9	 ES29	 T2DM	 M	 41	 6.9	 44	 1.8	 0.9	 2.8	 4
10	 S15	C ontrol	 M	 41	 4.9	 ND	 3.1	 1.2	 0.4	 4.5
11	 S75	 T2DM	 M	 47	 12.1	 89	 4.4	 1	 1.5	 6.1
12	 SK	C ontrol	 M	 47	 5.5	 ND	 3.2	 0.9	 1.7	 4.3

LDLC, low density lipoprotein cholesterol; HbA1c, glycated hemoglobin; HDLC, high density lipoprotein cholesterol; TGs, triglycerides; T 
CHOL, total cholesterol; ND, not done; T2DM, type 2 diabetes mellitus; M, male; F, female.
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The samples were analyzed in duplicate and data were 
acquired using Mass Lynx software (version 4.1, SCN870; 
Waters Corporation) operated in resolution and positive polarity 
modes. The acquired MS data were background‑subtracted, 
smoothed and de‑isotoped at a medium threshold. Progenesis 
QI V2.0 (QIfp) for proteomics (Nonlinear Dynamics; Waters 
Corporation) was used for automated data processing and 
database searching. The generated peptide masses were 
searched against UniProt protein sequence database using the 
Progenesis QI V2.0 (QIfp) for proteomics, for protein iden-
tification and quantification (Nonlinear Dynamics; Waters 
Corporation).

Data analysis and informatics. The comparisons were made 
between the mean ± standard error of the mean values of the 
readings of each subset of samples, such as the depleted samples 
of T2DM males and female vs. the controls. The Progenesis QI 
V2.0/TransOmics Informatics (Waters Corporation) software 
was used to process and search the data using the principle 
of the search algorithm, as previously described  (19,20). 
The data were filtered to show only statistically significant 
[P<0.05; analysis of variance (ANOVA) and post hoc Tukey's 
test] changes in protein concentration with maximum fold 
change (MFC) ≥1.5. Normalized label‑free quantification was 
achieved to plot principal component analysis against data 
split into two groups (data not shown). Hierarchical Cluster 
Analysis of the expression profiles of the test samples between 
all (males and females) controls and T2DM subjects was 
conducted and Bray Curtis Correlation distance metric and an 
average linkage clustering method from the J‑Express Pro V1.1 
software (java.sun.com) was used to generate dendrograms. 
P≤0.05 was considered to indicate a statistically significant 
difference. For classification of the identified proteins, the 
UniProt database (https://www.uniprot.org/) and PANTHER 
Class Information (http://www.pantherdb.org/panther/cate-
gory.do?categoryAcc=GO:0030234) were the bioinformatics 
tools used. PubMed (https://www.ncbi.nlm.nih.gov/pubmed) 
was used for searching the literature for the association of 
each of the identified proteins with DM (any type) and insulin 
resistance, if no publication was located, the association of that 
protein with any other disorder was searched for.

Results

Tota l  a nd d i f feren t ia l ly ‑ expressed  pro te ins  in 
non‑depleted and depleted sera. LC‑MS/MS identified 
~1,400,000  proteins/peptides in non‑depleted sera and 
~2,400,000 in depleted sera from healthy non‑diabetic 
subjects (controls) and patients with T2DM (cases). From 
the non‑depleted samples, 117 proteins exhibited signifi-
cantly different expression changes between cases and 
controls (P<0.05; ANOVA). Of the 117 identified differen-
tially‑expressed proteins, only 43 exhibited a significantly 
marked difference (MFC ≥1.5, P<0.05) between the 2 groups. 
By contrast, the levels of 168 proteins in the depleted samples 
were significantly different between patients and controls 
(P<0.05), and of the 168, only 23 proteins differed markedly 
(MFG ≥1.5). However, 4 of the proteins with MFC ≥1.5 and 
P<0.05 were detected in both depleted and non‑deleted data-
sets (data not shown).

Markedly differentially‑expressed proteins in T2DM in the 
analysis of non‑depleted sera samples. As detailed in Table II, 
of the 43 proteins with MFG ≥1.5 and P<0.05 in non‑depleted 
samples, 29 were upregulated and 14 downregulated in T2DM, 
compared with control samples. The most upregulated proteins 
(P<0.001) were α‑1‑acid glycoprotein 2, Ig μ chain C region, 
Ig  γ‑3 chain C region, thrombin light chain, and heparin 
cofactor 2, while the most downregulated proteins were Ig γ‑4 
chain C region, and ribulose‑5‑phosphate‑3‑epimerase isoform 
CRA_a.

Details on the expression changes, and protein characteristics 
and descriptions are presented in Table II. The peptide count range 
of the upregulated proteins was 1‑35 peptides [mean ± standard 
deviation (SD), 10.1±8.2 peptides; median, 9.0 peptides; 25‑75%, 
3.0‑16.3 peptides] and the unique peptide range was 1‑32 peptides 
(mean ± SD, 4.8±6.4 peptides; median, 3.0 peptides; 25‑75%, 
1.0‑5.0 peptides). The peptide count range of the downregulated 
proteins was 1‑19 peptides (mean  ±  SD, 4.7±5.4  peptides; 
median, 2.0 peptides; 25‑75%, 1.3‑7.0 peptides), and the unique 
peptides range was 1‑19  peptides (mean, 3.6±4.7 peptides; 
median, 2.0 peptides; 25‑75%, 1.0‑3.0 peptides). The expression 
changes, upregulation, including proline rich coiled‑coil 2B 
and α‑1‑acid glycoprotein 2, and downregulation, including 
apolipoprotein C‑II and suppression of tumorigenicity 5 protein, 
of a number of these proteins between subjects with T2DM 
and non‑diabetic subjects (P<0.05, ANOVA) are depicted 
in Fig. 1A‑F and G‑L, respectively. As depicted in Fig. 2, the 
expression levels of 30 differentially‑expressed proteins (P<0.05, 
ANOVA; MFC ≥1.5), including heparin cofactor 2, Ig α‑1 chain C 
region, zinc‑α‑2‑glycoprotein and inter‑α‑trypsin inhibitor heavy 
chain H1, among all 4 study groups, (T2DM males/females and 
control males/females) were subjected to Hierarchical Cluster 
Analysis, which separates the samples into two distinct clusters, 
cases and controls,

Markedly differentially expressed proteins in T2DM in the 
analysis of depleted sera samples. Using the depleted sera, 
23/168  proteins were markedly differentially expressed, 
including 15 up‑ and 8 downregulated proteins in T2DM, 
compared with control samples. These changes were considered 
significant based on the ANOVA results (P<0.05; Table III). 
Among the most upregulated proteins in the depleted samples 
from T2DM subjects (P<0.001) were vitronectin, Hb subunit δ 
and apolipoprotein B‑100. Additionally, the most downregulated 
protein in T2DM was CD5 antigen‑like protein (P=0.0087).

Details on expression changes, and protein characteristics 
and descriptions are presented in Table III. The peptide count 
range of the upregulated proteins was 1‑16 peptides (mean ± SD, 
4.3±4.1  peptides; median, 3 peptides; 25‑75%, 1.3‑5.5 
peptides) and the unique peptides range was 1‑16 peptides 
(mean ± SD, 3.4±3.7 peptides; median, 3 peptides; 25‑75%, 
1.0‑4.0 peptides). The peptide count range of the downregu-
lated proteins was 1‑16 peptides (mean ± SD, 4.7±5.4 peptides; 
median, 2.0 peptides; 25‑75%, 1.3‑7.0 peptides), and the unique 
peptides range was 1‑6 peptides (mean ± SD, 3.9±2.1 peptides; 
median, 4.0 peptides; 25‑75%, 2.0‑6.0 peptides).

The difference in expression levels (up‑ and downregula-
tion) of a number of these proteins between subjects with 
T2DM and control subjects, are depicted in Fig. 3A‑F and G‑L, 
respectively. The expression levels of 9 differentially‑expressed 
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proteins (P<0.05, ANOVA; MFC ≥1.5), including importin‑8 
and plasma protease C1 inhibitor, among all 4 study groups, 
(T2DM males/females and control males/females) was 

subjected to Hierarchical Cluster Analysis, which separates 
the samples into two distinct clusters, cases and controls, as 
depicted in Fig. 4.

Figure 1. Histograms of the normalized abundance of selected differentially‑expressed proteins (highest and lowest) identified in non‑depleted serum samples 
from patients with T2DM (males and females together) and normal control subjects (males and females together). The expression changes of (A‑F) upregulated 
and (G‑L) downregulated proteins in T2DM, compared with the control, are indicated. The differences between T2DM subjects and controls for the upregu-
lated proteins, including (A) protein PRRC2B (P=0.012), (B) α‑1‑acid glycoprotein 2 (P<0.001) and (C) isoform 2 of Haptoglobin‑related protein (P=0.009), 
and downregulated proteins, including (G) apolipoprotein C‑II (P=0.027), (H) suppression of tumorigenicity 5 protein (P=0.022), (I) intraflagellar transport 
protein 122 homolog (fragment) (P=0.046), and (J) procollagen C‑endopeptidase enhancer 2 (fragment) (P=0.01), were significant (*P<0.05), according to 
analysis of variance. The other proteins D‑F, K and L were comparable between the cases and the controls. The proteins were identified using label‑free 
quantified liquid chromatography tandem mass spectrometry on Synapt G2 analysis. The expression levels of (A‑L) all proteins were significantly different 
between T2DM subjects and controls when males and females compared separately. T2DM, type 2 diabetes mellitus.
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Functional classification of the differentially‑expressed 
proteins. The UniProt database, being one of the reliable 
sources  (21) for the biological and/or molecular functions 
of the identified differentially‑expressed proteins, was 
searched. The 62 identified proteins could be categorized into 
multiple sub‑classes. The largest class was that of immune 
system‑associated proteins, consisting of 18 proteins, which 
included 13 different types of Igs [11 Ig chain C regions (6 γ, 
2 α, 1 κ, 1 λ and 1 μ), 2 Ig chain V regions (1 Ig κ chain V‑I 
region AG and 1 Protein IGKV2‑28)], and 5 were proteins 
with variable immune functions  (Table  IV). The majority 
(83%, 15/18) of the proteins in this class were upregulated 
in T2DM, compared with the control samples. The other 
classes were enzyme regulators (6  proteins), Hb chains 
and Hb‑associated proteins (5 proteins), catalytic proteins 
(4 proteins) and cell adhesion proteins (4 proteins). Additional 
classes of proteins identified included signal transduction 
(4  proteins), transport (3  proteins), lipid metabolism and 
apolipoproteins (3 proteins), blood coagulation (2 proteins) 
and regulatory (2 proteins) classes. In the remaining classes 

of proteins, including cytoskeletal, secretory, RNA‑binding 
and spermatogenesis, only 1 protein was identified in each 
class. Additionally, classes of 7 proteins were not identified. 
However, functionally, a number of proteins could belong to 
more than one class

Association of the identified proteins with DM and development 
of T2DM protein panel. A literature search on PubMed was 
performed to determine the association between the 62 iden-
tified proteins and DM. It was determined that 25 proteins 
have been previously reported to be associated with DM. Of 
these proteins, 8 (apolipoprotein A‑I, plasminogen, pigment 
epithelium‑derived factor, serum amyloid P‑component, apoli-
poprotein B‑100, ceruloplasmin, transthyretin and α‑1‑acid 
glycoprotein 28) had previously been thoroughly investigated 
in DM (each reported in >300 articles at the time of the search). 
Furthermore, 3 proteins (vitronectin, myosin light chain 5 
and apolipoprotein C‑II) had been frequently investigated in 
DM (100‑300 articles), and 6 proteins (Hb subunit α, heparin 
cofactor 2, zinc‑α‑2‑glycoprotein, Ig κ chain C region, multiple 

Figure 2. Hierarchical Cluster Analysis of the expression profiles of non‑depleted serum samples using 30 proteins that differ significantly (P<0.05, analysis 
of variance; maximum fold change ≥1.5) between all controls (males and females; blue) subjects and all subjects with type 2 diabetes mellitus (red). The 
dendrogram was generated using the Bray Curtis Correlation distance metric and an average linkage clustering method from the J‑Express Pro V1.1 software 
(java.sun.com).
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PDZ domain protein and Rap guanine nucleotide exchange 
factor  2) had been less investigated. Finally, 8  proteins, 
including protein AMBP, complement component C8 α chain, 
CD5 antigen‑like, Ig λ‑2 chain C regions, clusterin β chain, 
eukaryotic translation initiation factor 4E type 3, suppression 
of tumorigenicity 5 protein and bile salt export pump, had been 
infrequently reported in association with DM (<5 articles). 
The PubMed search did not reveal any study for DM with the 
remaining 37/62 proteins (Tables II and III). These 37 proteins 

are thus a potential ‘novel T2DM‑protein‑panel’ that requires 
further verification.

Discussion

DM is a classic metabolic disorder, during which the 
metabolism is frequently disturbed and metabolic homeostasis 
is disarranged, due to lack or reduction of the insulin 
action (22). Insulin is a major regulator of metabolism in all 

Table III. List of significantly and markedly upregulated and downregulated proteins in T2DM relative to control subjects, 
identified by liquid chromatography tandem mass spectrometry analysis using depleted serum samples.

A, Upregulated proteins in T2DM

 			   Peptide	 Unique	 P‑value	
Serial no.	 Accession	D escription	 count	 peptides	 (ANOVA)	 MFC

  1	 P04004	 Vitronectin	   2	   1	 0.0005	 2.912
  2	 P02042	 Hemoglobin subunit δ	   8	   2	 0.0005	 2.051
  3	 A8MUN2	 Apolipoprotein B‑100	 16	 16	 0.00089	 1.518
  4	C 9J7Z6	 Eukaryotic translation initiation	   3	   3	 0.00148	 2.030
		  factor 4E type 3 (fragment)
  5	 A0A087	 Multiple epidermal growth factor‑like	   1	   1	 0.00169	 1.830
		  domains protein 11 (fragment)
  6	 P69905	 Hemoglobin subunit α	   9	   3	 0.0030	 2.040
  7	 Q08380	 Galectin‑3‑binding protein	   4	   4	 0.00861	 1.698
  8	 Q30KQ8	 β‑defensin 112	   1	   1	 0.01019	 1.782
  9	D 6RA88	 Myosin light chain 5	   1	   1	 0.0132	 2.193
10	 P02766	 Transthyretin	   6	   5	 0.0175	 3.053
11	 Q9Y4G8	 Rap guanine nucleotide	   4	   4	 0.0187	 1.553
		  exchange factor 2
12	 Q96J01	 THO complex subunit 3	   3	   3	 0.02369	 1.662
13	 O95342	 Bile salt export pump	   4	   4	 0.0391	 1.627
14	 O15397	 Importin‑8	   1	   1	 0.0437	 1.555
15	 Q5VU13	 V‑set and immunoglobulin	   2	   2	 0.04537	 2.090
		  domain‑containing protein 8

B, Downregulated proteins in T2DM

			   Peptide	 Unique	 P‑value	
Serial no.	 Accession	D escription	 count	 peptides	 (ANOVA)	 MFC

16	 O43866	CD 5 antigen‑like	   6	   6	 0.0087	 2.849
17	 A0A087WXL8	 Ig γ‑3 chain C region	 17	   6	 0.0102	 2.638
18	 P05155	 Plasma protease C1 inhibitor	   3	   3	 0.0179	 2.921
19	 P01859	 Ig γ‑2 chain C region	 14	   6	 0.0218	 1.547
20	 H3BTQ6	 TATA box‑binding protein‑associated	   5	   2	 0.0229	 1.636
		  factor RNA polymerase I subunit C
21	 Q5TAQ9	DD B1‑ and CUL4‑associated factor 8	   5	   5	 0.02439	 1.512
22	 P01861	 Ig γ‑4 chain C region	   7	   2	 0.0289	 5.884
23	 Q8N196	 Homeobox protein SIX5	   1	   1	 0.0413	 1.577

P<0.05 was considered to indicate a statistically significant difference; MFC ≥1.5 was considered to indicate a notable change. ANOVA and 
MFC were calculated using TransOmics software (Progenesis QI 2.0). T2DM, type 2 diabetes mellitus; ANOVA, analysis of variance; MFC, 
maximum fold change.
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macromolecules, carbohydrates, lipids and proteins  (23). 
By contrast, insulin secretion is regulated by a number of 
metabolites, including ATP/ADP and NAD/NADH ratios, 

blood glucose and amino acids  (24). We expected that a 
number of proteins are involved in DM pathological changes 
and their consequences.

Figure 3. Histograms of the normalized abundance of selected differentially‑expressed proteins (highest and lowest) identified in depleted serum samples from 
patients with T2DM (males and females together) and normal control subjects (males and females together). The expression changes of (A‑F) upregulated and 
(G‑L) downregulated proteins in T2DM, compared with the control, are shown. The differences between T2DM subjects and controls for the upregulated pro-
teins, including (A) transthyretin (P=0.018) and (B) vitronectin (P<0.001), and downregulated proteins, including (G) plasma protease C1 inhibitor (P=0.018) 
and (H) Ig γ‑4 chain C region (P=0.029), were significant (*P<0.05), according to analysis of variance. Expression levels of the other proteins (C‑F) and (I‑L) 
were not significantly different between cases and controls. The proteins were identified using label‑free quantified liquid chromatography tandem mass 
spectrometry on Synapt G2 analysis. The expression levels of (A‑L) all proteins were significantly different between T2DM subjects and controls when males 
and females compared separately. T2DM, type 2 diabetes mellitus.
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In the present study, depleted and non‑depleted sera 
samples were analyzed, in order to evaluate the abundance 
of serum proteins in T2DM. An increased number of 
differentially-expressed proteins was identified in depleted 
sera samples, compared with non‑depleted sera samples 
(163 vs. 117, respectively). This is not unexpected, due to 
the major plasma proteins (albumin and Igs) being known to 
mask detection of minor plasma proteins (25). Unexpectedly, 
the proteins whose levels of expression markedly differed 
between T2DM and control samples has an increased number 
in the non‑depleted sera samples, compared with the depleted 
sera samples. (43 vs. 23, respectively). The identification of a 
larger number of markedly differentially‑expressed proteins 
in T2DM in non‑depleted sera may indicate that the majority 
of protein markers of T2DM are not minor plasma proteins, 
regardless of their physiological/pathological significance. 
However, only 4 proteins were identified in both datasets 
of sera samples. Consequently, the 62 proteins that were 
markedly differentially‑expressed in either of the 2 sets of 
sera samples are subsequently referred to as the ‘identified 
proteins’.

The majority of the identified proteins were upregulated 
(71%) in T2DM subjects, compared with the controls; whereas, 
the remaining proteins were downregulated. Using UniProt 

and PANTHER Class Information, the identified proteins 
were roughly categorized into 16 protein classes (Table IV).

The most notable observation was that the immune class 
of proteins was highly represented and markedly upregulated 
(15/18 proteins) in T2DM. These proteins mostly include the Ig 
chain C regions (γ, α, κ, λ and μ). However, 2 Ig variable regions, 
Ig κ chain V‑I region AG and Protein IGKV2‑28, were also 
identified and the latter was demonstrated to be upregulated. 
These 2 proteins had been previously reported to be associated 
with systemic lupus erythematous, an autoimmune disease (26). 
The role of immunity in T2DM is bimodal; since immunity 
could contribute to the pathology of T2DM (27) and, by contrast, 
the suppression of immunity is one of the major consequences 
of T2DM (28). Other immune proteins, including isoform 2 of 
Ficolin‑3, β‑defensin 112, Complement component C8 α chain 
and Serum amyloid P‑component, were also upregulated in 
T2DM. Among the downregulated immune proteins were CD5 
antigen‑like, Ig γ‑4 chain C region and Ig κ chain V‑I region AG.

Out of the identified Ig chains, only 2 had been previously 
reported in relation to DM: The Ig κ chain C region, which was 
demonstrated to be upregulated in T2DM (29); and Ig λ‑2 chain 
C regions, which has been indicated to be a site for methylglyoxal 
modification that associates hyperglycemia to T2DM 
complications (30). Of the other identified immune‑associated 

Figure 4. Hierarchical Cluster Analysis of the expression profiles of depleted serum samples using 9 proteins that differ significantly (P<0.05, analysis of vari-
ance; maximum fold change ≥1.5) between all controls (males and females; blue) subjects and all subjects with type 2 diabetes mellitus (red). The dendrogram 
was generated using the Bray Curtis Correlation distance metric and an average linkage clustering method from the J‑Express Pro V1.1 software (java.sun.com).
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proteins, CD5 antigen‑like was reported to be associated with 
atherosclerosis in T2DM (31), the serum amyloid P‑component 
was associated with progression of retinopathy in T2DM (32) 
and complement component C8 α chain has been indicated as 
a biomarker for maturity‑onset diabetes of the young types of 
DM (33). However, the remaining 13 immune‑related proteins 
have not been previously reported in association with DM, 
based on the literature PubMed search.

Among the identified potential biomarker proteins, 6 
were enzyme regulators, 4 of which (inter‑α‑trypsin inhibitor 
heavy chain H1, plasma protease C1 inhibitor, thrombin light 
chain and inter‑α‑trypsin inhibitor heavy chain H2) have not 
been previously reported in association with DM. Regarding 
the remaining 2 proteins, the protein AMBP was reported as 
a urinary biomarker for diabetic nephropathy (34), while the 
pigment epithelium‑derived factor was determined to be asso-
ciated with T2DM in females with gestational diabetes (35). 
Both proteins were determined to be upregulated in T2DM 
samples in the present study, compared with the control. By 
contrast, the 4 enzymes cDNA FLJ55673 (similar to comple-
ment factor B), multiple epidermal growth factor‑like domains 
protein 11, ribulose‑5‑phosphate‑3‑epimerase isoform CRA_a 
and isoform SH‑iPLA2 of 85/88 kDa calcium‑independent 
phospholipase A2, have not been previously reported in asso-
ciation with DM. In the present study, cDNA FLJ55673 and 
multiple epidermal growth factor‑like domains protein 11 were 
upregulated, and ribulose‑5‑phosphate‑3‑epimerase isoform 
CRA_a and isoform SH‑iPLA2, were downregulated in T2DM.

Furthermore, 2 Hb chains (Hb subunits α and δ), and a 
Hb carrier (isoform 2 of haptoglobin‑related protein) were 

upregulated, while 2 Hb chains (Hb subunits β and γ‑2) were 
downregulated in T2DM, compared with the control. Of the 
above Hb‑associated proteins, only Hb subunit α had been 
previously indicated as a biomarker for T2DM (36).

The cell adhesion proteins were another class of proteins 
identified in the present study. Vitronectin, multiple PDZ domain 
protein, galectin‑3‑binding protein and zinc‑α‑2‑glycoprotein 
were all determined to be upregulated. Vitronectin was reported 
to be associated with the risk of metabolic syndrome and 
T2DM (37) and zinc‑α‑2‑glycoprotein was demonstrated to be 
associated with insulin resistance and T2DM (38), while the 
multiple PDZ domain protein was reported to be associated with 
DM (39). However, the galectin‑3‑binding protein has not been 
reported in association with DM previously.

Among the identified differentially‑expressed proteins 
in T2DM were 4 signal transduction proteins, including 
importin‑8, rap guanine nucleotide exchange factor  2, 
DDB1‑ and CUL4‑associated factor  8 and suppression of 
tumorigenicity 5 protein. The former 2 proteins were upregu-
lated and the latter 2 were downregulated. The suppression of 
tumorigenicity 5 protein and rap guanine nucleotide exchange 
factor 2 had been previously associated with pancreatic islets 
cells function  (40,41), while the other 2 proteins were not 
reported with DM.

In the present study, ceruloplasmin, transthyretin and 
α‑1‑acid glycoprotein 2, classified as transporters proteins, 
were all highly expressed in T2DM, compared with the 
control. This observation was consistent with previously 
reported data revealing the association between these proteins 
and DM  (42‑44). Similarly, 3  proteins involved in lipid 

Table IV. Functional classification of the differentially‑expressed proteins, identified by liquid chromatography tandem mass 
spectrometry, in T2DM.

			   Upregulation	D ownregulation
No.	C lass of proteins	 No. of proteins	 in T2DM	 in T2DM

  1	 Immunity (largely antibodies)	 18a	 15	   3
  2	 Undefined class	   7	   3	   4
  3	 Enzyme regulator	   6	   4	   2
  4	 Hemoglobin chains and hemoglobin binding	   5	   3	   2
  5	C ell adhesion	   4	   4	   0
  6	C atalytic: enzymes	   4	   2	   2
  7	 Signal transduction	   4	   2	   2
  8	 Lipid metabolism and transport	   3	   2	   1
  9	 Transport	   3	   3	   0
10	 Blood coagulation	   2	   2	   0
11	 Regulatory	   2	   2	   0
12	 Transcription factor	   2	   1	   1
13	C ytoskeletal protein	   1	   1	   0
14	 RNA binding	   1	   1	   0
15	 Secretory	   1	   1	   0
16	 Spermatogensis	   1	   0	   1
Total		  62	 46	 18

aTwo proteins were both up‑ and downregulated, but in a different set of sera (depleted and non‑depleted). Additionally, a number of proteins 
belong to multiple classes. T2DM, type 2 diabetes mellitus.
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metabolism and transport, including apolipoproteins B‑100, 
C‑II and A‑I, that were differentially‑expressed in the present 
study (the former one was upregulated, while the latter 2 were 
downregulated), had previously been associated with DM and 
its complications (45‑47).

The 2 blood coagulation‑associated proteins identified 
in the present study, plasminogen and heparin cofactor 2, 
were upregulated in T2DM; however, both proteins had 
previously been demonstrated to be associated with 
DM (48,49). The 2 identified regulatory proteins, V‑set and 
Ig domain‑containing protein 8, and eukaryotic translation 
initiation factor 4E type 3 (eIF4E type 3) (both upregulated), 
had not been previously reported as DM‑associated proteins. 
However, eIF4E type 3 is involved in renal insulin‑induced 
protein synthesis (50).

Other identified proteins in the present study were as 
follows: Myosin light chain 5 (upregulated), which belongs 
to the cytoskeletal class of proteins and may be involved in 
endothelial tissue dysfunctions in DM (51); bile salt export 
pump, a secretory protein, which was highly expressed in 
T2DM samples and has been considered to be involved in 
the hepatotoxicity of troglitazone, an anti‑diabetes agent (52); 
and THO complex subunit 3, an RNA‑binding protein (53), 
which was upregulated in the present study, but had not been 
previously associated with DM.

Classes of 7 proteins were not identified: TATA box‑binding 
protein‑associated factor RNA polymerase I subunit C, intrafla-
gellar transport protein 122 homolog, isoform 4 of coiled‑coil 
domain‑containing protein 17, procollagen C‑endopeptidase 
enhancer 2, Ugl‑Y3, protein IGKV3‑11 and clusterin β chain. 
These proteins had also not been previously described in 
association with DM and their observed expression changes in 
T2DM in the present study was a novel observation. However, 
clusterin gene polymorphism had previously been determined 
to be associated with T2DM (54).

Finally, to validate the observations of LC‑MS/MS 
analysis, 2 of the identified proteins were analyzed by ELISA 
in a relatively larger sample size from the same setting. 
Additionally, the results confirmed the differential expression 
of these proteins in T2DM (data not published). Notably, in 
the future, the remaining 35 identified novel proteins will be 
evaluated using a large sample size from the region.

In conclusion, in the present study, 62 markedly differen
tially-expressed proteins were identified by LC‑MS/MS 
in Bahraini patients with T2DM. These proteins could be 
grouped functionally into 16 classes, the largest being that of 
immune‑associated proteins. The majority of the identified 
proteins were upregulated in T2DM. The fact that 25 of the 
identified proteins have been previously implicated with DM 
is a validation of the present data. The remaining 37 proteins 
need to be validated in larger samples in order to access their 
potential clinical usefulness in DM; however, their association 
with T2DM in the present study is a novel finding. A detailed 
investigation of each of the 37 proteins may provide insight into 
the understanding of the pathogenesis and pathophysiology 
of T2DM and insulin resistance, since each of these proteins 
have a known physiological function. Finally, the global blood 
protein profile in T2DM, as revealed by LC‑MS/MS proteomic 
analysis, demonstrated increased protein synthesis, including 
immune proteins.
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