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Abstract. An ever‑increasing number of long noncoding (lnc)
RNAs has been identified in breast cancer. The present study 
aimed to establish an lncRNA signature for predicting survival 
in breast cancer. RNA expression profiling was performed 
using microarray gene expression data from the National 
Center for Biotechnology Information Gene Expression 
Omnibus, followed by the identification of breast cancer‑related 
preserved modules using weighted gene co‑expression network 
(WGCNA) network analysis. From the lncRNAs identified in 
these preserved modules, prognostic lncRNAs were selected 
using univariate Cox regression analysis in combination with 
the L1‑penalized (LASSO) Cox‑proportional Hazards (Cox‑PH) 
model. A risk score based on these prognostic lncRNAs 
was calculated and used for risk stratification. Differentially 
expressed RNAs (DERs) in breast cancer were identified using 
MetaDE. Gene Set Enrichment Analysis pathway enrichment 
analysis was conducted for these prognostic lncRNAs and 
the DERs related to the lncRNAs in the preserved modules. 
A total of five preserved modules comprising 73 lncRNAs 
were mined. An eight‑lncRNA signature (IGHA1, IGHGP, 

IGKV2‑28, IGLL3P, IGLV3‑10, AZGP1P1, LINC00472 and 
SLC16A6P1) was identified using the LASSO Cox‑PH model. 
Risk score based on these eight lncRNAs could classify breast 
cancer patients into two groups with significantly different 
survival times. The eight‑lncRNA signature was validated 
using three independent cohorts. These prognostic lncRNAs 
were significantly associated with the cell adhesion molecules 
pathway, JAK‑signal transducer and activator of transcrip-
tion 5A pathway, and erbb pathway and are potentially involved 
in regulating angiotensin II receptor type 1, neuropeptide Y 
receptor  Y1, KISS1 receptor, and C‑C motif chemokine 
ligand 5. The developed eight‑lncRNA signature may have 
clinical implications for predicting prognosis in breast cancer. 
Overall, this study provided possible molecular targets for the 
development of novel therapies against breast cancer.

Introduction

Breast cancer is the most common cancer in females worldwide 
and affects ~12% of women (1). Treatments for cancer usually 
include surgery, chemotherapy and radiation therapy (2). In 
addition, hormone‑blocking therapy is preferred by hormone 
receptor‑positive cancers (2). The prognosis of breast cancer 
varies according to a number of factors, such as stage of cancer, 
grade of cancer and age (3). Better prognosis prediction can 
potentially improve patient survival and guide tailored therapy 
of patients. Therefore, identifying prognostic biomarkers has 
become an urgent and highly active area of research.

Long non‑coding RNAs (lncRNAs) are non‑coding 
transcripts that are longer than 200 bp. Although previously 
believed to be junk DNA, studies have increasingly recognized 
the critical roles of lncRNAs in regulating cell machinery, cell 
cycle, differentiation and apoptosis (4,5). Emerging evidence 
have proved that lncRNAs are involved in the regulation of 
diverse genes and pathways involved in the development of 
breast cancer and endocrine resistance (6,7). LncRNA HOX 
transcript antisense intergenic RNA (HOTAIR) is not only 
an independent biomarker for metastasis in estrogen receptor 
(ER)‑positive breast cancer patients (8), but is also known to 
strengthen ER signaling and facilitate tamoxifen resistance (9). 
Recently, Li  et  al  (10) reported that lncRNA Angelman 
syndrome chromosome region represses the invasion and 
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metastatic capability of breast cancer cells by modulating the 
degradation of Enhancer of Zeste Homolog 2. Furthermore, 
Tracy et al (11) identified a list of lncRNAs that participate 
in breast cancer progression based on transcriptome‑wide 
sequencing of breast cancer cell lines. Although a few 
lncRNAs have been implicated in the biology of breast cancer, 
the prognostic potential of lncRNAs in breast cancer has not 
been fully elucidated.

Meng et al (12) developed a four‑lncRNA signature that 
is predictive for breast cancer prognosis. However, their 
results were only based on lncRNA expression profiling in 
887 breast cancer patients from Gene Expression Omnibus 
(GEO). Likewise, Sun et al (13) identified an eight‑lncRNA 
signature which could serve as an independent biomarker 
for prediction of overall survival of breast cancer using case 
and control datasets only downloaded from The Cancer 
Genome Atlas (TCGA) database. In the present study, an 
integrated analysis was performed using publicly available 
microarray expression profiles of breast cancer patients 
from the GEO, TCGA and Breast Cancer Molecular 
Taxonomy of Breast Cancer International Consortium 
(BRCA METABRIC) repositories to identify prognostic 
lncRNAs through weighted gene co‑expression network 
(WGCNA) network analysis, univariate Cox regression 
analysis, and Cox‑proportional Hazards (PH) model based 
on L1‑penalized (LASSO) estimation. Moreover, the 
biological significance of these lncRNAs in breast cancer 
was explored by constructing lncRNA‑mRNA networks and 
performing pathway enrichment analysis.

Materials and methods

Data sources. The microarray expression profiles of at least 
100 human breast cancer tissue samples were searched 
in the National Center for Biotechnology Information 
GEO (http://www.ncbi.nlm.nih.gov/geo/) based on the 
Affymetrix‑GPL570 platform. The search retrieved the 
datasets GSE21653 (n=266), GSE76124 (n=198), GSE5460 
(n=129) and GSE58812 (n=107). The four datasets were used 
for WGCNA network analysis.

GSE21653 was also used as the training set for the survival 
analysis of this study. The GSE20685 (Affymetrix‑GPL570 
platform) dataset comprising 327 breast cancer samples was 
downloaded from the GEO database. RNA‑seq expression 
data of 1,063 breast cancer samples were obtained from 
the TCGA database (https://portal.gdc.cancer.gov/proj-
ects/TCGA‑BRCA) and RNA‑seq expression data of 1,904 
breast cancer samples were acquired from BRCA METABRIC 
(Illumina High‑seq 2000 platform). The GSE20685, TCGA 
and BRCA METABRIC datasets were used as the validation 
sets. The clinical characteristics of patients in the four datasets 
are shown in Table I.

In addition, microarray expression data was retrieved from 
NCBI GEO based on the following criteria: Both human breast 
cancer tissue samples and paired normal tissues samples were 
included; the total number of samples was >100; the platform 
used was Affymetrix‑GPL570 platform. Three datasets, 
including GSE65194  (14) (153  breast cancer samples and 
11 normal samples), GSE29044 (15) (73 breast cancer samples 
and 36 normal samples), and GSE42568  (16) (104  breast 

cancer samples and 17 normal samples), were retrieved for 
the identification of consensus differentially expressed RNAs 
(DERs) between breast cancer and normal samples using 
MetaDE analysis.

Data preprocessing. Raw CEL profiles of the datasets 
generated using the Affymetrix‑GPL570 platform were 
subjected to median normalization, background normal-
ization and quantile normalization using the oligo  (17) 
package (version1.41.1, http://www.bioconductor.org/pack-
ages/release/bioc/html/oligo.html) in R (version 3.4.1).

Fragments per kilobase of exon per million reads mapped 
(FPKM) expression values of the datasets downloaded 
from the BRCA METABRI and TCGA repositories were 
subjected to quantile normalization using the preprocessCore 
package  (18) (version1.40.0, http://bioconductor.org/pack-
ages/release/bioc/html/preprocessCore.html) in R (version 3.4.1).

For all datasets used in the study, the probe sets with 
RefSeq IDs were identified according to Affymetrix‑GPL570 
annotation files. From all probe sets with RefSeq transcript 
IDs, the probe sets were selected that were annotated as 
non‑coding RNAs in the Refseq database  (19). Moreover, 
the sequencing reads provided by Affymetrix‑GPL570 were 
mapped to the GRCh38 human genome assembly using 
Clustal 2 (20) (http://www.clustal.org/clustal2/). The resulting 
lncRNAs combined with the annotated lncRNAs in the Refseq 
database were used for subsequent analysis.

WGCNA network analysis. Using GSE21653 as the training 
set, GSE76124, GSE5460 and GSE58812 as validation 
sets, a WGCNA network was constructed as previously 
described (21,22) using the WGCNA package (23) (version 1.61, 
https://cran.r‑project.org/web/packages/WGCNA/index.html) 
to identify breast cancer‑related modules. Briefly, the four 
datasets were compared and analyzed by correlation analysis. 
The soft threshold power of β was calculated using scale free 
topology criterion, followed by generation of the weighted 
adjacency matrix. Modules with >80 RNAs at the minimum 
cut height of 0.99 were selected using the dynamic tree cut 
method. Among these selected modules, the preserved 
modules were then determined using the WGCNA package. 
In addition, functional annotation analysis of the preserved 
modules was performed using the userListEnchment function 
of the WGCNA package. In addition, the correlations of these 
modules with clinical factors of patients in GSE21653 were 
investigated using the WGCNA package.

Survival analysis. For survival analysis, GSE21653 was used 
as a training set, whereas GSE20685, the TCGA and BRCA 
METABRIC datasets were used as the test sets. Based on 
the survival information time in GSE21653, univariate Cox 
regression analysis was performed to analyze the associations 
of the lncRNAs included in the preserved WGCNA modules 
with prognosis with the survival package in R. The lncRNAs 
with log‑rank P<0.05 were identified as prognosis‑related 
lncRNAs.

Based on these prognosis‑related lncRNAs, a Cox‑PH model 
was applied based on LASSO estimation to select the optimal 
panel of prognostic lncRNAs as previously described (24,25). 
The optimal lambda was determined after running 1,000 
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Table I. Summary of clinical characteristics in GSE21653, GSE20685, TCGA and BRCA METABRIC datasets.

Clinical characteristics	 GSE21653 (N=266)	 GSE20685 (N=327)	 TCGA (N=1,063)	 BRCA‑METABRIC (N=1,904)

Age (years)	 54.48±14.06	 47.89±10.69	 58.24±13.19	 61.09±12.98
Molecular subtype				  
  Basal	   75	‑	  141	    199
  ERBB2	   24	‑	    64	    220
  LuminalA	   89	‑	  413	    679
  LuminalB	   49	‑	  190	    461
  ‑	   29	‑	  255	    345
Histology				  
  IDC	 213	‑	  771	 1,727
  ILC	   22	‑	  190	    141
  TUB	     6	‑	      0	        0
  Others	   21	‑	  100	      36
  ‑	     4	‑	      2	        0
pN				  
  Stage 0	 120	‑	‑	‑  
  Stage 1	 140	‑	‑	‑  
  ‑	     6	‑	‑	‑  
pT				  
  Stage 1	   59	‑	‑	‑  
  Stage 2	 126	‑	‑	‑  
  Stage 3	   68	‑	‑	‑  
  ‑	   13	‑	‑	‑  
SBR grade				  
  Grade 1	   45	‑	‑	‑  
  Grade 2	   89	‑	‑	‑  
  Grade 3	 125	‑	‑	‑  
  ‑	     7	‑	‑	‑  
ER status				  
  Positive	 150	 ‑	 784	 1,445
  Negative	 113	‑	  236	    429
  ‑	     3	‑	    43	      30
erbB2 status				  
  Positive	   29	 ‑	 ‑	    188
  Negative	 216	‑	‑	   1,512
  ‑	   21	‑	‑	      204
Ki67 status				  
  Positive	 144	 ‑	 ‑	 ‑
  Negative	   58	‑	‑	‑  
  ‑	   64	‑	‑	‑  
p53 status				  
  Positive	   69	 ‑	 ‑	
  Negative	 125	‑	‑	 
  ‑	   72	‑	‑	‑  
PR status				  
  Positive	 136	 ‑	 682	 ‑
  Negative	 127	‑	  337	‑
  ‑	     3	‑	    44	‑



LIU et al:  lncRNA PROGNOSTIC MODEL FOR BREAST CANCER1336

stimulations through cross‑validation likelihood. The risk score 
is the logarithm of hazard ratio from the fitted Cox‑PH model 
to dichotomize the samples (24,25). Using the Cox‑PH coef-
ficients and the optimal group of these prognostic lncRNAs, a 

risk scoring model was generated for prognosis prediction as 
follows: Risk‑score = Σ (βlncRNAn x exprlncRNAn).

βlncRNAn denotes Cox‑PH coefficient of lncRNAn while 
exprlncRNA denotes the lncRNAn expression levels.

Figure 1. Correlation analysis between the GSE21653, GSE76124, GSE5460, and GSE58812 datasets.

Table I. Continued.

Clinical characteristics	 GSE21653 (N=266)	 GSE20685 (N=327)	 TCGA (N=1,063)	 BRCA‑METABRIC (N=1,904)

Death				 
  Dead	   83	   83	 139	 1,103
  Alive	 169	 244	 930	    801
  ‑	   14	     0	     0	        0
Overall survival time (months)	 60.03±41.38	 94.71±38.45	 36.27±34.78	 125.03±76.33

Age and over survival time were expressed as the mean ± standard deviation; ERBB2, epidermal growth factor receptor 2; IDC, invasive ductal 
carcinoma; ILC, invasive lobular carcinoma; TUB, tubular carcinoma; pN, category: regional lymph nodes; pT, pathologic tumor size; SBR, 
Scarff‑Bloom‑Richardson; ER, estrogen‑receptor; PR, progesterone receptor; ‑, information unavailable; TCGA, The Cancer Genome Atlas; 
BRCA METABRIC, Breast Cancer Molecular Taxonomy of Breast Cancer International Consortium.



INTERNATIONAL JOURNAL OF MOlecular medicine  44:  1333-1343,  2019 1337

Using this risk scoring model, the risk score was calculated 
for each sample in GSE21653 (training set). All patients in this 
set were divided into the high and low risk groups based on the 
median risk score. Moreover, the robustness of this prognostic 
model was evaluated in the GSE20685, TCGA and BRCA 
METABRIC datasets (validation sets). For this purpose, all 
samples were dichotomized in each set into two different 
risk groups with the median risk score as cutoff. The two risk 
groups for survival were compared using a Kaplan‑Meier 
curve with Wilcoxon log rank test.

Selection of consensus DERs. As mentioned above, the 
GSE22866, GSE50161 and GSE4290 comprised both breast 
cancer and normal tissue samples. Consensus DERs between 
breast cancer and normal samples across the three sets were 
screened using the MetaDE package (26) (https://cran.r‑project.
org/web/packages/MetaDE/). The strict threshold was tau2=0, 
Q pval>0.05, P<0.05 and FDR<0.05.

Pathway enrichment analysis. The DERs associated with the 
prognostic lncRNAs were focused on in the preserved modules 
identified from the WGCNA network. lncRNA‑mRNA 
networks were constructed using these DERs and the prognostic 
lncRNAs. To explore the potential biological roles of these 
prognostic lncRNAs selected by the LASSO Cox‑PH model 
in breast cancer, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis was performed for 
these lncRNA‑mRNA networks using gene set enrichment 
analysis (27) (http://software.broadinstitute.org/gsea/index.jsp) 
software. Nominal P<0.05 was chosen as the cutoff value.

Results

WGCNA network module mining. The GSE21653, GSE76124, 
GSE5460 and GSE58812 datasets were used for WGCNA 
network analysis. After data preprocessing, 15,998 mRNAs 
were identified to be shared among the GSE21653, GSE76124, 
GSE5460 and GSE58812 datasets, out of which 851 were 
lncRNAs. Correlation analysis showed good correlation 
among all pairs of the four datasets based on the expression 
levels of the shared RNAs (correlation coefficients  >0.9, 
P<1x10‑200; Fig. 1).

A WGCNA network was constructed using GSE21653 
(training set). With WGCNA applying scale free topology 
criterion, the soft threshold power of β  was 5 when 
scale‑free topology model fit R2 was maximized (0.9) 
and the mean connectivity for the network was 5. A total 
of seven modules were identified (module size ≥80 and 
cut height ≥0.99) in the network (Blue, Brown, Green, 
Turquoise, Yellow, Red, and Grey; Fig. 2A). In addition, 
module mining was separately conducted for GSE76124, 
GSE5460 and GSE58812 (validation sets; Fig. 2B‑D). For 
the three sets, genes were processed in the same manner as 
for GSE21653. A multi‑dimensional scaling plot was gener-
ated to analyze the expression of genes in the seven modules 
of GSE21653. Results revealed that the genes within the 
same module cluster together (Fig. 3A). Hierarchical clus-
tering analysis of the seven modules was independently 
performed for each of the four datasets. The modules on 
the same branches showed similar gene expression patterns 
(Fig. 3B).

Figure 2. Identification of weighted gene co‑expression network modules in the datasets. (A) GSE21653, (B) GSE58812, (C) GSE76124 and (D) GSE5460. The 
RNAs are organized into various modules that are marked with different colors. Blue, Cell adhesion; Brown, Immune response; Green, Cell cycle phase; Grey, 
Epidermis development; Red, Vesicle‑mediated transport; Yellow, Response to estrogen stimulus; Turquoise, Ectoderm development.
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According to the results of module preservation analysis, 
the Blue, Brown, Green, Turquoise and Yellow modules were 
highly preserved (preservation Z‑score >10, Table II), thereby 
indicating that the five modules are breast cancer‑related 
modules. According to results of module annotation, each of 
the five modules were associated with cell adhesion, immune 
response, cell cycle phase, response to estrogen stimulus and 
ectoderm development (Table II).

Identification of a prognostic signature of lncRNAs and 
development of prognostic scoring model. The five preserved 
modules included 73 lncRNAs. Of these, 39 lncRNAs were 
found to be related to prognosis in GSE21653 (training set) 
based on univariate cox regression analysis (P<0.05; Table III). 
With expression of the 39 prognosis‑related lncRNAs as input, 
Cox‑PH model based on LASSO penalization identified eight 
prognostic lncRNAs, including IGHA1, IGHGP, IGKV2‑28, 

IGLL3P, IGLV3‑10, AZGP1P1, LINC00472 and SLC16A6P1 
(Table  IV). Based on cox‑PH coefficients and expression 
values of the eight lncRNAs, the risk score for each patient was 
calculated as follows: Risk‑score = (‑0.7451) x ExpIGHA1 + 
(‑0.2334) x ExpIGHGP + (‑0.0358) x ExpIGKV2‑28 + (0.1031) 
x ExpIGLL3P + (‑0.9832) x ExpIGLV3‑10 + (‑0.3707) x 
ExpAZGP1P1 + ‑1.6801) x ExpLINC00472 + (‑1.6795) x Exp 
SLC16A6P1.

Based on the median risk score, all patients in GSE21653 
were classified into a high risk group (n=126; >median risk 
score) and a low‑risk group (n=126; <median risk score). 
Overall survival time was significantly increased in the low 
risk group compared with the high risk group (logRank 
P=0.0002; Fig. 4A). The risk stratification capability of the 
eight‑lncRNA signature was validated in three indepen-
dent datasets (GSE20685, TCGA and BRCA METABRIC 
datasets). Similarly, risk scores were determined for each 

Figure 3. Analysis of WGCNA modules. (A) A multi‑dimensional scaling plot showing the expression of genes in the seven modules of GSE21653. Dimension 1 
and 2, respectively represents the first and second principal component. (B) Hierarchical clustering analysis of WGCNA modules for GSE21653, GSE58812, 
GSE76124, and GSE5460. Blue, Cell adhesion; Brown, Immune response; Green, Cell cycle phase; Grey, Epidermis development; Red, Vesicle‑mediated 
transport; Yellow, Response to estrogen stimulus; Turquoise, Ectoderm development. WGCNA, weighted gene co‑expression network.

Table II. Analysis of weighted gene co‑expression network modules.

		  Module	 Number	 Number	 Preservation	 Module
Module	 Color	 size	 of mRNAs	 of lncRNAs	 Z‑score	 annotation

MEblue	 Blue	 423	 417	 6	 21.8833	 Cell adhesion
MEbrown	 Brown	 413	 374	 39	 39.0982	 Immune response
MEgreen 	 Green 	 209	 205	 4	 20.3943	 Cell cycle phase
MEgrey 	 Grey 	 1,215	 1,171	 44	 2.6106	 Epidermis development
MEred	 Red	 82	 80	 2	 0.8947	 Vesicle‑mediated transport
MEturquoise	 Turquoise	 623	 601	 22	 15.1238	 Response to estrogen stimulus
MEyellow 	 Yellow	 242	 240	 2	 10.1586	 Ectoderm development

Module size, number of mRNAs and lncRNAs; preservation Z‑score >10, modules with highly preservation. Lnc, long noncoding.
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set. Samples with the risk scores larger than the median 
risk score were classified under the high‑risk group, while 
samples with risk score smaller than median risk score were 
classified under the low risk group. As shown in Fig. 4B‑D, 
all patients in each dataset were split into two risk groups 
with significantly different survival times (GSE20685, 
logRank P=7.97x10‑05; TCGA, logRank P=2.07x10‑04; 

BRCA METABRIC, logRank P=1.87x10‑08). These observa-
tions highlighted the prognostic value of the eight lncRNAs 
in breast cancer.

Construction of lncRNA‑mRNA networks and pathway 
enrichment analysis. All eight prognostic lncRNAs 
were included in the Brown and Turquoise modules. As 
mentioned in Methods section, consensus DERs between 
breast cancer and normal samples were screened across 
GSE22866, GSE50161, and GSE4290. Consequently, 
1,372 consensus DERs (tau2=0, Qpval>0.05, P <0.05 and 
FDR<0.05) were obtained, including 55 lncRNAs and 
1,317 coding RNAs. As shown in Fig. 5, lncRNA‑mRNA 
networks were constructed. These prognostic lncRNAs and 
the DERs related to these prognostic DERs are shown in the 
Brown and Turquoise modules.

KEGG pathway enrichment analysis was performed using 
the generated lncRNA‑mRNA networks. Enrichment analysis 
revealed that genes in modules related to AZGP1P1, IGLL3P, 
IGHA1, IGLV3‑10, IGHGP, LINC00472, IGKV2‑28 and 
SLC16A6P1 were associated with several pathways, such as cell 
adhesion molecules (CAMS) pathway, T cell receptor pathway, 
JAK‑signal transducer and activator of transcription pathway, 
and erbb pathway (Fig.  6). Moreover, a number of genes 
enriched in these pathways, such as angiotensin II receptor 
type (AGTR)1, neuropeptide Y receptor Y1 (NPY1R), KISS1 
receptor (KISS1R) and C‑C motif chemokine ligand (CCL) 5 
were identified.

Discussion

Although lncRNAs are well recognized as playing important 
roles in the biology of tumorigenesis (28), additional studies 
focusing on the involvement of lncRNAs in breast cancer 
should be conducted. Based on the analysis of 1,222 breast 
cancer cases and control datasets downloaded from the 
TCGA database, Sun et al (13) reported that an eight‑lncRNA 
signature consisted of AC007731.1, AL513123.1, C10orf126, 
WT1‑AS, ADAMTS9‑AS1, SRGAP3‑AS2, TLR8‑AS1, and 
HOTAIR was an independent prognostic factor associated 
with overall survival by WGCNA analysis and multivariate 

Table IV. Information of optimal panel of prognostic lncRNAs .

LncRNAs	 Coef	 Hazard ratio	 P‑value

IGHA1	 ‑0.7451	 0.8667	 0.0030
IGHGP	 ‑0.2334	 0.8775	 0.0220
IGKV2‑28	 ‑0.0358	 0.8779	 0.0183
IGLL3P	 ‑0.1031	 0.7999	 0.0051
IGLV3‑10	 ‑0.9832	 0.8309	 0.0095
AZGP1P1	 ‑0.3706	 0.8855	 0.0462
LINC00472	 ‑1.6801	 0.6592	 0.0044
SLC16A6P1	 ‑1.6795	 0.8025	 0.0101

Optimal panel of prognostic lncRNAs were screened using 
Cox‑proportional Hazards model based on L1‑penalized estimation. 
Coef, Cox‑PH coefficient; HR, Hazard Ratio; Lnc, long noncoding.

Table III. Prognosis‑related lncRNAs identified by univariate 
Cox regression analysis.

LncRNAs	 Module‑color	 P‑value

SNHG14	 Blue	 0.0047 
IGHA1	 Brown	 0.0003 
IGLL3P	 Brown	 0.0005 
IGKV1OR2‑108	 Brown	 0.0010 
IGLV3‑10	 Brown	 0.0010 
IGKV1‑39	 Brown	 0.0013 
IGKV3‑20	 Brown	 0.0015 
IGKV1‑37	 Brown	 0.0019 
IGKV2‑28	 Brown	 0.0019 
IGKV4‑1	 Brown	 0.0021 
IGHGP	 Brown	 0.0023 
TRBC2	 Brown	 0.0029 
IGHV3‑72	 Brown	 0.0032 
TRDC	 Brown	 0.0037 
IGKV1OR2‑2	 Brown	 0.0038 
IGKV1‑13	 Brown	 0.0042 
IGHV3‑20	 Brown	 0.0048 
IGHV3‑7	 Brown	 0.0048 
HCP5	 Brown	 0.0062 
IGKV1‑17	 Brown	 0.0074 
IGHV3‑23	 Brown	 0.0078 
IGHV4‑61	 Brown	 0.0080 
GBP1P1	 Brown	 0.0083 
BNIP3P1	 Green	 0.0004 
CKS1BP2	 Green	 0.0022 
LINC00472	 Turquoise	 0.0005 
SLC16A6P1	 Turquoise	 0.0010 
AZGP1P1	 Turquoise	 0.0062 
GSTT2	 Turquoise	 0.0098 
RNU1‑123P	 Turquoise	 0.0130 
RNU4‑46P	 Turquoise	 0.0150 
RNU6‑564P	 Turquoise	 0.0170 
RASA4CP	 Turquoise	 0.0200 
RN7SL494P	 Turquoise	 0.0260 
CYP2B7P	 Turquoise	 0.0270 
CYP21A1P	 Turquoise	 0.0280 
GOLGA2P5	 Turquoise	 0.0300 
FABP5P2	 Yellow	 0.0140 
RNU6‑146P	 Yellow	 0.0170

Prognosis‑related lncRNAs were identified by univariate Cox and 
LncRNAs with P<0.05 were retained. Lnc, long noncoding.
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Cox hazard model. By mining the microarray gene expression 
data in the GEO, TCGA and BRCA METABRIC repositories, 
an eight‑lncRNA signature (IGHA1, IGHGP, IGKV2‑28, 
IGLL3P, IGLV3‑10, AZGP1P1, LINC00472, SLC16A6P1) was 
determined for prognosis prediction using WGCNA network 
analysis, univariate Cox regression analysis, and a LASSO PH 
model. The eight‑lncRNA signature found in the present study 
is different from the study of Sun et al (13). Moreover, risk 
scores were calculated based on the eight‑lncRNA signature, 
which could dichotomize patients into two risk groups with 
different survival times. The predictive capability of this 
eight‑lncRNA signature was successfully confirmed in three 
independent datasets. The above findings suggested that the 
eight lncRNAs identified could serve as prognostic biomarkers 
for breast cancer.

To the best of our knowledge, all eight prognostic lncRNAs, 
except for LINC00472, have not been reported in breast cancer 
to date. Shen et al (29) provided evidence that LINC00472 plays 

a tumor suppressive role in breast cancer and could thus serve 
as a prognostic biomarker. Similarly, Shen et al (30) revealed 
that LINC00472 is significantly linked to disease‑free survival 
in patients with grade 2 breast cancer. In addition, Lu et al (31) 
showed that the inhibition of LINC00472 in breast cancer 
progression is mediated by miR‑141 and mRNA programmed 
cell death 4.

Another highlight of the present study was that the 
lncRNA‑mRNA networks were constructed with these 
prognostic lncRNAs and the DERs associated with these prog-
nostic lncRNAs in breast cancer. Pathway enrichment analysis 
was performed for these lncRNAs and DERs to elucidate 
the underlying mechanisms. The results of the present study 
showed that these lncRNAs were significantly associated with 
the CAMS pathway, JAK‑STAT pathway and erbb pathway. 
CAMS have been established to participate in breast cancer cell 
angiogenesis, migration, invasion and metastasis (32,33). The 
JAK‑STAT pathway plays an important role in inflammation 

Figure 4. Kaplan‑Meier survival curves for low‑risk and high‑risk groups in the datasets. (A) GSE21653 set, (B) GSE20685 set, (C) TCGA set and (D) BRCA 
METABRIC set. Black and red curves are for low risk and high risk groups, respectively. TCGA, The Cancer Genome Atlas; BRCA METABRIC, Breast 
Cancer Molecular Taxonomy of Breast Cancer International Consortium.
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and carcinogenesis  (34) and has been regarded as a novel 
therapeutic target in breast cancer (35). The ErbB receptor 
tyrosine kinase family is comprised of ErbB1, ErbB2, ErbB3 

and ErbB4. A large body of evidence demonstrated that the 
ErbB2 gene and protein serve as biomarkers for prognosis and 
therapy response (36,37). Furthermore, HER kinase domain 

Figure 6. Results of pathway enrichment analysis on the lncRNA‑mRNA networks. Horizontal axis indicates the genes, and vertical axis indicates the path-
ways. A red diamond indicates that a gene is significantly enriched in a pathway. Deeper red symbols indicate stronger correlations. Blank diamond indicates 
that a gene is not significantly enriched in a pathway.

Figure 5. LncRNA‑mRNA networks. RNAs from Turquoise or Brown modules are colored in turquoise or brown, respectively. Square nodes represent lncRNAs. 
Regular or inverted triangles indicate upregulated or downregulated consensus DERs identified by the MetaDE method, respectively. Brown, Immune response; 
Turquoise, Ectoderm development. Round nodes represent non‑consensus DERs. Black or green link denotes positive or negative correlation between two nodes.
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mutations enhance tumor progression could potentially serve 
as prognostic markers (38). In addition, De Cola et al (39) 
showed that downregulation of ErbB receptors contributes 
to targeted therapy resistance. The above findings confirmed 
that the CAMS, JAK‑STAT and erbb pathways are important 
for breast cancer and indicated that these prognostic lncRNAs 
participate in the regulation of these pathways in breast cancer.

In the present study, a list of genes that were enriched 
in these significant pathways for these prognostic lncRNAs, 
such as AGTR1, NPY1R, KISS1R and CCL5 were also identi-
fied. An in vitro study by Oh et al (40) showed that AGTR1 
promotes tumor growth and angiogenesis. There is evidence 
that NPY1R in peripheral blood is significantly linked to 
tumor metastasis and prognosis of breast cancer patients (41). 
KISS1R, a G protein coupled receptor, promotes invadopodia 
formation and invasion in breast cancer cells  (42). CCL5 
facilitates cell proliferation and survival of breast cancer cells 
by regulating metabolism (43). These genes are potentially 
involved in the mechanisms underlying the predictive value 
of this eight‑lncRNA signature and could serve as molecular 
biomarkers for breast cancer.

The present study has certain limitations. Although the 
eight‑lncRNA prognostic signature was validated in three inde-
pendent datasets, further testing on clinical data is warranted. In 
addition, the present study focused solely on microarray expres-
sion datasets. Therefore, experimental studies are required to 
verify the findings of the present study. Additionally, further 
studies should be conducted to elucidate the mechanisms 
underlying the actions of these prognostic lncRNAs.

In conclusion, the present study recommends an 
eight‑lncRNA signature for survival prediction in breast cancer. 
These prognostic lncRNAs could affect cancer development 
partly by regulating the CAMS, JAK‑STAT, erbb pathways, as 
well as AGTR1, NPY1R, KISS1R and CCL5. These findings 
hold promise for the identification of promising therapeutic 
targets for breast cancer.
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