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Abstract. Polyamines are small positively charged alkyl-
amines that are essential in a number of crucial eukaryotic 
processes, like normal cell growth and development. In 
normal physiological conditions, intracellular polyamine 
content is tightly regulated through a fine regulated network 
of biosynthetic and catabolic enzymes and a transport system. 
The dysregulation of this network is frequently associated to 
different tumors, where high levels of polyamines has been 
detected. Polyamines also modulate ion channels and iono-
tropic glutamate receptors and altered levels of polyamines 
have been observed in different brain diseases, including 
mental disorders and epilepsy. The goal of this article is 
to review the role of polyamines in mental disorders and 
epilepsy within a frame of the possible link between these 
two brain pathologies. The high comorbidity between these 
two neurological illnesses is strongly suggestive that they 
share a common background in the central nervous system. 
This review proposes an additional association between the 
noradrenalin/serotonin and glutamatergic neuronal circuits 
with polyamines. Polyamines can be considered supplemen-
tary defensive shielding molecules, important to protect the 
brain from the development of epilepsy and mental illnesses 
that are caused by different types of neurons. In this contest, 
the modulation of polyamine metabolism may be a novel 
important target for the prevention and therapeutic treatment 
of these diseases that have a high impact on the costs of public 
health and considerably affect quality of life.
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1. Polyamine metabolism

Cellular polyamines. Polyamines (PAs) are ubiquitous, short, 
positively charged aliphatic amines essential for normal cell 
growth, proliferation and differentiation. Although PAs occur in 
prokaryotic and eukaryotic cells, from plants and animals (1,2), 
the typical PAs synthesized by mammals are spermidine (Spd), 
and spermine (Spm), from the diamine putrescine (Put), (3). 
Some studies have demonstrated an alternative pathway of PA 
synthesis, where agmatine (Agm) can slightly contribute as a 
potential source of Put (4‑6). Agmatine, Put, Spd, Spm and 
the acetylated derivatives N1‑acetylspermidine (AcSpd) and 
N1‑acetylspermine (AcSpm; Fig. 1) have fundamental roles 
in cellular homeostasis and their optimal cellular content is 
maintained via complex regulatory mechanisms (7). Among 
the various functional roles of the natural PAs, the regulation 
of gene transcription and post‑transcriptional modifications, 
as well as the modulation of synaptic activity are noticeable. 
For this reason, these molecules are continually under active 
investigation in wide‑ranging research areas, from neurosci-
ence, cancer, cell differentiation and development (8‑10).

Polyamine interconvertion pathway. Two step‑limiting enzymes 
tightly regulate PA biosynthesis: ornithine decarboxylase 
(ODC), which produces Put by decarboxylation of ornithine 
and S‑adenosylmethionine decarboxylase, which synthesizes 
S‑adenosyl‑methioninamine from S‑adenosyl‑L‑methionine. 
Two specific aminopropyl transferases, Spd synthase and 
Spm synthase are also involved in the biosynthesis of PAs, 
adding the aminopropyl group to Put and Spd, respec-
tively (11‑13). Conversely, PA catabolism is finely regulated 
by the three  enzymes: Spd and Spm N1‑acetyltransferase 
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(SSAT), N1-acetylpolyamine oxidase (PAOX) and spermine 
oxidase (SMOX) (Fig. 2). The enzyme SSAT transfers acetyl 
groups from acetyl‑coenzyme A to the N1 position of both Spd 
and Spm to produce AcSpd and AcSpm, respectively. These 
substrates are oxidized by the flavoprotein PAOX to produce 
Spd and Put, respectively, and 3‑aceto‑aminopropanal (3‑AP) 
and hydrogen peroxide (H2O2) (14,15). Another enzyme involved 
in the PA catabolism is SMOX that specifically oxidases Spm 
producing Spd, 3‑aminopropanal and H2O2 (15,16). Polyamines 
can be biosynthesized and imported into cells by ubiquitous 
PA transporters (PTSs). As a result of the multiple enzymes 
involved in the PA metabolism and taking also into account 
the cellular uptake and export of PAs, the individual content 
of each PA is constantly well buffered within the mammalian 
cells. The typical PTS is saturable, strongly energy dependent 
and has a high affinity for its substrates (generally ranging from 
10‑7 to 10‑5 M, depending on the PA species and cell type) (17). 
Polyamines content can be regulated by internalization through 
plasma membrane PA permeases (17,18). Notwithstanding the 
strong cellular PA homeostasis, this metabolism can be altered 
by physiological stimuli, as well as in many pathological 
conditions like cancer, inflammation, neurodegeneration and 
others  (9). Mammalian cell PA metabolism is summarized 
in Fig. 2.

2. Polyamines and modulation of ion channels

Polyamines and the brain. The concentration of PAs varies 
greatly in different tissues. In vertebrates, the brain behaves 
as an autonomous and closed system with regard to the PA 
metabolism. There is a high variation in PA levels between 
the different brain regions and in general, the levels of Spd 
and Spm are much higher than those of Put (19). Different 
studies have shown a neuroprotective role of PAs, nevertheless 
in pathological conditions they can cause neurotoxicity due 
to their oxidation and conversion into aldehydes and reactive 
oxygen species (20‑23). In recent years, the key role of PAs in 
different brain syndromes and diseases has been increasingly 
recognized. This role seems to be mainly due to their ability to 
modulate and regulate different ion channels (24).

Ion channel modulation by polyamines. Endogenous PAs, in 
particular Spm, are able to interact and modulate different ion 
channels and receptors involved in the maintenance of homeo-
stasis of calcium, sodium and potassium. Intracellular Spm, 
at µM concentrations, acts as an important blocker of inwardly 
rectifying potassium channels, by specifically plugging the ion 
channel pore. In fact, an increase of its content is responsible 
for an increase of the channel gating and rectification, which 
leads to a rise in cellular excitability (25). Polyamines can also 
modulate the activities of ion channels responsible for the flux 
of cations through the cellular membrane. Additionally, PAs, 
by different intra/extra cellular interaction sites, can modulate 
voltage activated calcium channels. A specific interaction 
exists between PAs and the a1 subunit of L‑type calcium 
channel. Only Put induces an increase in the flux of current 
via the protein kinase C pathway, while Spd and Spd are 
unable to produce this effect (26). These channels are involved 
in synaptic transmission and plasticity and respond to ligands 
such as glutamate. Ionotropic glutamate receptors are divided 

into three groups: N‑methyl‑D‑aspartate receptor (NMDAR); 
α‑amino‑3‑ hydroxy‑5‑methyl‑4‑isoxazolepropionic acid 
receptor (AMPAR) and kainate receptor (KAR). Intracellular 
PAs can block the pore of the AMPAR and KAR, altering 
sodium and calcium flux, causing channels rectification, in 
particular affecting AMPAR lacking a GluR2 subunit and 
KAR lacking a GluR6 subunit (27). The AMPAR rectifica-
tion by Spm is dependent on the voltage and can regulate the 
calcium flux and the excitability threshold of synapses (28). 
Polyamines can regulate another glutamate receptor, the 
NMDAR, a channel gate calcium and sodium containing 
two copies of NR1 and NR2 subunits. Polyamines, Spm in 
particular, are able either to stimulate or inhibit the NMDAR, 
according to the concentrations of glutamate, glycine and 
magnesium. Spermine can increase the frequency of the 
channel opening causing a strengthening of the NMDAR 
current in presence of saturating concentration of glycine. 
Only in the absence of magnesium extracellular Spm can block 
NMDAR in a voltage dependent manner. The inhibitory effect 
may take place because the extracellular Spm interacts with 
the negatively charged residues of the NMDAR, creating a 
steric obstruction for the passage of ions leading to a reduction 
of current through the channel. At physiological magnesium 
concentrations, only Spm‑driven NMDAR stimulation can 
occur (29).

3. Polyamines and mental disorders

Polyamines and neurological disorders. According to the 
World Health Organization one in four people will be affected 
by mental or neurological disorders at some point in their 
lives; in the USA nearly 50% of the adult population have 
experienced depression or anxiety disorder, which are the 
most common and debilitating forms of mental illnesses 
associated with a substantially decreased of quality life (30). 
Currently ~450 million people suffer from such conditions, for 
this reason mental illnesses are a type of worldwide disabili-
ties (31). In fact, this type of disability is widely recognized as 
a major illness responsible for indirect costs because of its high 
economic impact on society (32). According to the Bureau of 
Economic Analysis's Health Care Satellite Account, in 2013 
in the USA ~$89 billion has been spent on the treatment of 
mental illnesses (33). In the past years, many studies have 
focused on understanding the mechanisms underlying mental 
illness (34‑39); much of the literature has analyzed the role 
of the monoaminergic system, in particular, the serotonin and 
catecholamine involvement in the etiology of these patholo-
gies (40‑42). The impairment of the monoaminergic system 
alone cannot explain all the aspects related to these diseases, 
since over the years it has become increasingly clear the 
contribution of other players such as PAs (43). One of the early 
hints of the neurobiological role of PAs was the serendipitous 
discovery that antimalarial drugs, with psychosis side effects, 
contained a Spd moiety in their structure (44). As described 
above, PAs can affect neuronal excitability since they interact 
with different transmembrane channels (27), in the light of this 
important role in central nervous system (CNS), over the last 
three decades extensive research has pointed out their implica-
tions in different psychiatric conditions. In fact, an alteration 
of the PA content and their metabolic enzymes have been 
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found in different mental illness, such as schizophrenia, mood 
and anxiety disorders (45).

Polyamines and schizophrenia. Schizophrenia animal 
models and human patients have shown dysregulation of 
the PA metabolism (46). In patients, the blood's PA content 
alteration seems to be due to the pharmacological treatment 
response to neuroleptics drugs since these changes have not 
been observed in untreated patients and in neuroleptic‑resis-
tant schizophrenia patients (45). Early studies have pointed 
out the involvement of PAOX in schizophrenia, where an 
increased level of this enzyme has been found in schizo-
phrenic patient serums (47‑49). The contribution of ODC 
is still poorly understood, since no differences regarding 

its levels were found in patients while an increase of ODC 
activity was observed in cortical neurons from a rat model 
of schizophrenia (50). Nonetheless, several works confirm 
the importance of ornithine metabolism in the genesis of 
schizophrenic disease because ornithine aminotransferase, 
antizyme inhibitor and ornithine cyclodeaminase were found 
to be decreased in the prefrontal cortex of patients (51‑53). 
One of the hypothesises proposed to validate the role of 
brain PAs in the aetiology of schizophrenia was that they 
can modulate dopamine pathway; the latter shares with the 
higher PA Spd and Spm, the S‑adenosyl‑methioninamine 
common precursor in the biosynthetic pathway. Furthermore, 
NMDAR modulation by Spd and Spm, as described above, 
could explain the hypofunctional NMDAR signalling in 
schizophrenia.

Polyamines and depression. Alteration in PA systems have 
also been found in animal models of depression. In rats 
affected by depression a hippocampal decrease of Put, Spd 
and Spm has been observed, while only a decrease of Put levels 
was observed in the nucleus accumbens (54). Putrescine was 
shown to possess antidepressant properties, since its admin-
istration by injection can reduce immobility time in forced 
swimming and tail suspension tests. Analysis of plasma from 
humans suffering from depression showed a high level of 
Agm that is restored to normal levels after antidepressant 
treatments, highlighting the critical role of this molecule in 
depression (45). Previously, the role of neurotransmitter has 
been proposed for Agm in the CNS. This was confirmed by its 
accumulation in synaptic vesicles and by the ability of Agm 
to be secreted following depolarization (55). Moreover, it has 
been proved that Agm is a selective antagonist of the NMDA 
polyamine‑binding site  (56). All these data confirm the 
involvement of the PA system in depression. In a similar way 
to what was observed in schizophrenic patients, high levels 
of PAs were also found in the plasma of patients suffering 
from depression (49). Evidence showed that the transcript 
and protein levels of different elements of the PA system 
are altered in several brain regions of suicide completers; in 
particular post‑mortem studies have highlighted changes in 
the SSAT enzyme which shows a lower level of expression 
compared with healthy people (43,57). It has been proposed 
that in the brains of depressed people, the lowering of the 
expression of SSAT could be a compensatory mechanism to 
cope with the excessive presence of PA (57).

Figure 1. Chemical structures of mammalian polyamines.

Figure 2. Mammalian PA metabolism. Schematic representation of PA 
metabolism showing enzyme network and substrate interconversion pathways. 
Anabolic and catabolic pathways are indicated by black and grey arrows, 
respectively. AGMT, agmatinase; ODC, ornithine decarboxylase; PAOX, 
N1‑acetylpolyamine oxidase; SAMDC, S‑adenosyl‑methionine decarboxylase; 
SMOX, spermine oxidase; SPMS, spermine synthase; SPDS, spermidine 
synthase; SSAT, Spd and Spm N1‑acetyltransferase; PA, polyamine.
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Polyamines and stress response. Over the past decade, great 
attention has been focused on the role of PAs in the context 
of stress response and particularly on its causal relationship 
with the morbidity of anxiety and psychiatric disorders. This 
pathological condition is called PAs stress response (PSR), 
it can be triggered by different types of stressors and this 
response can be modulated in accordance with the stressor 
intensity (58). In the CNS acute stressors do not increase the 
concentrations of all PAs but rather they lead to an accumula-
tion of Put and Agm as well as an increase of ODC activity. 
Contrary to the events that have been observed in the CNS, 
in which the PSR can be activated independently, in the 
peripheral nervous system PSR trigger occurs only after 
the activation of the hypothalamic‑pituitary axis. Following 
acute stress, changes are only appreciated in Put and ODC, 
while Spd and Spm remain unchanged resulting an appar-
ently incomplete PSR. When stressors become chronic, they 
lead to a complete PSR and changes are also observed in 
Spd and Spm levels. However, persistent chronic stressors 
can activate a maladaptive PSR since they cause PA accu-
mulation. Repeated stress events predispose to an increased 
risk of developing mental pathologies including depression, 
anxiety and in suicide, which often has comorbidity with 
mood and personality disorders (57).

4. Polyamines and epilepsy

Link between epilepsy and polyamines. Epilepsy is a neurolog-
ical disorder characterized by the manifestation of spontaneous 
and repeated seizures, which are caused by disproportionate 
and simultaneous electrical activity of neuronal networks. 
This disorder is one of the most common worldwide neuro-
logical diseases; its incidence in the population is estimated 
to be 1‑2% (59). In most cases, the disease is idiopathic, since 
the factors triggering epilepsy are unknown; however, some 
cases can be related to hereditary factors or to a brain injury. 
Epilepsy is classified into different categories: childhood 
absence epilepsy, benign focal epilepsy, juvenile myoclonic 
epilepsy and temporal lobe epilepsy (TLE). The latter is the 
most common epilepsy occurring in adults (60‑62). Over the 
years, different research groups have focused their studies on 
the role that PAs could have in the molecular mechanisms 
underlying epilepsy. Since the knowledge, derived from 
clinical human studies, was not sufficient to improve under-
standing of the epileptic pathways, it was necessary to use the 
correct genetic models. In fact, extensive studies have been 
carried out using animal models in order to characterize the 
different form of epilepsy and better define the physiological 
importance of PAs in order to develop treatment therapies to 
be applied in epilepsy (22,63‑71).

Mouse models of epilepsy. The epilepsy animal models used 
provide seizure induction by chemoconvulsants, traumatic 
brain injury and electrical or sound stimuli. Among the most 
used chemoconvulsants are included Pentylenetetrazole 
(PTZ) and kainic acid (KA). Epileptic seizures induced by 
PTZ and KA have also been used in transgenic mouse models 
characterized by a deregulation of the PA system caused by 
the overexpression of PA metabolic enzymes. The transgenic 
mouse line K2  (63) overexpressing ODC in the brain and 

consequently having a high Put cellular content, was shown 
to be neuro‑protected from physically (electroshock) and 
chemically (PTZ) induced seizure activity (64), but displayed 
impaired spatial learning, vision, swimming ability and lack 
of motivation (64). The deficit in spatial learning was demon-
strated to be associated with a constitutively high Put level 
as a result of its antagonistic effect on the NMDA receptor. 
Additionally, in transgenic rats overexpressing ODC  (65) 
subjected to transient focal cerebral ischaemia, significantly 
smaller stroke lesions were observed in comparison with 
control rats, confirming that induction of ODC and the subse-
quent accumulation of Put are neuro‑protective responses in 
the transient cerebral ischaemia (72). The transgenic mouse 
line ubiquitously overexpressing SSAT and generated by 
Pietilä  et  al  (66), likewise the ODC over‑expressing line 
mentioned above, displayed a high level of Put in the brain as a 
result of SSAT overexpression. These transgenic mice showed 
neuroprotection from KA‑induced neuronal toxicity  (67) 
and an elevated threshold to PTZ‑induced convulsions in 
comparison with wild‑type animals  (68). Neurobehavioral 
profiling of SSAT overexpressing mice showed impaired 
spatial learning and the mice were revealed to be hypomotoric 
and less aggressive than wild‑type animals (69). Although 
Put is a weak antagonist of the NMDA receptor  (29), its 
elevated content in the brain could cause a partial blockade 
of this receptor, therefore giving protection to the transgenic 
animals from seizure activity, ischaemia reperfusion damage 
while producing impaired spatial learning (68,69). A mouse 
Cre/loxP‑based genetic model overexpressing SMOX specifi-
cally in neocortex neurons (Dach-SMOX, former JoSMOrec) 
has been engineered by Cervelli et al (70) to investigate the 
role of this enzyme and its substrate Spm, which is the stron-
gest PA modulator of glutamatergic receptors, and certain 
types of K+ channels and Na+ channels (27,73,74). Interestingly, 
Dach‑SMOX mice showed a phenotype with significant 
astroglial and microglial activation in the neocortex of old 
animals, showing more pronounced brain damage during 
ageing. Furthermore, in excitotoxic conditions induced by 
KA injection, Dach-SMOX mice were more sensitive than 
control animals (22,71). Compared with transgenic ODC and 
SSAT overexpressing mice, which displayed a neuroprotective 
response to different insults, Dach-SMOX animals showed the 
opposite phenotype, since increased neurodegeneration was 

Figure 3. Potential association between monoaminergic system and polyamines 
in epilepsy and mental disorders.
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observed during ageing and following KA injection (70,72). 
The production of H2O2 and 3‑AP, derived from Spm oxida-
tion, together with direct effects of Spm on AMPA and KA 
receptors, are synergistically involved in ROS increase and 
in the end, to neuronal degeneration and death. In conclusion, 
all these engineered transgenic rodent lines may represent 
useful in vivo genetic models for studying PA metabolism 
dysregulation in brain pathological conditions due to various 
physically and chemically induced excitotoxic insults that 
induce epilepsy (70,75).

5. Mood disorders and epilepsy

The coexistence of two or more pathologies in the same person 
is defined as comorbidity. The link between these altered 
conditions can be associated with genetic and environmental 
factors as well as with common pathogenic mechanisms. The 
comorbidity between epilepsy and psychiatric diseases has not 
been considered for a long time. Over the last few years, several 
epidemiological studies have shown a strong correlation between 
epilepsy and different mental illnesses. Several studies demon-
strated that among the many mental illnesses, those prevalent 
in epileptic patients are mood and anxiety disorders (76‑82). In 
particular, anxiety appears to have a greater incidence (83). Of 
the people suffering from epilepsy, ~6% of them present psychi-
atric comorbidity; this percentage increases in patients with 
TLE and/or refractory epilepsy reaching peaks of 60‑80% (82). 
It is very interesting that the amygdala, a region of the brain 
often involved in some types of epilepsy, is also implicated in 
the neurobiology of anxiety. The amygdala plays a key role in 
the manifestation of emotional and behavioural responses and 
by different hypothalamic pathways can activate neuroendo-
crine and autonomic responses (81). These responses take place 
during stressful circumstances. One of the most reliable hypoth-
eses is that activation of these neuronal circuits together with an 
excessive excitability of the related neurons may be responsible 
of the manifestation of anxiety (79,84). Notably, the amygdala 
plays a key role also in the most common form of epilepsy, 
TLE, which is also the most resistant to pharmacological 
treatments (85). Moreover, a proof of the relationship between 
anxiety and epilepsy is that the pharmacological treatment of 
anxiety is often carried out using specific anti‑epileptic drugs 
such as benzodiazepines (86). It has been demonstrated that 
psychiatric factors could be predictive of response to treatments 
of seizure disorders. It has been demonstrated that epileptic 
patients with psychiatric comorbidity show a reduced response 
to pharmacological treatments. In fact, a study conducted by 
Hitiris et al (87) on 780 patients with new‑onset epilepsy showed 
that if they had a previous diagnosis of psychiatric illness they 
were twice as likely to develop drug resistance to anti‑epileptic 
treatments. Furthermore, the study by Kanner (88) proved that 
mental diseases could cause worse responses to surgical proce-
dures for epilepsy.

6. Conclusion

For a long time, the link between epilepsy and mental 
disorders has been attributed exclusively to the serotonergic 
system. Several studies, in fact, have shown how an epilepsy 
animal model displayed alterations in serotonergic system 

both in terms of release of serotonin and of deficit in pre/post 
synaptic transmission of serotonergic neurons (89‑91). The 
connection between noradrenaline and serotonin deficien-
cies and epilepsy have been found also in humans. The 
noradrenaline/serotonin theory proposed by Jobe and 
Browning (92) pointed out that mood disorder and epilepsy 
share a common background. In particular, the two patholo-
gies display different neuronal circuits, defined intrinsic 
fabricators that start and maintain dysfunctional events. 
Nevertheless, they have the same exterior defensive shields in 
which noradrenaline and serotonin play a crucial role in the 
protection of the system against a malfunction of the intrinsic 
fabricators. Depending on which neuronal circuits are unbal-
anced, the development of epileptic or mental illnesses can 
be generated. As described previously, the monoaminergic 
system fails to explain all the events or all the pathways that 
lead to the development of mental illnesses, just as it is not 
possible to confirm that epilepsy is caused only by changes 
in monoamines. In this review, the authors wanted to focus 
on the role that PAs play in the CNS, proposing an evolu-
tion of the Jobe and Browning's theory in which, in addition 
to the noradreanalin/serotonin system, PAs could also be 
considered exterior defensive shields important to protect the 
brain from the development of epilepsy and mental illnesses 
(Fig. 3). In this context, the modulation of PA metabolism 
may be a new important target for the development of 
anti‑epileptic, anxiolytic and anti‑depressive drugs for the 
treatment of these diseases that affect health and quality of 
life and are important driver of health care costs.
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