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Abstract. The outbreak of the 2019 coronavirus disease 
(named, COVID‑19), caused by the novel SARS‑CoV‑2 virus, 
represents a worldwide severe threat to public health. It is of 
the utmost importance to characterize the immune responses 
against the SARS‑CoV‑2 and the mechanisms of hyperinflam-
mation, in order to design better therapeutic strategies for 
COVID‑19. In the present study, a transcriptomic analysis was 
performed to profile the immune signatures in lung and the 
bronchoalveolar lavage fluid samples from COVID‑19 patients 
and controls. Our data concordantly revealed increased 
humoral responses to infection. The elucidation of the host 
responses to SARS‑CoV‑2 infection may further improve our 
understanding of COVID‑19 pathogenesis and suggest better 
therapeutic strategies.

Introduction

The severe acute respiratory syndrome coronavirus‑2 
(SARS‑CoV‑2) was first isolated at the end of 2019 in 
China (1‑5) and, as of August 3rd, 2020, almost 18 million 
infected patients and 686,703  deaths have been reported 
globally (WHO Situation Report‑196). However, the actual 
number of the infected subject is under‑estimated and, indeed, 

a recent meta‑analysis performed on 50,155 patients from 
41 studies, showed that the pooled percentage of asymptomatic 
infection is 15.6% (6).

Even if SARS‑CoV‑2 shares similarities with the other 
coronaviruses, the higher diffusion rate and the possibility to 
induce fatal complications, such as severe pneumonia, acute 
respiratory distress syndrome (ARDS), thrombosis, septic 
shock and organ failure, make this virus a major public health 
threat (7‑10). Development of COVID‑19 complications seems 
to be dependent on a dramatic release of proinflammatory 
factors, such as interleukin (IL)‑1β, IL‑6, IL‑8, tumor necrosis 
factor‑α (TNF‑α) and CXC‑chemokine ligand 10 (CXCL10) 
and CC‑chemokine ligand 2 (CCL2) in the infected lung tissue 
and other peripheral organs (2,11‑13), which ultimately leads 
to a reaction known as cytokine release syndrome (CRS). It 
is likely that CRS promotes a self‑sustaining inflammatory 
process that contributes to the respiratory failure and the 
systemic manifestations observed in COVID‑19 patients (14). 
A multicenter study of 150 confirmed COVID‑19 cases in 
Wuhan, China, identified as predictors of mortality both 
elevated ferritin (15,16) and IL‑6 levels, which strengthen the 
hypothesis that fatality events may be due to a virus‑driven 
hyperinflammation (2,11).

The rapid worldwide diffusion of SARS‑COV‑2 has 
propelled both basic science and clinical research studies for 
the elucidation of the pathogenetic mechanisms underlying 
COVID‑19. The emerging observation that a significant 
percentage proportions of individuals are asymptomatic, not 
only suggests that SARS‑CoV‑2 may have a longer incubation 
period and higher transmission rate, as compared to other 
coronaviruses, but also advocates potential differences in the 
host immune responses to this virus. It is therefore, of the 
utmost importance to characterize the immune responses put 
against SARS‑CoV‑2 and the mechanisms of hyperinflam-
mation, in order to design better therapeutic strategies for 
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COVID‑19. In the present study, we performed a transcrip-
tomic analysis to profile the immune signatures in lung and the 
bronchoalveolar lavage fluid samples from COVID‑19 patients 
and controls. Our data concordantly revealed increased 
humoral responses to infection. The elucidation of the host 
responses to SARS‑CoV‑2 infection may further improve our 
understanding of COVID‑19 pathogenesis and suggest better 
therapeutic strategies.

Materials and methods

Dataset selection. The NCBI Gene Expression Omnibus 
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) was 
interrogated using the terms ‘SARS‑CoV‑2’ and ‘COVID‑19’. 
The available datasets were shortlisted if: i)  they included 
whole‑genome transcriptomic profiling; ii) included human 
samples; and iii) were not generated on cancer cell lines. 
Finally, the GSE150316 and the GSE147507  (17) datasets 
were selected. GSE150316 is a high throughput sequencing 
dataset of five autopsy samples from patients deceased due 
to SARS‑CoV‑2 infection (2‑5 technical replicates for each 
sample were averaged for the downstream analysis) and five 
negative control samples.

The GSE147507 dataset was generated from three 
biological replicates of primary human lung epithelium either 
infected with SARS‑CoV‑2 (USA‑WA1/2020) at a multiplicity 
of infection (MOI) of 2, for 24 h, or mock infected. Total mRNA 
libraries were prepared using tTruSeq Stranded mRNA LP 
and cDNA libraries sequenced using an Illumina NextSeq 500 
platform. Raw reads were aligned to the human genome (hg19) 
using the RNA‑Seq Alignment App on Basespace (Illumina). 
The submitter‑supplied pre‑processed and normalized gene 
expression matrix was used for the analysis.

For the transcriptomic analysis of COVID‑19 BALF 
samples, RNA‑Seq data from the Genome Sequence Archive 
of the Beijing Institute of Genomics (BIG) Data Center 
(https://bigd.big.ac.cn/) (accession no. C RA002390), and 
from the NCBI SRA database (accession nos. SRR10571724, 
SRR10571730 and SRR10571732) (18) were used.

Enrichment and network analysis. Functional enrich-
ment analysis was conducted using the web‑based utility, 
Metascape  (19). Metascape analysis makes use of public 
databanks, such as Gene Ontology, KEGG, and MSigDB, 
and aggregates enriched ontology terms into non‑redundant 
groups, by calculating the similarity between any two 
terms (19). Metascape uses the hypergeometric test and the 
Benjamini‑Hochberg p-value correction to identify statisti-
cally significant enriched terms. Representative terms from 
the enrichment analysis are presented as a network. Each term 
is represented by a node, with its size being proportional to the 
number of input genes belonging to that term, and the color 
representing its corresponding cluster. Terms with a similarity 
score >0.3 are linked by an edge. The thicker the edge, the 
higher the similarity score. The network is visualized using 
Cytoscape (version 3.1.2) with ‘force‑directed’ layout. One 
term from each cluster has its description shown as a label.

Computational deconvolution of infiltrating immune cells. 
In order to evaluate the relative proportions of immune 

cell subsets in COVID‑19 and healthy control samples, we 
performed a computational deconvolution analysis. To this 
end, we used the xCell software, a web computational utility 
that aims at evaluating, by using gene signatures, the rela-
tive proportions in a sample of various immune cell types, 
including immature dendritic cells (iDCs), conventional DCs 
(cDCs), active DCs (aDCs), plasmacytoid DCs (pDCs), B cells, 
CD4+ T cells, memory cells, Th1 cells, Th2 and Treg cells and 
macrophages (20).

Statistical analysis. The differential expression analysis was 
performed using the DeSeq2 function. The web‑based appli-
cation NeworkAnalist was used for the statistical analyses. 
Genes with an adjusted P-value  <0.05 were identified as 
differentially expressed genes (DEGs) and selected for further 
analysis.

Linear regression and Spearman's correlation were 
performed to compare the expression levels of genes in 
COVID‑19 samples as compared to healthy control samples, 
the GSE150316 and the GSE147507 datasets.

For the analysis of the deconvolution data, normality was 
first assessed using the Shapiro‑Wilk, D'Agostino‑Pearson 
and Kolmogorov‑Smirnov tests. Based on the results, 
differential analysis as performed using the non‑parametric 
Mann‑Whitney U test.

The GraphPad Prism (version  8) software (GraphPad 
Software, Inc.) and the SPSS software (SPSS, Inc.) were used 
for the statistical analysis and the generation of the graphs. 
Unless otherwise stated, P<0.05 was considered to indicate a 
statistically significant difference.

Results

Network and enrichment analysis of SARS‑CoV‑2 infection. 
In order to determine the transcriptomic signature of lung 
tissues from COVID‑19 patients, we analyzed the GSE150316 
RNA‑Seq dataset. A total of 55 differentially expressed genes 
was found, of which 32 were upregulated and 23 downregu-
lated. Gene term enrichment analysis identified GO:0002377: 
immunoglobulin production, GO:0006959: humoral immune 
response and GO:0002758: innate immune response‑acti-
vating signal transduction, as significantly enriched among the 
upregulated genes (Fig. 1A). A heatmap of the genes belonging 
to the GO:0002377 (immunoglobulin production) category 
is presented in Fig. 1B. Among the downregulated genes, 
GO:0071236: cellular response to antibiotic, GO:0048511: 
rhythmic process, GO:0042698: ovulation cycle, GO:0019221: 
cytokine‑mediated signaling pathway and GO:0001503: ossi-
fication, were found to be significantly enriched (Fig. 1A).

We have previously interrogated the GSE147507 dataset, 
which included transcriptomic data from primary human bron-
chial epithelial cells infected in vitro with the SARS‑CoV‑2 
virus (18). Here, we compared this gene signature to the tran-
scriptomic signature of lung biopsies from COVID‑19 patients. 
The publicly available GSE150316 dataset was used in order to 
perform a correlation analysis on the modulation of the genes 
perturbed upon SARS‑CoV‑2 infection and the corresponding 
genes in GSE147507. A total of 9602 genes were in common 
between the two datasets. As shown in Fig. 1A, a moderate but 
significant correlation is found in the transcriptomic profile of 
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Figure 1. Enrichment and network analysis of COVID‑19 lung samples. (A) Hierarchical clustering of the top most enriched terms among the genes signifi-
cantly upregulated and downregulated in the GSE150316 dataset. The heatmap is colored based on the p-values, and grey cells indicate the lack of significant 
enrichment. (B) Gene expression heatmap of the genes belonging to the GO:0002377 (immunoglobulin production) category, in lung biopsies of COVID‑19 
patients and control samples, as determined in the GSE150316 dataset.

Figure 2. Enrichment and network analysis of COVID‑19 samples. (A) Scatter plot showing the correlation of the gene expression profile between the 
GSE150316 and the GSE147507 datasets. (B) Hierarchical clustering of the top most enriched terms among the genes significantly upregulated and downregu-
lated in the GSE150316 and the GSE147507 datasets. The heatmap is colored based on the p-values, and grey cells indicate the lack of significant enrichment. 
(C) Representative terms from the enrichment analysis are presented as a network, visualized as a ‘force‑directed’ layout. Description of each term is shown 
as a label.
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in vitro infected bronchial epithelial cells and lung samples 
from patients (Fig. 2A).

Gene term enrichment analysis for the significantly 
modulated genes identified pathways in common between 
the GSE147507 and the GSE150316 datasets. The common 
enriched terms for the upregulated genes in the two datasets 
were: ‘humoral immune response’ (GO:0006959) and ‘leuko-
cyte migration’ (GO:0050900) (Fig. 2B).

Interestingly, the top terms enriched among the downregu-
lated genes in the GSE150316 dataset were: ‘TNF signaling 
pathway’ (hsa04668), ‘cytokine‑mediated signaling pathway’ 
(GO:0019221), ‘myeloid leukocyte activation’ (GO:0002274) 
and ‘regulation of cytokine production’ (GO:0001817) 
(Fig. 2B). Representative terms from the enrichment analysis 
and their functional connections are presented as a network 
(Fig. 2C).

Deconvolution analysis of infiltrating immune cells in lung 
samples from COVID‑19 patients. We next characterized the 
relative proportions of infiltrating immune cells in the lungs 
of COVID‑19 patients. A shown in Fig. 3A, a moderate, but 
not significant, increase in the immune score and microenvi-

roment score was detected for the COVID‑19 lung samples. 
Also, a moderate, non-significant increase in the percentage 
of infiltrating basophils and aDCs was observed (Fig. 3B). 
Analysis of the lymphoid cells in the lungs of COVID‑19 
patients revealed a significant higher proportion of infiltrating 
B cells upon SARS‑CoV‑2 infection, along with a moderate,  
non-significant increase in NKT and Th1 cells (Fig. 3C).

Characterization of the transcriptomic profile of BALF 
samples. Next, we compared the gene signature of BALF 
samples from COVID‑19 patients and controls. A total of 
3003 genes were found to be modulated in SARS‑CoV‑2 
patients (adjusted P-value <0.05 and ǀfold‑changeǀ >2), with 
1745 genes being upregulated and 1258 genes downregu-
lated. As shown in Fig. 4A, among both the upregulated and 
downregulated genes, pathways related to cell morphology 
(GO:0051017; GO:0030155; GO:0030036; GO:0030031) 
and survival (GO:0010942; GO:0097190) were significantly 
enriched.

Analysis of the transcription factors identified RELA, 
NFKB1, USF2 and SP1, as putatively involved in the regula-
tion of the differentially expressed genes (Fig. 4B).

Figure 3. Deconvolution analysis of infiltrating immune cells in lung samples from COVID‑19 patients and controls as determined in the GSE150316. 
(A) Histogram plot for the ImuneScore, StromaScore an MicroenviromentScore in lung samples from COVID‑19 patients and controls, as determined in the 
GSE150316. (B) Relative proportions of infiltrating myeloid cells in lung samples from COVID‑19 patients and controls, as determined in the GSE150316. 
(C) Relative proportions of infiltrating lymphoid cells in lung samples from COVID‑19 patients and controls, as determined in the GSE150316.
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Immune cell deconvolution analysis revealed a trend of 
higher proportion in B cells (both naïve, memory and plasma 
cells), along with an increase in CD4 memory T cells, CD8 
T cells and DCs (cDCs, iDCs and pDCs) (Fig. 4C).

Discussion

The characterization of the exact pathogenetic mechanisms 
by which SARS‑CoV‑2 induces multiple organ damage are 
of immediate importance. Emerging data seem to indicate 
that beside lungs, other organs, including heart, kidney 
and the central nervous system may also be affected in 
COVID‑19 (21,22). Patients may show proteinuria, hematuria 
and increased creatinine levels  (21), and may suffer from 
neurological symptoms, such as headache, epilepsy, disturbed 
consciousness, anosmia and dysgeusia (22). Some COVID‑19 
patients also develop thromboembolic events, with elevation of 
D‑dimer and other procoagulant parameters (23), which may 
represent a secondary anti‑phospholipid syndrome (APS) (24), 
as well  as other autoimmune diseases  (25). Indeed, accu-
mulating case reports show that COVID‑19 patients tested 
positive for anti‑CL, anti‑b2‑GPI autoantibodies  (26‑29), 
as well as lupus anticoagulant (27,30,31).

The use of gene expression profiling data has been exten-
sively employed for the identification of novel pathogenic 
pathways and therapeutic targets (32‑36) for several disorders 
including, autoimmune diseases (37‑40) and cancer (41,42). A 
computational analysis was performed in order to characterize 

the immune response to SARS‑CoV‑2 infection. To achieve this, 
we exploited publicly available RNA‑seq data, generated from 
lung biopsies and BALF samples from COVID‑19 patients. 
Our data from lung and BALF samples concordantly show that 
B cell responses mainly characterize SARS‑CoV‑2 infection.

It has been already described that SARS‑CoV‑2 elicits a 
robust humoral cell response, with virus‑specific IgM, IgG 
and IgA, and neutralizing IgG antibodies following infection. 
Seroconversion usually occurs in most COVID‑19 patients 
between one to two weeks after overt symptoms, and antibody 
titers last for weeks, following virus eradication (43). It seems 
also that protective B cell memory arises following infection, 
as a recent study of SARS‑CoV‑2 infection in rhesus macaques 
found that animals that had resolved the primary infection were 
resistant to reinfection one month later (44). Also, independent 
data show that higher virus‑specific antibody titers correlated 
with greater virus neutralization and are inversely correlated 
with viral load (43). However, higher titers may be associated with 
more severe clinical cases (45‑47), suggesting that the humoral 
responses may not be sufficient to protect from severe disease. 
Up to now, there is no evidence that SARS‑CoV‑2‑induced anti-
bodies contribute to some of the pathological features observed 
in COVID‑19 patients. However, this possibility should be 
taken into consideration in light of the above‑mentioned data 
on secondary APS syndrome in some COVID‑19 cases. It has 
been proposed that antibody‑dependent enhancement (ADE), 
may represent, at least one, of the causes of the CRS (48‑51). 
When the virus infects the body, memory B cells are activated 

Figure 4. Characterization of the transcriptomic profile of BALF samples from COVID‑19 patients and controls. (A) Hierarchical clustering of the top 
most enriched terms by genes significantly upregulated and downregulated in the BALF samples of COVID‑19 patients as compared to control samples. 
(B) Hierarchical clustering of the top predicted transcription factors involved in the expression of the genes significantly upregulated and downregulated in 
the BALF samples of COVID‑19 patients as compared to control samples. (C) Deconvolution analysis of infiltrating immune cells in BALF samples from 
COVID‑19 patients and controls.
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while the activation of naive B cells is inhibited. However, both 
virus‑specific antibodies and antibodies cross‑reacting with 
other similar virus strains are produced and secreted. These 
cross‑reactive antibodies may elicit the entry of viruses into 
macrophages in a Fc receptor‑mediated manner, and conse-
quently, viruses undergo rapid replication and release, resulting 
in immune dysregulation, and severe illness in patients with 
COVID‑19 (52). The potential role of SARS‑CoV‑2‑induced IgG 
antibodies in promoting neuroinflammation in SARS‑CoV‑2 
infection should also be mentioned, as ADE occurrence may 
involve microglia cells following the binding of Abs to Fc 
receptors expressed on these cells.

As the mTOR pathway plays a fundamental role in B‑cell 
development via the control of BCL6 expression in B cells 
from the germinal center (53), it is reasonable to believe that 
the use of inhibitors of mTOR, i.e., rapamycin and ‘rapalogs’, 
could reduce the populations of antigen‑specific memory 
B cells and limit the occurrence of ADE in SARS‑CoV‑2 
infected patients. This further strengthen the rational for using 
mTOR inhibitors in COVID‑19, as previously discussed (20). 
Indeed, by using an anti‑signature computational approach, 
our analysis showed that the mTOR inhibitor, sirolimus, may 
be a candidate drug to be used in COVID‑19 patients, which 
is in line with data on the activation of the phosphoinositol 
3‑kinase (PI3K)/AKT/mTOR pathway in response to the 
infection with another coronavirus, MERS‑CoV (54). Also, 
mTOR has been recognized as a key factor in regulating the 
replication of viruses (36,54‑57), and in patients with H1N1 
pneumonia, early treatment with corticosteroids in combina-
tion with rapamycin has been associated with improvement 
in multiple organ dysfunction, virus clearance, and shortened 
time in ventilators (58).

Hence, the use of mTOR inhibitors may have many‑fold 
advantages on the course od SARS‑CoV‑2 infection, which 
could improve lung pathology, but also, the peripheral mani-
festations of the disease, including the CNS.

Interestingly, our data suggest potential reasons for the 
gender differences in COVID‑19 susceptibility (2). Indeed, the 
prevalence in men is between 55 and 68% (59) and increased 
clinical severity and mortality has been reported (60). Certainly, 
female‑specific hormonal factors can be involved. In this regard, 
it is notable that among the upregulated genes in BALF from 
COVID‑19 patients, 22 (Log(q) value=‑4) are regulated by AR 
(androgen receptor), while 15 are regulated by ESR1 (estrogen 
receptor 1) (Log(q) value=‑1.8). AR is known to play a key role in 
both innate and adaptive immune responses (61,62), and ESR1 
has been recognized as a regulator of interferon production and 
anti‑viral responses (63). These observations may underly the 
different clinical response to SAR‑CoV‑2 infection in women 
and men. It is important to note that selective estrogen receptor 
modulators. such as toremifene, have already been proposed 
as potential drugs to treat coronavirus infections (64). These 
observations point to biological processes that may explain the 
lower female incidence and lethality of SARS‑CoV‑2 infection, 
offering candidate therapeutic options in patients suffering 
from COVID‑19.

Finally, we have to acknowledge some of the limitations 
of the present study. First, the differentially expressed genes, 
that we have prioritized in our study, and the deconvolution 
analysis have been obtained from a really small cohort of 

patients, hence the data may be biased, due to the high degree 
of interindividual variability that characterize SARS‑CoV‑2 
infection. Lung‑specific gene expression profiles from homo-
geneous COVID‑19 patients will allow to better identify 
prognostic predictors and tailored therapeutic strategies. 
Second, the deconvolution analysis of the immune populations 
does not allow to assess the functionality of the immune cells 
and their actual involvement in COVID‑19 pathology.
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