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Abstract. The leading cause of death in developed countries 
is cardiovascular disease, where coronary heart disease is 
the main cause of death. Myocardial reperfusion is the most 
significant method to prevent cell death after ischemia. 
However, restoration of blood flow may paradoxically lead to 
myocardial ischemia‑reperfusion injury (MI/RI) accompanied 
by metabolic disturbances and cardiomyocyte death. As the 
myocardium has an extremely limited ability to regenerate, 
the mechanisms of regulated cell death, including apoptosis, 
are the most significant for contemporary research due to their 
reversibility. BCL2 is a key anti‑apoptotic protein. There are 
several signaling pathways and compounds regulating BCL2, 
including PI3K/AKT and MEK1/ERK1/2, JAK2/STAT3, 
endothelial nitric oxide synthase, PTEN, cardiac ankyrin 
repeat protein and microRNA, which can serve as targets 
for modern methods of cardioprotective therapy inhibiting 
intrinsic apoptosis and saving viable cardiomyocytes after 
MI/RI. The present review considers the mechanisms of 
Bcl2‑regulated apoptosis in the development and treatment of 
MI/RI.
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1. Introduction

In 1972, the Austrian pathologist J.F. Kerr, in cooperation 
with his Scottish colleagues A.H. Wyllie and A.R. Currie, 
introduced the concept of ‘apoptosis’ (after the ancient Greek 
ἀπόπτωσις‑leaf fall) to describe a morphologically stereotyp-
ical form of cell death characterized by cytoplasmic volume 
depletion, chromatin condensation and margination, shrinkage 
of the nucleus (pyknosis), fragmentation of the nucleus (kary-
orhexis), blebbing of the membranes and formation of discrete 
apoptotic bodies with an undamaged cell membrane (1,2).

According to the contemporary biochemical classifica-
tion of Nomenclature Committee on Cell Death, apoptosis is 
considered to be one of the morphological signs typical for 
different types of regulated cell death (RCD) (3). One of the 
forms of RCD is intrinsic apoptosis. Intrinsic apoptosis, initi-
ated by the cell itself in response to intracellular damage, is 
also known as mitochondrial apoptosis, as the mitochondria 
performs the key role in this process (4). The trigger event 
is the increase in mitochondrial outer membrane permeabi-
lization (MOMP) and release of proteins that are normally 
sequestered between the two mitochondrial membranes (5,6). 
The MOMP and thus the entire process of intrinsic apoptosis 
is regulated by members of the BCL2 protein family that are 
embedded in the outer membrane (6,7).

BCL2 is an acronym for B‑cell lymphoma/leukemia‑2. 
As its name suggests, the gene expressing BCL2 was for 
the first time found in B‑cell malignant neoplasms. This 
acronym is also used for the designation of the entire 
family of homological proteins  (8). Different proteins of 
this family contain BCL2 homology domains (BH: BH1, 
BH2, BH3 and BH4) (Fig.  1)  (9) and can be divided into 
two groups: Pro‑apoptotic and anti‑apoptotic. Pro‑apoptotic 
proteins include BCL2‑associated X protein (BAX), (BCL2 
antagonist/killer (BAK), BCL2‑related ovarian killer, BH3 
interacting domain death agonist, BCL2‑associated agonist 
of cell death, BCL2‑interacting killer, BCL2‑interacting 
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mediator of cell death), BCL2‑modifying factor, activator 
of apoptosis harakiri, BCL2‑interacting protein 3 (ANIP3), 
NIX (BNIP3‑like), phorbol‑12‑myristate‑13‑acetate‑induced 
protein 1 (NOXA) and p53 upregulated modulator of apoptosis 
(PUMA). Meanwhile, anti‑apoptotic proteins include BCL2, 
BCL2 X‑linked protein (BCL‑XL), myeloid cell leukemia 1 
and BCL‑w and A1/BFL‑1 (10‑12). The BCL2 family proteins 
are capable of interacting with each other, whereby their 
different partnerships result in different outcome of the cell 
fate (9). In response to apoptosis stimulation, BAX and BAK 
proteins are exposed to oligomerization on the mitochondrial 
outer membrane (13,14). This process is blocked by BCL2 
protein, which inhibits mitochondrial permeabilization and 
cell death by interacting with BAX and BAK (9,15). Enhanced 
expression of Bcl2 may increase cell resistance to apoptosis 
in cells, such as tumor cells. The BCL2/BAX ratio is a type 
of ‘rheostat’ regulating cell death depending on the balance 
between BCL2 and BAX in cells (16).

Cardiomyocyte apoptosis is a well‑known key process 
during the development of ischemia (17) During apoptosis 
inhibition, the BCL2/BAX ratio is increased, which contrib-
utes to cardiomyocyte survival in the peri‑infarct area (18). 
Previous investigations revealed a significant role of abnormal 
Bcl2 expression in cardiomyocyte apoptosis modulation in 
MI/RI, as its expression rate has a direct effect on cardiomyo-
cyte apoptosis and cardiac function (19,20).

The key object in the clinical treatment of MI/RI based on 
molecular mechanisms of the injury progression is decreasing 
the rate of cardiomyocyte apoptosis. BCL2 is the key protein in 
the entire BCL2 family that is responsible for the anti‑apoptotic 
process and promotion of cell survival. Therefore, the present 
review focused mainly on this protein and aimed to investigate 
how it is regulated during MI/RI and how this can be exploited 
for clinical use. The present review also assessed possible ways 
of using BCL2 as a target for pharmacological correction.

2. Pathogenesis of myocardial ischemia‑reperfusion injury 
(MI/RI)

Cardiovascular diseases are the main cause of death world-
wide. In 2016, 85% of cases resulted from myocardial 
infarction or cerebral stroke (21,22). Coronary heart disease 
is the main cause of death and disabilities (23). Myocardial 
infarction is tissue necrosis following acute ischemia, which 
is characterized by absolute insufficiency of coronary blood 
circulation (24).

Ischemia is a complex pathological mechanism resulting 
from a decrease in the local blood flow in a tissue or organ (25). 
Ischemia occurs commonly in the myocardium due to occlu-
sion of the coronary arteries responsible for myocardial 
perfusion (25). The heart is a constantly contracting organ, 
requiring a high rate of metabolic activity, which makes it 
extremely susceptible to any disorders of oxygen supply. 
Under normal conditions, mitochondria consume oxygen 
and generate ATP. A decrease in oxygen supply leads to 
the inhibition of mitochondrial oxidative phosphorylation 
and, consequentially, the switch from aerobic to anaerobic 
metabolism (26). Anaerobic glycolysis causes a reduction of 
intracellular pH (26). The combination of enhanced sodium 
and calcium influx into cells, due to Na+‑H+ and Na+‑Ca2+ 

exchange, correspondingly increases acidity and intracellular 
calcium levels (27). Moreover, a rapid elevation in intracel-
lular Ca2+ leads to a pathological increase in mitochondrial 
permeability transition; however, a reduction of intracellular 
pH inhibits this process (27). Disordered ion homeostasis is 
followed by osmotic gradient formation, which is accompanied 
by water inflow into the cell with a subsequent swelling and 
disturbance in intracellular ion balance (28). If blood supply is 
not properly restored after ischemia, the absence of sufficient 
ATP levels and high levels of Ca2+ lead to myocyte atrophy 
and eventually apoptosis and necrosis  (28). The activation 
of caspase‑3 and maximal activity of pro‑apoptotic proteins 
BAX, Noxa and PUMA are observed on the 1st day post‑coro-
nary artery occlusion; however, anti‑apoptotic proteins BCL2 
and BCL‑XL remain relatively unchanged, which indicated 
that the pro‑apoptotic pathways are activated rapidly in MI/RI 
while cell protective pathways remain inactive (29).

Reperfusion of the stunned myocardium during percu-
taneous coronary intervention is necessary to minimize 
myocardial damage. For patients with myocardial infarction 
accompanied by elevation of ST‑segment, the timely reperfu-
sion of the myocardium using either thrombolytic therapy or 
primary percutaneous coronary intervention, is the most effec-
tive method of treatment to restrict the size of infarction area, 
support systolic function and reduce manifestations of heart 
failure (30). Reperfusion therapy of coronary insufficiency 
after myocardial infarction is also the most effective method 
to save cardiomyocytes suffering from hypoxia, support 
cardiac function and save patients' lives (31). Reperfusion is 
the most significant method to prevent tissue death after isch-
emia. However, restoration of blood flow can paradoxically 
lead to MI/RI, characterized by metabolic disturbances, local 
inflammatory response, cell death and a consequent cardiac 
remodeling and dysfunction, contributing to adverse cardiac 
events after myocardial ischemia (25,32,33). Although reper-
fusion is necessary for the restoration of oxygen and nutrient 
influx, which supports cellular metabolism, it may paradoxi-
cally cause consequent pathological processes aggravating 
tissue damage (34,35). MI/RI may exacerbate structural and 
functional disturbances of the myocardium and cause a strong 
effect on the restoration of cardiac function after recurrent 
reperfusion (35-37).

The phenomenon of paradoxical aggravation after oxygen 
flux restoration was described for the first time >50 years ago 
when it was shown that reperfusion caused several pathological 
changes in heart exposed to coronary occlusion (26). MI/RI 
is associated with different pathophysiological mechanisms, 
including calcium overload, production of oxygen free radi-
cals, endothelial dysfunction, immune response, mitochondrial 
dysfunction, cardiomyocyte apoptosis and autophagy and 
platelet aggregation (38‑41). During this process, apoptosis is 
the main pathological mechanism, which plays a critical role 
in cardiac remodeling after myocardial infarction (42).

Cardiomyocyte apoptosis and necrosis caused by MI/RI 
are the most critical pathological processes in cases of cardiac 
dysfunction after previous myocardial infarction (43). Myocardial 
necrosis is predominantly observed at the late stages of MI/RI 
while cell apoptosis is observed throughout the whole process (43). 
Apoptosis is one of the most important mechanisms of MI/RI 
and it has a considerable effect on the degree of damage and 
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consequently on the prognosis of heart failure development (42). 
Thus, effective inhibition of apoptosis caused by MI/RI is one of 
the important lines of research and it is of great importance for 
cardiac function improvement after myocardial infarction and for 
preventing myocardial remodeling.

Apoptosis plays a critical role in the pathogenesis of 
MI/RI (44). Inhibition of apoptosis may decrease the degree of 
myocardial damage and prevent injury caused by MI/RI (45). 
Mitochondrial injury accompanying hypoxia contributes to 
a decrease in BCL2 content and opening the mitochondrial 
permeability transition pore (MPTP) (46,47). Reverse blockade 
of electron transport in ischemia supports high levels of BCL2 
accompanied by a decrease in susceptibility to MPTP opening 
after ischemia (5). Functional inhibition of BCL2 using its 
low‑molecular antagonist HA14‑1 sensitizes MPTP opening 
in mitochondria under normal physiological conditions (46). 
These results indicated a potential link between decreased or 
inhibited function of BCL2 and MPTP opening in MI/RI. It 
can be hypothesized that the BCL2 protein family governs cells 
undergoing apoptosis. In this context, investigating the regu-
lation of BCL2 during MI/RI may be beneficial in revealing 
pathways with a potential for possible clinical application.

3. The main pathways of BCL2 regulation in MI/RI

The BCL2 protein family regulates cardiomyocyte death in 
MI/RI (48,49). The synthesis of BAX and caspase‑3 is signifi-
cantly enhanced and production of BCL2 is inhibited during 
MI/RI (50). Studies have shown that the key role in apoptotic 
initiation is due to oxidative stress (51,52).

Two main types of protein activity regulation are known: 
Fast regulation via post‑translational modification (usually 
phosphorylation/dephosphorylation) and slow regulation via 
gene expression regulation. BCL2 was shown to have three 
basic sites of phosphorylation (T69, S70 and S87) which results 
in changes in its anti‑apoptotic activity (11). The modulating 
role of BCL2 phosphorylation remains to be fully elucidated, 
moreover, there are contradicting facts described in literature 
which can derive from the feasibility of single phosphorylation 
of different amino acids or triple phosphorylation of all three 
amino acids in the structure of BCL2 (10,46,53). Moreover, 
BCL2 phosphorylation of the same type in normal and cancer 
cells can lead to different effects. An attempt to clarify these 
contradictions was undertaken by Song et al (53), who managed 
to build a mathematical model for BCL2 phosphorylation in 
different types of cancer cells and revealed that the turning 
point was 50% triple phosphorylation (T69, S70 and S87) that 
switched BCL2 from apoptotic to anti‑apoptotic action.

The limitation of this conclusion is that it can only be reli-
ably applied to cancer cells.

Several kinases that have BCL2 as a target for phos-
phorylation are well described in literature: Protein kinase C 
α, JNK, p38/MAPK, ERK and pyruvate kinase isoform M2 
(PKM2). Dephosphorylation of phosphorylated (p)‑BCL2 is 
performed by protein phosphatase A2. BCL2 phosphoryla-
tion mediated by JNK, p38/MAPK and PKM2 was shown 
to occur in cardiomyocytes. JNK and p38/MAPK inactivate 
BCL2 by phosphorylating and inducing apoptosis, causing 
cardiomyocyte injury after ischemia and during oxidative 
stress (54,55). By contrast, PKM2 phosphorylates BCL2 with 
the aid of heat shock protein 90 to prevent its degradation, thus 
enhancing its stability and promoting its anti‑apoptotic prop-
erties (56). Several publications link the degree between BCL2 
triple phosphorylation with the crosstalk between autophagy 
and apoptosis  (57‑59). This switch point is feasible due to 
different affinities of BCL2 and p‑BCL2 to beclin‑1 as the 
main autophagy inducer (57). Thus, phosphorylation of BCL2 
leads to the dissociation of beclin‑1 from the BCL2‑beclin‑1 
complex with consequent phosphorylation of beclin‑1 and 
the formation of an active PI3K III complex and autophagy 
induction (57). The lower degree of BCL2 phosphorylation 
resulted in autophagy induction, while more extensive BCL2 
phosphorylation reduced its affinity to BAX, causing its disso-
ciation and thus resulting in apoptosis induction (58).

Other mechanisms of BCL2 regulation involve gene 
expression and result in changes in BCL2 intracellular levels. 
Several signaling pathways are known to regulate the rate of 
intrinsic apoptosis including PI3K/AKT and MEK1‑ERK1/2, 
endothelial nitric oxide synthase (eNOS), PTEN and 
JAK2/STAT3 (59‑65) (Fig. 2).

The reperfusion injury salvage kinase (RISK) pathway was 
described for the first time by Schulman et al (59) in 2002, 
while they were studying the mechanisms underlying the 
cardioprotective effect caused by urocortin. The RISK 
pathway is a combination of two parallel cascades: PI3K/AKT 
and MEK1/ERK1/2. The pathways were analyzed in detail in 
a series of subsequent pharmacological experiments in which 
the protective effect of several interventions was blocked by a 
simultaneous administration of PI3K and ERK inhibitors at 
different times (60). In the broadest term, RISK refers to the 

Figure 1. BCL2 proteins and homology domains. The BCL‑2 family of 
proteins is divided into three groups based on their functional role in 
the regulation of apoptosis and the number of BH domains they bear. 
Pro‑apoptotic BCL2 proteins include: Multidomain proteins BAX, BAK, 
BOX and BH3‑only proteins BID, BIM, BAD, BIK, BMF, HRK, BNIP3, 
NIX, NOXA and PUMA; anti‑apoptotic multidomain BCL2 proteins BCL2, 
BCL‑XL, BCL‑W, MCL1 and A1/BFL‑1. BH, BCL2 homology; BAK, BCL2 
antagonist/killer; BOX, BCL2‑related ovarian killer; BID, BH3‑interacting 
domain death agonist; BIM, BCL2‑interacting mediator of cell death; BAD, 
BCL2‑associated agonist of cell death; BIK, BCL2‑interacting killer; BMF, 
BCL2‑modifying factor; HRK, activator of apoptosis hara‑kiri; BNIP3, 
BCL2‑interacting protein 3; NIX, BNIP3‑like; NOXA, phorbol‑12‑my-
ristate‑13‑acetate‑induced protein 1; PUMA, p53‑upregulated modulator of 
apoptosis; BCL‑XL; BCL2 X‑linked protein; BCL‑w, BCL2‑like protein 2; 
MCL1, myeloid cell leukemia 1; A1/BFL‑1, BCL2‑related protein A1.
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group of pro‑survival protein kinases responsible for cardio-
protection via specific activation during reperfusion.

The PI3K/AKT/mTOR signaling pathway is an important 
regulatory mechanism for protein synthesis and is closely 
associated with intracellular oxidation and reduction in the 
mitochondria (61). It was found that stress in vitro and in vivo 
may lead to an increase in the rate of tyrosine receptor phos-
phorylation which activates PI3K, indirectly stimulating AKT 
phosphorylation, increasing the rate of p‑mTOR and activating 
the expression of the anti‑apoptotic factor Bcl2 (61,62). It was 
also shown that the levels of PI3K, p‑AKT and p‑mTOR in 
rat myocardial cells after MI/RI were significantly lower 
compared with the controls (62). Following MI/RI, expres-
sion levels of caspase‑3 and Bax were significantly increased 
in myocardial cells whereas Bcl2 expression significantly 
decreased (63).

The conformation of PI3K can be changed and activated 
by the action of growth factors and mitogens, which convert 
phosphatidylinositoldiphospate 2 (PIP2) into phosphatidylino-
sitoltriphospate 3 (PIP3) (63). Several studies demonstrated that 
the PI3K/AKT signaling pathway may facilitate cell apoptosis 
in case of MI/RI by influencing the BCL2/BAX ratio (64,65). 
Zhang et al (66) showed that the PI3K/AKT/mTOR signaling 
pathway is inhibited in the cardiomyocytes of rats with 
myocardial infarction, which leads to significant activation of 
cardiomyocyte apoptosis.

A significant role in the regulation of the PI3K/AKT 
signaling pathway in MI/RI belongs to PTEN which dephos-
phorylates PIP3 back into PIP2, thus inhibiting the PI3K/AKT 
signaling pathway (Fig. 2). This protein plays an important role 
in apoptosis (67). Nevertheless, only a few studies evaluated 
the role of PTEN in MI/RI experimental models. In particular, 
it was shown that PTEN inhibition protected the myocardium 

from MI/RI by activating the PI3K/AKT/eNOS/ERK pathway, 
which is one of the variants of pro‑apoptotic pathway induc-
tion  (67). An increase of PTEN levels may suppress the 
activity of the PI3K/AKT signaling pathway, which may 
cause myocardial cell apoptosis during MI/RI (68). It was also 
shown that expression of PTEN and BAX levels in myocardial 
cells in the MI/RI group were markedly higher compared 
with sham‑operated animals, but phosphorylation of AKT and 
BCL2 levels were significantly lower (69).

ERK1/2 plays a key role in the transduction of extracellular 
stimuli (70). ERK1/2 acts as an important protein kinase in 
reperfusion damage (71). Mitogen‑activated protein kinase 
(MEK1 or MAP2K) was shown to hyperactivate the ERK1/2 
signaling pathway (72). The ERK1/2 signaling cascade acts 
as the main regulator of intracellular apoptosis (73). Although 
the function of ERK1/2 in apoptosis is controversial  (74), 
inhibition of this pathway is associated with a reduction in the 
number of apoptotic cells and the BAX/BCL2 ratio as well 
as a decrease in mitochondrial membrane potential and cell 
viability in MI/RI (75,76).

The anti‑apoptotic effects of nitrogen oxide (NO) 
mediated‑cGMP/ protein kinase G (PKG) signaling can be 
associated with increased synthesis of anti‑apoptotic BCL2 
and inhibition of MPTP formation (77,78). Moreover, NO and 
natriuretic peptides may prevent cardiomyocyte apoptosis via 
cGMP/PKG‑dependent inhibition of intracellular calcium 
overload (79).

The JAK/STAT signaling pathway is a key component of 
the survivor activating factor enhancement (SAFE) pathway, 
which can transmit cell signals from the plasmalemma to 
the nucleus, providing regulation of gene expression (80-85). 
The JAK/STAT pathway plays an important role in 
different mechanisms in the myocardium, including apop-
tosis  (81,86), MI/RI  (87,88), preconditioning  (89) and 
postconditioning  (90,91). In 2009, Lecour  (92) showed 
that in addition to the RISK pathway, SAFE can be an 
alternative pathway mediating signaling activated by post-
conditioning. The JAK/STAT pathway consists of the family 
of receptor‑associated cytosol tyrosine kinases, which 
phosphorylate tyrosine (93). Phosphorylation and activation 
of signal transducer and activator of transcription (STAT) 
in response to ischemic preconditioning (IPC) contribute 
to cardioprotection by means of signaling cascades and 
inhibition of pro‑apoptotic factors (94). STAT3 is a central 
component of cardioprotection (95,96). Subsequent studies 
showed that the JAK2/STAT3 signaling pathway takes part 
in the anti‑apoptotic effect of preconditioning, which is real-
ized by increasing the synthesis of anti‑apoptotic BCL2 and 
suppressing the pro‑apoptotic protein BAX (90,97).

The inhibition of pathways that increase the BCL2/Bax 
ratio and enhancement of pathways leading to its lowering is 
typically observed in MI/RI, which is associated with hypoxic 
conditions (84). In vitro MI/RI modeling in cardiac myoblasts 
revealed an increase in BCL2 protein levels accompanied by 
an increase in p‑PI3K and p‑AKT levels after antioxidant 
treatment  (94). Cell survival was also increased while the 
expression of pro‑apoptotic BAX was downregulated (98). 
These results supported the idea that hypoxia‑induced oxida-
tive stress acts as a main downregulatory factor for BCL2 and 
BCL2‑family controlled intrinsic apoptosis.

Figure 2. Main pathways of BCL2 regulation in MI/RI. The figure shows 
the simplified scheme of BCL2 signal transduction regulation in MI/RI. The 
RISK pathway is in red and the SAFE pathway is in blue. MI/RI, myocar-
dial ischemia‑reperfusion injury; RISK, reperfusion injury salvage kinase; 
SAFE, survivor activating factor enhancement; PIP3, phosphatidylinositol-
triphosphate 3; PIP2, phosphatidylinositoltriphosphate 2; eNOS, endothelial 
nitric oxide synthase; PKG, protein kinase G; miR, microRNA; MOMP, 
mitochondrial outer membrane permeabilization.
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Koeppen  et  al  (99) found that expression of serum 
pro‑inflammatory substances is significantly higher in patients 
with myocardial infarction compared with healthy people. This 
is an important factor contributing to disease progression due 
to apoptosis activation. It was also revealed that the toll‑like 
receptor 4 (TLR4)/NF‑κB signaling pathway was a potential 
therapeutic target for MI/RI treatment  (100,101). Several 
studies showed that the TLR4/NF‑κB signaling pathway plays 
a critical role in the regulation of the inflammatory response 
and cardiomyocyte apoptosis during MI/RI (102,103).

Cardiac ankyrin repeat protein (CARP), a transcription 
co‑factor regulating gene expression in cardiomyocytes, 
inhibits apoptosis induced by MI/RI increasing Bcl2 gene 
expression (104). CARP is linked with the promotor site of the 
gene Bcl2 through formation of a complex with transcription 
factor GATA‑4 which regulates transcription and enhances 
cardioprotection (104).

Hyperlipidemia can stimulate the activation of cardio-
myocyte apoptosis in MI/RI. Immunocytochemical analysis 
revealed an increase in the expression of pro‑apoptotic Bax and 
inhibition anti‑apoptotic Bcl2 expression in the myocardium 
of rats exposed to a hypercholesterol diet (105). These results 
are in agreement with the data obtained by Guo et al (106) 
and Kuo et al (107). In this model, the levels of pro‑apop-
totic proteins BAK and BAX are significantly increased, 
which is a sign of induction of intrinsic apoptosis  (108). 
Hypercholesterinemia is associated with an increase in the 
BCL2/BAX ratio in the myocardium which leads to the 
aggravation of myocardial damage after its reperfusion due 
to the activation of cardiomyocyte apoptosis rate (107). It was 
also shown in the experiments in Oryctolagus (rabbits) that 
Bcl2 expression is increased in the myocardium during hyper-
cholesterolemia by 50% compared with the controls (109). 
In Oryctolagus with hypercholesterolemia and myocardial 
ischemia, a marked reduction of Bcl2 expression and similar 
degree of the increase in Bax expression were observed (109).

MicroRNAs (miRs) are one of the most important epigen-
etic regulators (110). In recent years, several studies revealed 
the role of miRs in the process of MI/RI (111‑119). miRs change 
the key signaling mechanisms which makes them potential 
therapeutic targets (111,112). miRs act as transcription regu-
lators in a wide range of biological processes underlying the 
response to stress, cell proliferation and cell death (113,114). 
miRs may bind to the 3'‑untranslated region of the mRNA of 
a target gene, hence destroying mRNA or preventing mRNA 
translation and negatively regulating the expression of the 
target gene at the post‑transcriptional level (115). Disturbances 
in miR expression or function are closely associated with 
cardiovascular diseases; miRNAs take part in different patho-
physiological processes including myocardial infarction (116), 
MI/RI (37,117) or cardiac remodeling (118) with a possible role 
as aggravating (20) or neutralizing agents (37).

For example, miR‑1 is predominantly expressed in 
cardiac myocytes and closely associated with MI/RI in rats 
as its levels inversely correlate with BCL2 protein synthesis 
in cardiomyocytes in MI/RI (119). Mice studies also showed 
that enhancement of miR‑135b‑5p expression in MI/RI leads 
to activation of the JAK2/STAT3 signaling pathway, Bax 
expression and Bcl2 inhibition (120). Hullinger et al  (121) 
demonstrated that miR‑15b, a member of the miR‑15 family, 

aggravated myocardial damage caused by MI/RI via affecting 
BCL2. miR‑16 expression is activated during MI/RI and has an 
inhibiting effect on Bcl2 expression, which contributed to the 
enhancement of cardiomyocyte apoptosis after MI/RI (122). 
Inhibition of miR‑16 expression may suppress cardiomyocyte 
apoptosis after MI/RI, resulting in a reduction of infarction 
area (122). miR‑221 is involved in the pathogenesis of MI/RI 
by regulating the PTEN/AKT signaling pathway, along with 
Bax and Bcl2 expression (123‑125). Expression of Bcl2 and 
microtubule‑associated proteins 1A/1B light chain 3B II in 
cardiomyocytes of newly born rats is significantly decreased, 
which is accompanied by enhanced expression of miR‑497 
in anoxia‑reoxygenation  (126). Another study revealed 
the cardioprotective role of mir‑21 in MI/RI via the activa-
tion of the PTEN/AKT signaling pathway and BCL2 (127). 
miRNA‑22 may inhibit cardiomyocyte apoptosis by inhibiting 
p53 acetylation and decreasing the levels of pro‑apoptotic 
genes Bax and p21 by affecting one of its targets‑cAMP 
response element‑binding protein (128‑130). miR‑214 reduced 
myocardial damage caused by MI/RI via the PI3K/AKT 
signaling pathway, accompanied by a decrease in BAX levels 
and an increase in BCL2 levels (131). miR‑34a, activated in 
rats with MI/RI, repressed Bcl2 in vivo and in vitro (132).

The regulation of BCL2‑dependent apoptosis in MI/RI 
is quite versatile and depends on a large number of factors, 
including activation of emergency genetic programs, changes 
in metabolic processes and the involvement of additional 
signaling pathways protecting the myocardium from the 
negative effects of hypoxia. The ability to influence these 
mechanisms makes it possible to reduce cardiomyocyte 
damage, also via induction of BCL2.

4. Therapy of MI/RI

Various forms of cell death may occur during acute 
MI/RI including necrosis, apoptosis, autophagy, necroptosis 
and pyroptosis, which may influence the terminal size of the 
myocardial infarction area after MI/RI (3). This may be used 
as a new target for cardioprotection, which may include the 
activation of endogenous cardioprotective signaling path-
ways: Cascade NO/cGMP/PKG, RISK and SAFE pathways, 
mitochondrial morphology, cardiomyocyte apoptosis and 
others (77‑79).

Cardiomyocytes of adult humans are characterized by an 
extremely limited regeneration capacity  (133). As a result, 
there is a continuous process of renewal and reparation of cells 
mediated by different mechanisms, including apoptosis (134).

In the 1990s, studies focused on the role of different types of 
cell death in cardioprotection after MI/RI (135). Pro‑apoptotic 
proteins were the main subjects of research at the time, where 
they were considered to be new targets in MI/RI (135). This was 
based on a hypothesis suggesting a possibility of saving viable 
cardiomyocytes when the signaling pathway of regulated cell 
death was potentially interrupted (135). For example, caspase 
inhibition during reperfusion restricted the size of the myocar-
dial infarction area in animal models (136). Besides preventing 
cell death by inhibition of pro‑apoptotic caspases, the focus 
was also given to the use of growth factors that prevented 
apoptotic processes via activation of proteins contributing 
to cell survival, such as kinases responsible for the survival 
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associated with PI3K and ERK1/2 activation. This method 
was suggested to be protective against MI/RI (137,138).

However, there are still no effective methods for preven-
tion of MI/RI in patients with myocardial infarction (139). 
Previous attempts to perform cardioprotective treatment of 
MI/RI (antioxidants, calcium blockers and anti‑inflammatory 
drugs) were not successful (140). The advantages of growth 
factors (137,138) was restricted because the signaling path-
ways they were involved in lead simultaneously to activation 
of apoptosis and induction of fibrosis (141).

Oxidative stress, Ca2+ overload, pH changes and inflamma-
tion during early reperfusion are the main mediators of tissue 
alteration, which emphasizes the importance of this period for 
the pathogenesis of MI/RI (142, 143). In canine experiments, 
the size of the infarction area significantly increased on the 
6th to 24th h after reperfusion. However, Argaud et al (144) 
revealed no difference in the size of the myocardial infarc-
tion area between the 4th and 72nd h after reperfusion in 
Oryctolagus cuniculus. Species differences and particular 
methods of MI/RI modeling can be referred to as the reasons 
for such different results (143,144).

Regardless of the success in the research of cardioprotec-
tive methods on animals, their use in clinical practice still 
present with severe difficulties (145‑147). Some pharmaceu-
tical approaches faced just little success, and although the 
suggested methods of ischemic conditioning seem promising, 
their effects may be minor and, in some cases, even controver-
sial (148). Differences between preclinical models of transient 
myocardial ischemia and coronary heart disease with specific 
characteristics in patients including age, concomitant diseases 
and drug therapy may help explain the difficulties in intro-
ducing the potential cardioprotective techniques into clinical 
practice (149).

Numerous different methods of cardioprotective therapy 
of MI/RI have been suggested in the past three decades (150). 
These approaches are commonly based on the controlled use of 
short‑term ischemia and reperfusion (ischemic conditioning), 
pharmacotherapy or physiotherapy including hypothermia or 
electric stimulation of nerve terminals (30,140).

Therapeutic methods of MI/RI based on ischemic condi-
tioning include local IPC and ischemic post‑conditioning 
(IPostC) as well as remote ischemic conditioning (140), which 
delays pH restoration, prevent NOS decomposition and conse-
quent formation of reactive forms of oxygen and nitrogen and 
also increase the content of PKG, a component of the RISK 
pathway, and cause enhancement of the SAFE pathway in 
reperfused cardiomyocytes  (151‑153). As aforementioned, 
all these factors regulate BCL2 in MI/RI, indicating cardio-
protective effects of ischemic conditioning due to inhibition 
of BCL2‑family dependent apoptosis (Fig. 3). The following 
part of the review details the exploration of the mechanisms 
underlying these strategies of MI/RI therapy.

Effects of IPC on BCL2 regulated apoptosis in MI/RI. 
Murry et al (154) published an original study showing that 
IPC (several short‑term cycles of ischemia and reperfusion) 
protected tissues from subsequent ischemic stroke. This 
discovery, described in Canis experiments, was afterwards 
reproduced in numerous preclinical studies in other animals 
and other organs besides the heart  (155,156) and then in 

humans  (157). The concept of IPC was then transformed 
into ‘ischemic conditioning’‑a wide term including a number 
of associated cardioprotective methods used either directly 
towards the heart (IPC or IPostC) or distantly (remote ischemic 
pre‑, per‑ or postconditioning) (157). Thus, effective methods 
providing the reduction of MI/RI have become an important 
field of research.

The potential of IPC is inevitably restricted by the neces-
sity to use it before ischemia, which is of great difficulty 
for patients with myocardial infarction (158). However, this 
method initiated a number of subsequent studies, which have 
brought considerable success in understanding the mecha-
nisms underlying MI/RI and IPC as a result of the potential 
development of cardioprotective therapy (159).

The cardioprotective effect of IPC is evidenced by a decrease 
in the size of the myocardial infarction area and a reduction in 
the number of apoptotic cardiomyocytes (157). Activation of the 
JAK2/STAT3 signaling pathway in response to IPC contributed to 
cardioprotection via signaling cascades responsible for the inhibi-
tion of pro‑apoptotic factors (160). Early phase of IPC enhanced 
JAK/STAT signal transduction by activation of STAT3, which is 
nearly neutralized by AG490, a JAK2 inhibitor (161). Constitutive 
deletion of STAT3 stimulated apoptosis, increased the size of 
infarction area and caused a reduction in cardioprotective effects 
after pharmacological preconditioning (162).

Studies showed that IPC increased the activity of cyclo-
oxygenase‑2 and inducible NOS 24 h after intervention, which 
depends on transcriptional regulation via the JAK/STAT 
signaling pathway (163,164). Taken together, these observa-
tions lead to the conclusion that IPC activated the SAFE 
pathway (Figs. 2 and 3).

Chen et al (165) investigated the cardioprotective action of 
exercise preconditioning on periodic cardiomyocyte apoptosis 
caused by hypoxia in rats. The results of this study showed that 
5 days of exercise on a treadmill may decrease the apoptotic 
index of the myocardium and caspase‑3 expression and increase 
the BCL2/BAX ratio, which indicated cardioprotective effects 
based on suppression of hypoxia‑induced cardiomyocyte 
apoptosis. Based on previous studies, exercise preconditioning 
significantly reduced myocardial damage caused by physical 
load during ischemia, which is associated with lower levels of 
cardiac troponin I (cTnI) in the serum, a decrease in the size of 
the myocardial infarction area, suppression of cardiomyocyte 
apoptosis, an increase in the levels of anti‑apoptotic protein 
BCL2 and a decrease in the activity of caspase‑3 (165). These 
results are evidence of the cardioprotective action of precondi-
tioning from MI/RI and accompanying apoptosis (160).

Effects of IPostC on BCL2 regulated apoptosis in MI/RI. 
IPostC was first described Zhao et al (166). IPostC, which is 
induced by short‑term episodes of ischemia‑reperfusion at the 
beginning of reperfusion can restrict MI/RI by the activation 
of intrinsic signaling cascade reactions.

Restoration of myocardial blood circulation caused by 
postconditioning improved the contractile function of the 
myocardium and also restricts the size of infarction area, 
which is confirmed by a lower serum concentration of 
creatine kinase (CK) and the activity of lactate dehydrogenase 
compared with the data obtained after MI/RI without previous 
postconditioning (167,168).
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The effectiveness of IPostC as a method of myocardial 
protection from MI/RI was also confirmed in several other 
studies. IPostC does not only decrease the size of the infarc-
tion area (143,167) but also limits cardiomyocyte apoptosis 
after reperfusion. Budhram‑Mahadeo et al (29) showed that 
IPostC stimulated BCL2 synthesis and inhibited BAX produc-
tion. Another study demonstrated the ability of IPostC, similar 
to IPC, to restrict cardiomyocyte apoptosis after reperfusion 
via the SAFE pathway (169). IPostC activated STAT3 after 
reperfusion, and a JAK2 inhibitor (AG490) suppressed the 
anti‑apoptotic effects of IPostC (170). The anti‑apoptotic effects 
of the JAK2‑STAT3 signaling pathway were demonstrated 
in several studies performed on tumors (171). Several genes 
encoding proteins mediating apoptosis, such as Bcl2 and Bcl‑xl, 
were identified as target genes for STAT3 (170,171). Notably, 
an increase in BCL2 levels is typical for the period between the 
2nd and 24th h after reperfusion in IPostC (166). IPostC might 
inhibit cardiomyocyte apoptosis during long‑term reperfusion 
via regulation of anti‑apoptotic factors such as BCL2 (167). A 
long‑term anti‑apoptotic effect of IPostC may be associated 
with an increase in BCL2 levels 24 h after reperfusion, which 
is controlled by JAK2/STAT3 (167). Moreover, the PI3K/AKT 
signaling pathway, regulated by JAK2 signaling, is necessary 
for cardioprotection of IPostC (169).

An increase in the expression of AKT and BCL2 proteins 
is accompanied by inhibition of BAX synthesis, which is a 
sign of activation of the PI3K/AKT signaling pathway and 

inhibition of cardiomyocyte apoptosis  (44). Activation of 
this pathway, as the main component of the RISK pathway, 
prevented cardiomyocyte apoptosis, protected the myocardium 
from MI/RI and plays a critical role in IPostC effects (172‑174). 
Goodman et al (175) demonstrated that JAK/STAT signaling 
may contribute to the initiation of RISK signal transduction 
via activation of PI3K/AKT, and JAK/STAT signaling alone, 
without subsequent activation of RISK, is not sufficient for 
cardioprotection after IPostC. Other studies showed that JAK2 
signaling regulated the activation of the PI3K/AKT pathway 
after IPostC (169). Blocking the PI3K/AKT pathway decreased 
the cardioprotective effects of IPostC at every timepoint (169). 
Activation of the JAK2/STAT3/BCL2 pathway without 
activation of the PI3K/AKT pathway may be insufficient for 
apoptosis limitation (169).

The positive effects of IPostC may be inhibited by a 
high‑cholesterol diet  (109). Moreover, hypercholesterolemia 
inhibited the phosphorylation of AKT and ERK1/2, which were 
activated by IPostC in the myocardium and also caused exces-
sive apoptosis due to inhibition of BCL2, increased levels of 
cytochrome c and enhanced activities of caspases 9 and 3 (176).

Effects of pharmacotherapy on BCL2‑regulated apoptosis in 
MI/RI. In recent years, there is an increasing interest in studying 
the pharmacological methods of cardioprotection (150). The 
ultimate objectives of cardioprotection strategies include 
molecular targets mainly involved in signaling pathways of 
regulated cell death such as ion channels, proteases, reac-
tive oxygen species, contractile elements or components of 
MPTP (141). As a rule, these strategies are based on existing 
medicines and they rarely undergo pre‑clinical trials (140). 
The only exclusion is cyclosporine A, which is targeted at 
MPTP. However, cyclosporine A showed controversial results 
and failed in clinical trials (140).

Although pharmacotherapy is not commonly included 
in cardioprotective strategies, several investigations have 
shown that a number of medicines are capable of cushioning 
the effects of MI/RI (176,177,179‑182,186‑190). The present 
review briefly reviews those that promote cell survival and 
reduce apoptosis by affecting the BCL2/Bax ratio through 
specific signaling pathways. Most of the agents provide pleio-
tropic effects and activate several pathways simultaneously, 
leading to an increase of BCL2 expression (179‑182,186‑190). 
The comparative data on these medicines is summarized in 
Table I.

Metformin, which is widely used for the treatment of 
carbohydrate metabolism disorders, inhibits apoptosis in 
culture (H9c2 cells) and rat cardiomyocytes following injury 
caused by hypoxia‑reoxygenation or ischemia‑reoxygenation 
by increasing the BCL2/BAX ratio with the involvement of 
metalloreductase STEAP4 (177). These results in vitro and 
in  vivo affirmed the hypothetical effects of metformin on 
MI/RI produced by cellular apoptosis inhibition. The molecular 
mechanisms of this anti‑apoptotic function of metformin are 
still poorly understood, though it was earlier reported that they 
include activation of AMPK (178). AMPK is considered to be a 
key molecule for cardioprotection based on the modulation of 
several signaling pathways involved in glucose metabolism and 
energy homeostasis (179). AMPKs are proteins that promote 
cell protection in ischemic conditions as the AMP/ATP ratio 

Figure 3. Effects of IPC and IPostC on BCL2‑regulated apoptosis in 
MI/RI. (A) The progress of MI/RI without any treatment. (B) The effects 
of IPC on BCL2‑regulated apoptosis in MI/RI. (C) The effects of IPostC on 
BCL2‑regulated apoptosis in MI/RI. IPC, ischemic preconditioning; IPostC, 
ischemic postconditioning; MI/RI, myocardial ischemia‑reperfusion injury; 
RISK, reperfusion injury salvage kinase; SAFE, survivor activating factor 
enhancement.
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indicates intercellular energetic status and is increased in isch-
emic tissues (191).

A considerable cardioprotective effect of berberine, an 
alkaloid from Berberis vulgaris, was revealed. This plant alka-
loid was shown to reduce serum levels of heart injury markers 
such as CK‑MB, LDG and cTnI with simultaneous upregula-
tion of BCL2 expression and mitochondrial cytochrome c and 
downregulation of BAX (180).

The antidepressant escitalopram was shown to suppress 
cardiomyocyte apoptosis in patients with previous myocardial 
infarction compared with the controls, which was accompa-
nied by a decrease in the BAX/BCL2 ratio (181).

Preliminary administration of Ilexsaponin A increased the 
levels of anti‑apoptotic protein BCL2 and decreased pro‑apop-
totic protein BAX. These results confirmed that Ilexsaponin 
could suppress cardiomyocyte apoptosis in MI/RI, being a 
new potential cardioprotective agent which may be used for 
MI/RI treatment (182).

Preliminary introduction of Salvianolic acid (10, 20 or 
30 mg/kg/day) effectively decreased myocardial synthesis of 
BAX and caspase‑3 and increased BCL2 levels (50).

Inhaled administration of sevoflurane (halogenated 
anesthetic) inhibited BAX expression and enhanced Bcl2 
expression in mice, which was mediated by suppression of 
miRNA‑135b‑5p, whereby drug prevented MI/RI by activating 
the JAK2/STAT3 signaling pathway (120).

Postconditioning with dexmedetomidine (high‑selective 
agonist of α2‑adrenoreceptors), which is widely used in 
anesthesiology and resuscitation, significantly increased the 
BCL2/BAX ratio in the rat myocardium with modeled diabetes 
mellitus and MI/RI via the PI3K/AKT/GSK‑3β signaling 
pathway (183).

Rapamycin (an inhibitor of mTOR) is used for coating 
coronary stents containing special drugs to prevent in‑stent 
restenosis after coronary angioplasty (184,185). Rapamycin 
induces unique cardioprotective signal transduction that 
includes phosphorylation of ERK, STAT3, eNOS and 
GSK‑3β in association with increased BCL2/BAX ratio (184). 
JAK2/STAT3 signal transduction plays a critical role in 
cardioprotection induced by rapamycin, which is associated 
with an increase in BCL2/BAX  (185). BCL2 expression 

was enhanced after STAT3 activation via ERK‑dependent 
phosphorylation caused by rapamycin administration (186). 
Introduction of rapamycin before reperfusion is a promising 
method that might be capable of considerable restriction of the 
myocardial infarction area and inhibition of cardiomyocyte 
apoptosis after MI/RI via signaling pathways involving MAP 
kinases and PI3K/AKT (187).

Interestingly, a study showed an evident role of mela-
tonin in cardioprotection through the enhancement of 
Bcl‑xl and Bcl2 expression and inhibition of Bax gene 
expression by reduction of oxidative stress via the activa-
tion of the NAD‑dependent protein deacetylase sirtuin‑3 
(SIRT3) signaling pathway  (188‑190). SIRT3 is localized 
in the mitochondria and regulates several mitochondrial 
metabolic pathways  (192). Moreover, during MI/RI and 
type 1 diabetes, melatonin significantly inhibited apoptosis 
by suppression of caspase‑3 and BAX production, cleavage 
of caspase‑3 and an increase in BCL2 levels  (192). These 
effects were also inhibited by a specific blocker of AMPK 
signal transduction (compound C) which determines that this 
signaling pathway plays a key role in the cardioprotective 
action of melatonin (192). Firstly, it was demonstrated that 
melatonin treatment is a potential strategy for prevention of 
MI/RI injury in cases of type 1 diabetes mellitus as it could 
enhance mitochondrial biogenesis and support normal func-
tions of the mitochondria (192). Secondly, it was also shown 
that the AMPK/peroxisome proliferator‑activated receptor γ 
coactivator 1α/SIRT3 signaling pathway played a key role 
in the cardioprotective action of melatonin (193). Melatonin 
also showed a strong protective effect via Notch1/Hes1 signal 
transduction in a receptor‑dependent manner  (193). The 
PTEN/AKT signaling pathway is a key consequent mediator 
of BCL2 expression enhancement in rats (in vivo) and culti-
vated H9C2 cardiomyocytes (in vitro) (194).

It is important to note that the mechanisms of metabolic 
cardioprotection of most preparations have been poorly inves-
tigated to date (177,180‑184). The data of different randomized 
controlled trials often do not prove the effectiveness of the 
suggested methods (180‑184). Clinical data is available for 
metformin, rapamycin, dexmedetomidine, berberine and sevo-
flurane, but sufficient evidence of effective cardioprotection is 

Table I. Effects of several pharmaceuticals on apoptosis via affecting BCL2 expression.

Name of compound	 Molecular target	 References

Metformin	 STEAP4 AMPK activation	 176,177
Berberine	 JAK/STAT activation	 179
Escitalopram	 ND	 180
Ilexsaponin A	 ND	 181
Salvianolic acid	C aspase‑3 inhibition	   50
Sevoflurane	 MicroRNA‑135b‑5p suppression	 119
Dexmedetomidine	 α2‑adrenoreceptors, PI3K/AKT/GSK‑3β	 182
Rapamycin	 MAPK, JAK2/STAT3 activation	 183‑186
Melatonin	 AMPK/PGC‑1α/SIRT3, Notch1/Hes1 activation	 187‑190,193

STEAP4, metalloreductase STEAP4; ND, not determined; GSK‑3β, glycogen synthase kinase‑3β; PGC‑1α, peroxisome proliferator‑activated 
receptor gamma coactivator‑1α; SIRT3, NAD‑dependent protein deacetylase sirtuin‑3.
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still missing (195). Considerable appending of new theoretical 
data is required that would include information concerning 
molecular and cellular mechanisms which this therapy would 
be targeted at.

5. Conclusions and perspectives

In recent years, focus on apoptosis has become a promising 
direction in the research of cardiovascular pathology since 
there is an opportunity to control this process and to protect 
the functional reserve of the myocardium. The studies 
mentioned in this review have demonstrated a number of 
effective methods for inhibiting cell apoptosis. Conclusions 
based on these results, unfortunately, did not lead to a final 
solution to the problem of prevention and treatment of MI/RI. 
There is still a lack of data to recommend or to introduce these 
results into clinical practice. This is predominantly explained 
by the fact that there is no consensus for common biological 
and pathogenetic significance of BCL2 associated processes: 
Is it cardioprotective or only a pathological mechanism 
leading to cardiomyocyte death and aggravation of myocardial 
degradation?

Proteins of the BCL2 family play main roles in 
intrinsic apoptosis, and regulation of their activity allows 
significantly reduced cell death. In addition to the influ-
ence of BCL2 protein on apoptosis development, it is worth 
paying attention to its non‑apoptotic functions in MI/RI 
development. For example, BCL2 regulation features mito-
chondrial, nuclear and endoplasmic reticulum processes 
(including calcium homeostasis) and glucose and lipid 
metabolism (196‑198).

The preservation of functionally active cardiomyocytes 
is a priority in the development of new algorithms for 
MI/RI treatment. A wider research of BCL2 integration into 
cellular processes in MI/RI is likely to result in building a 
more complete signaling network that can be targeted at for 
preventing reperfusion injury of cardiomyocytes.
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