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Abstract. Intervertebral disc degeneration (IDD), which is 
caused by multiple factors, affects the health of individuals and 
contributes to low back pain. The pathology of IDD is compli-
cated, and changes in the extracellular microenvironment play 
an important role in promoting the process of degeneration. 
Cartilage intermediate layer protein (CILP) is a matrix protein 
that resides in the middle of human articular cartilage and is 
involved in numerous diseases that affect cartilage. However, 
there is no detailed review of the relationship between CILP 
and degenerative disc disease. Growing evidence has revealed 
the presence of CILP in the extracellular microenvironment 
of intervertebral discs (IVDs) and has suggested that there is 
a gradual increase in CILP in degenerative discs. Specifically, 
CILP plays an important role in regulating the metabolism of 
the extracellular matrix (ECM), an important component of 
the extracellular microenvironment. CILP can combine with 
transforming growth factor‑β or insulin‑like growth factor‑1 to 
regulate the ECM synthesis of IVDs and influence the balance 
of ECM metabolism, which leads to changes in the extracel-
lular microenvironment to promote the process of IDD. It may 
be possible to show the correlation of CILP with IDD and to 
target CILP to interfere with IDD. For this purpose, in the 
present study, the current knowledge on CILP was summa-
rized and a detailed description of CILP in discs was provided.

Contents

1.	 Introduction
2.	 Intervertebral disc degeneration (IDD) pathogenesis
3.	 Structure and synthesis of CILP
4.	� Association between cartilage intermediate layer protein 

(CILP) and IDD
5.	 Function of CILP in IDD
6.	 Regulation of CILP
7.	C onclusions and future directions

1. Introduction

Low back pain (LBP) is one of the most prevalent musculo-
skeletal diseases worldwide. Approximately 70‑85% of adults 
suffer from LBP in their lifetime, and a great number of them 
are disabled by it (1). The cost for treatment can reach billions 
of dollars, creating a huge burden for the families of patients 
and society (2). However, as a result of the complex pathology 
of LBP and the poor performance of current therapeutic 
measures, LBP still constitutes a major threat to the health of 
people.

There are numerous pathogenic factors leading to LBP, with 
intervertebral disc degeneration (IDD) being the most common 
target for diagnosis and intervention  (3‑5). As the largest 
avascular and aneural tissue in the human body, the normal 
intervertebral discs (IVDs) are made up of three morpho-
logically distinct regions, the nucleus pulposus (NP), annulus 
fibrosus (AF) and cartilaginous endplates (CEPs) (6‑9). IVDs 
function through dampening excessive mechanical stresses 
and maintaining the stability of the spine (10). It is important 
to provide thorough insight into the complicated pathophysi-
ological process of IDD, in order to develop a strategy for 
the prevention and treatment of LBP. IDD is a multifactorial 
result characterized by an aberrant cell‑mediated response that 
gradually causes structural failure (11). Aberrant cell‑mediated 
responses to the changed microenvironment include an imbal-
anced extracellular matrix (ECM) metabolism, an upregulated 
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proinflammatory phenotype and senescence (12‑15). During 
this process, the upregulation of proinflammatory and procata-
bolic phenotypes by NP cells is the main contributor to the 
suppression of anabolism and promotes the catabolism of the 
ECM (16,17).

Cartilage intermediate layer protein (CILP) is a monomeric 
glycoprotein residing in the ECM that is mainly expressed in 
the intermediate zone between human IVDs and articular 
cartilage (18‑20). Previous studies have also revealed the exis-
tence of a tendon ligament (21) and a synovial membrane (22). 
Notably, CILP expression in disc tissues has been revealed 
to be increased as degeneration and aging progress, contrary 
to the decreased levels of collagen II and aggrecans, which 
are the main components of discs (23). Furthermore, recent 
studies have revealed that CILP‑overexpression in human NP 
cells can negatively regulate matrix synthesis (24). In the aber-
rantly expressed genes detected in IDD, CILP is among the 
few cartilage matrix proteins whose expression is upregulated 
in the early and late stages of cartilage diseases (19,25), and a 
genetic association has been revealed between the CILP gene 
and IDD, suggesting the importance of CILP beyond that of 
other structural genes (26). The relationship between CILP 
and IDD has received increasing attention in recent years. 
Herein, insight was first provided concerning the pathogenesis 
of IDD, and the genetic and molecular structure of CILP was 
described. Next, a detailed introduction of the function of CILP 
in IVDs was provided, and the genetic structure of the associa-
tion between CILP and cartilage diseases was described. The 
regulatory mechanism of CILP was then summarized. Finally, 
the discussion focused on the future perspectives of CILP in 
biological therapies for IDD.

2. Intervertebral disc degeneration (IDD) pathogenesis

IDD is a multifactorial result caused by aging, infection, 
smoking, mechanical overloading, nutrient deficiency and 
genetic predisposition (27‑31). Among the numerous factors 
that lead to IDD, the destruction of extracellular microenvi-
ronmental homeostasis is considered to be one of the most 
important factors. All the etiologic causes initiate the process 
of IDD, which is mediated and characterized by an enhanced 
proinflammatory phenotype (32‑34). The increased inflam-
matory chemokine level, secreted from disc cells, infiltrates 
immune and AF cells, greatly destroying the homeostasis 
of the microenvironment around disc cells and directly 
affecting the metabolism of NP cells, which leads to a disrup-
tion of the balance between the anabolism and degradation 
of the ECM that directly accelerate the degradation of the 
ECM (35‑38). As a result, the resident cells are exposed to 
excessive mechanical stress, which in turn further worsens 
the ECM metabolism of NP cells (24). In addition, the noci-
ceptive nerve fibers and blood vessels from the dorsal root 
ganglion intrude into the herniated disc tissues to cause LBP 
(Fig. 1) (39,40). Notably, gene susceptibility has also been 
revealed to be involved in the initiation and progression of 
IDD; CILP is among the susceptible genes that are aberrantly 
expressed in IVDs (41,42). Moreover, CILP is restrictively 
expressed in few cartilage tissues, including articular carti-
lage and disc tissues (18,26), which suggests the importance 
of CILP beyond other susceptibility genes, elucidates the 

function of CILP and contributes to a better understanding 
of the pathogenesis of IDD.

3. Structure and synthesis of CILP

CILP was first identified and isolated by Lorenzo et al in 1998; 
this protein was named for its deposition in the interterritorial 
matrix without a presence in the superficial or deepest regions 
of the articular cartilage (18). CILP is synthesized by carti-
lage chondrocytes and is a polypeptide of 1,184 amino acids 
with a molecular mass of 132.5 kDa. Apart from a putative 
signal peptide of 21 amino acids, the protein is comprised of 
2 distinct polypeptides (20). The N‑terminus corresponds to 
the classical CILP protein, while the C‑terminus corresponds 
to a homologue of porcine nucleotide pyrophosphatase phos-
phodiesterase (NPP) (Fig. 2C and D). The CILP gene, which 
evolved from independent ancestral genes spanning 15.3 Kbp 
of genomic DNA, resides on chromosome 15q22  (43,44). 
Human CILP cDNA consists of 9 exons and 8  introns, of 
which exons 3‑6 are symmetrical, while exons 7 and 8 are 
asymmetrical (Fig. 2A). There is a putative promoter region 
upstream of the encoding start site at the 5' flanking region, 
where regulatory elements such as GATA‑1, MyoD, MZF1 and 
CdxA have been detected (Fig. 2B) (44). Exon 1 covers 46 bp 
of the noncoding region, and the eukaryotic translation of the 
N‑terminal region corresponding to the CILP protein begins 
at exon 2 (43,45). Of the exons that are translated, exons 2 to 8 
are 46‑154 bp long, and only exon 9 exceeds 2,800 bp (44). 
Furthermore, exon 9 not only participates in the protein 
translation of CILP but also encodes the C‑terminal protein, 
a homologue to porcine nucleotide pyrophosphohydrolase, 
which has piqued the interest of researchers due to its possible 
involvement in calcium pyrophosphate dihydrate (CPPD) 
deposition disease (44,46).

By means of transcriptome profiling, a homologue to CILP1 
(the classical CILP) was discovered in mouse cartilage (47). 
During the stage before maturation, CILP2 mainly focuses 
on the surface of the cartilage. As maturation progresses, the 
homologue gradually collocates in the intermediate zone with 
CILP1 (47). However, there are also differences between the 
two analogs. In surgery‑induced osteoarthritis, CILP2 was 
significantly downregulated, while CILP1 was upregulated. 
Ultrastructure analysis suggested that CILP2 may be relevant 
to collagen VI, which is a normal component in cartilage 
tissues, and that CILP2 may play a role in cartilage by medi-
ating the interaction among the matrix components; more 
studies are required to test this hypothesis (47).

4. Association between cartilage intermediate layer protein 
(CILP) and IDD

In a 2005 study, Seki et al first revealed that the CILP is 
a key regulatory factor in IDD development  (19). At the 
mammalian model level, Seki et al used transgenic mice that 
overexpressed CILP, and although there was no significant 
change in the X‑ray analysis results, blood‑test values or body 
weight, MRI analysis detected an obviously lower intensity 
in the area where CILP was deposited  (25). In addition, 
through the detection and analysis of CILP content in IVDs 
of rabbits of different ages, it was revealed that the expression 
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Figure 1. Development of IVD degeneration. A normal IVD is a typical sandwich structure that consists of 2 CEP, 1 AF and 1 NP. The interaction of 
environmental and genetic factors may lead to the degeneration of IVDs. The imbalance of anabolism and catabolism in IVD cells leads to the meta-
bolic disturbance of the IVD microenvironment and accelerates the process of IDD. The aging or apoptosis of IVD cells reduces the production of ECM, 
increases the production of pro‑inflammatory cytokines and ECM degradation enzymes, and promotes the catabolism of IVD cells. IVDs, intervertebral disc; 
CEP, cartilage endplates; AF, anulus fibrosus; NP, nucleus pulposus; IDD, intervertebral disc degeneration; ECM, extracellular matrix.

Figure 2. Genetic and protein structure of CILP in humans. (A) Genetic structure of CILP in humans. (B) Approximately 450 bp of human CILP promoter 
and its major regulatory binding elements, as well as factors that signal through these sites and their downstream effector factors. (C) Planar structure of 
a human CILP protein. (D) 3D structure of a human CILP protein. CILP, cartilage intermediate layer protein; NTPPHase, porcine 127‑kDa nucleotide 
pyrophosphohydrolase.
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level of CILP in IVDs in aged rabbits was significantly 
increased  (23). Previous research has not reported CILP 
expression levels in human IVDs. Therefore, we collected 
human IVDs with varying degrees of degeneration and 
assessed their CILP expression levels. Human IVD tissues 
were collected from 18 patients (male:female, 1:1) ranging 
in age from 20‑65 years who were undergoing lumbar spinal 
surgery for IDD between October 2019 and May 2020, at 
the Department of Orthopedics of The Second Affiliated 
Hospital (Chongqing, China). The present study was approved 
by the Ethics Committee of Xinqiao Hospital (Chongqing, 
China) on October 1, 2019 at the implementation of the 
study. All subjects provided their informed consent before 
participating in the present study. Immunohistochemical 
staining of a CILP antibody was performed in human disc 
paraffin sections with different degrees of degeneration 
in Pfirrmann grades. In brief, the tissues were fixed in 4% 
paraformaldehyde at 25˚C for 48 h. Dehydrated tissue was 
immersed in xylene for 2 h for transparent treatment and then 
immersed in section paraffin for 2.5 h. The tissue sections 
were 5‑µm thick. Then, the sections were blocked in normal 
goat serum (cat. no. SL038; Solarbio Life Sciences) that was 
diluted 20 times with PBS and added directly to the slices 
for 10‑30 min at 37˚C. Tissue sections were then incubated 
with CILP Polyclonal Antibody (rabbit/IgG; dilution, 1:200; 
cat. no. PA5‑51856; Thermo Fisher Scientific, Inc.) at 4˚C 
for 12 h. Following primary incubation, the sections were 
incubated with HRP‑conjugated goat anti‑rabbit IgG (dilu-
tion, 1:100; cat. no. SA134; Solarbio Life Sciences) at room 
temperature (25˚C) for 1 h. The sections were observed using 

a light microscope (magnifications, 10 X 10 and 10 X 40). The 
expression of CILP was revealed to be increased in human disc 
paraffin sections with higher degrees of degeneration (Fig. 3). 
Quantitative proteomic analysis of the IVDs of different IDD 
level groups revealed that CILP expression was significantly 
increased in the IVDs of people with severe IDD, specifi-
cally, in NP tissue, there was more CILP expression in the 
degenerate sample (26). In recent years, genetic susceptibility 
analysis of diseases to obtain the degree of genetic correlation 
with diseases has been widely used. A study consisting of 467 
Japanese patients and 654 controls revealed that the single 
nucleus polymorphism (SNP) rs2073711 at the 1,184 allele (T 
to C) was genetically correlated with IDD (19). Furthermore, 
the substitution from T to C increased the binding of CILP 
to transforming growth factor‑β (TGF‑β), which enhanced 
the CILP‑mediated suppression of the pro‑anabolic effect 
mediated by TGF‑β; this substitution plays an important role 
in the pathogenesis and origin of IDD (19). A meta‑analysis 
of genetic association studies of IVDs using a total of 1,551 
IVD cases and 1,793 controls from the 5 studies which were 
used in this study, and comprising four Asian populations 
and two European populations, confirmed the positive asso-
ciation between the CILP gene and IVDs (48). However, the 
correlation was absent in a Chinese sample with 691 cases, 
a Finnish sample with 502 cases and an Indian sample with 
342 cases (49,50). It appears that the genetic predisposition of 
CILP for IDD varies with population differences, which can 
explain the discrepancy among different ethnicities. Moreover, 
two studies further complicated the differential predisposi-
tion of CILP, as they revealed the genetic association between 

Figure 3. Expression of CILP in human intervertebral disc tissue increases with the degree of degeneration. (A and B) CILP immunohistochemical staining 
of Pfirrmann grade I (low degree of degeneration of intervertebral disc tissue). (C and D) CILP immunohistochemical staining of Pfirrmann grade III (high 
degree of degeneration of intervertebral disc tissue). Blue arrow, CILP expression positive; 10x10, zoom in 100 times; 10x40, zoom in 400 times. CILP, 
cartilage intermediate layer protein; NTPPHase, porcine 127‑kDa nucleotide pyrophosphohydrolase.
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IDD and the C allele in CILP in Japanese male collegiate 
athletes and judokas (42,51). In another study with a Finnish 
population, the rs2073711 SNP was associated with IDD 
among women (52). It appears reasonable that the genetic 
susceptibility of CILP is also gender‑dependent, in addition 
to the existing race‑dependence and the substitution from the 
T to the C allele that changes the character of CILP, which 
enhances the risk of degeneration. However, given that these 
athletes, especially male athletes or male judokas, experience 
a higher mechanical loading than that of non‑athletes, this 
phenomenon can also be explained by mechanical overloading 
that leads to the odds ratio discrepancy between males and 
females (51). Therefore, more studies are required to provide 
a deeper understanding of the association between CILP and 
IDD.

CILP is associated with other degenerative conditions, such 
as osteoarthritis and myocardial fibrosis. CILP was signifi-
cantly increased in articular cartilage where osteoarthritis 
occurred, and as a key regulatory factor, it has been revealed 
to play an important role in the occurrence and development 
of osteoarthritis (53). In recent years, CILP has been regarded 
as an important indicator protein for myocardial fibrosis, and 
its expression level indicates the severity of myocardial fibrosis 
and plays a positive role in clinical diagnosis; decreased levels 
of CILP are generally considered to indicate severe myocardial 
fibrosis (54).

5. Function of CILP in IDD

With the further study on the mechanism of CILP in the 
development of IDD, it was revealed that the expression level 
of CILP in NP cells has an important effect on the ECM, 
an important component of the extracellular microenviron-
ment  (24). Aggrecan and collagen II are the traditional 
degenerative markers of IDD, which are the main components 
of the ECM. CILP siRNA effectively inhibited CILP expres-
sion in NP cells and significantly increased the expression of 
aggrecan and collagen II. In addition, treatment of NP cells 
with a high concentration of rhCILP resulted in significantly 
decreased expression of aggrecan and collagen II (24). The 
primary function of the intervertebral disc ECM is to ensure 
physical and biomechanical strength (55). The ECM plays 
important biological roles in chondrocyte metabolism by regu-
lating growth factors, including TGF‑β (56,57). Studies have 
revealed that TGF‑β induces the synthesis of proteoglycans 
and cell proliferation in IVDs (56,58). Furthermore, an injec-
tion of an adenoviral TGF‑β expression vector was revealed 
to increase proteoglycan synthesis in human IVDs (59). The 
TGF‑β signaling pathway is broadly involved in the growth and 
differentiation of cells and is responsible for the anabolism of 
the ECM, which is critical for the homeostasis of discs (60,61). 
The ECM protein decorin binds to TGF‑β to form a complex 
that controls the accessibility of TGF‑β to receptors (62,63); 

Figure 4. Schematic representation of CILP function and regulation in NP cells by TGF‑β and IGF‑1. CILP inhibits SMAD2/3 phosphorylation, either directly 
or by interfering with TGF‑β binding to its receptor TGFR, ultimately inhibiting the TGF‑β/SMAD signaling pathway. In addition, CILP can inhibit the 
binding of IGF‑1 and its receptor IGFR1. Furthermore, CILP can inhibit the function of the combination of IGF‑1 and IGFR1 in NP cells and interfere with 
the PI3K/AKT signaling pathway, eventually leading to a decrease in ECM production, aggrecan expression, and growth and differentiation of intervertebral 
disc cells. CILP, cartilage intermediate layer protein; NP, nucleus pulposus; TGF‑β, transforming growth factor‑β; IGF‑1, insulin‑like growth factor‑1; TGFR, 
transforming growth factor‑β receptors; SMAD, mothers against decapentaplegic homolog; PI3K, phosphatidylinositol‑3 kinase; IGFR1, IGF‑1 cell surface 
receptors; ECM, extracellular matrix.
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similarly, the binding of CILP to TGF‑β may interfere physi-
cally with the binding of TGF‑β to its receptor, or may render 
TGF‑β inaccessible to its receptor by sequestering TGF‑β (19). 
CILP has a thrombospondin type 1 repeat domain that contains 
the WSXW motif, a well‑defined consensus sequence that binds 
to the active form of TGF‑β; CILP coexists with TGF‑β in 
disc tissues and the territorial matrices of TGF‑β in IVDs (19). 
This interference results in the inhibition of phosphorylation 
of mothers against decapentaplegic homolog (SMAD)2/3, 
the key factors of the TGF‑β/SMAD signaling pathway (19). 
Furthermore, CILP is capable of suppressing the interaction 
of TGF‑β with its special receptor by directly binding to the 
growth factor, a binding that inhibits the TGF‑β signaling 
pathway in NP cells (25). Moreover, the phosphorylation of 
SMAD3, a downstream effector of TGF‑β, was revealed to be 
suppressed in transgenic mice overexpressing CILP (19,64). 
Alternatively, the binding of CILP may hinder the activation 
mechanism of TGF‑β by altering its interaction with the 
latency complex, and may hinder the efficacy of enzymes in 
releasing the active form of TGF‑β (19). In addition, the SNP 
(rs2073711) in the CILP gene increases the binding ability of 
CILP to TGF‑β, consequently enhancing its suppression of the 
TGF‑β signaling pathway (19). In conclusion, the overexpres-
sion of CILP upsets the balance of the control of TGF‑β in 
chondrocyte metabolism and intervertebral disc tissue main-
tenance, leading to lumbar degenerative disease susceptibility 
caused by an inadequate response of intervertebral disc cells 
to injury and mechanical stress (25).

Insulin‑like growth factor‑1 (IGF‑1) is a naturally occur-
ring polypeptide protein hormone that plays an important role 
in stimulating growth during childhood and helps build and 
repair tissues in adults (65). In particular, IGF‑1 is a key player 
in IVD homeostasis by upregulating both cell proliferation 
and the biosynthesis of ECM components in a dose‑dependent 
manner. Once in the IVDs, IGF‑1 binds to IGF‑1 cell surface 

receptors (IGFR1), initiating the phosphatidylinositol‑3 
kinase/AKT signaling pathway, stimulating cell growth and 
proliferation, and inhibiting programmed cell death, which 
leads to an increase in IVD cell population and the produc-
tion of new ECM (66,67). CILP is capable of suppressing 
ligand‑induced IGFR1 autophosphorylation and counteracting 
IGF‑1‑mediated chondrocyte proliferation and proteoglycan 
synthesis  (68‑70), thus interfering with the anabolism and 
catabolism of ECM, which leads to the acceleration of IDD. 
Other studies have reported that IGF‑1 can reduce inorganic 
pyrophosphate (PPi), which can be generated via the alkaline 
nucleotide phosphodiesterase I activity of the isozymes of the 
NPP family (71) and is able to promote the progression of 
CPPD crystal deposition in aging cartilage tissues (46); in addi-
tion, CILP can affect chondrocyte IGF‑1 responsiveness via 
N‑terminal domain‑mediated inhibition (68), leading to a PPi 
increase that can stimulate cartilage pathological calcification 
as CPPD crystal deposition (72). Cartilage pathological calcifi-
cation can cause the degeneration of the CEP, which decreases 
the availability of nutrients and the exchange of metabolites, 
resulting in irreversible and progressive IDD (73‑75).

These studies have revealed that CILP can interfere with 
the binding of >1 growth factor to their designated receptor, 
and can suppress downstream signal transduction, conse-
quently affecting the general homeostasis of cells (Fig. 4).

6. Regulation of CILP

As CILP has been revealed to function as a contributor to IDD, 
it is imperative to provide insight into the regulatory mecha-
nism underlying CILP expression. First, CILP expression is 
increased as age and degeneration progress (23,26); therefore, 
aging and degeneration are among the causes that promote 
CILP expression. Notably, as a structural component in the 
matrix secreted by chondrocytes, CILP was expressed without 

Table I. Information on the relationship between CILP and IDD.

Authors	D ate	 Important events	 (Refs.)

Lorenzo et al	 1998	 CILP is first identified and isolated	 (18,20)
Lorenzo et al	 1999	 Human CILP gene is isolated and characterized	 (44)
Hirose et al	 2002	 Increased CILP mRNA expression in chondrocytes promotes the formation of calcium	 (46)
		  pyrophosphate dihydrate crystals in aged cartilage	
Johnson et al	 2003	 CILP is revealed to promote osteoarthritis by regulating the IGF‑1/PI3K/AKT	 (68)
		  signaling pathway	
Seki et al	 2005	 A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with	 (19)
		  susceptibility to lumbar disc disease	
Seki et al	 2005	C ILP is revealed to promote IDD by regulating the TGF‑β/SMAD signaling pathway	 (19)
Virtanen et al	 2007	 Differences of CILP gene susceptibility are revealed in different populations of IDD patients	 (49)
Seki et al	 2014	C ILP is revealed to promote lumbar disc degeneration in transgenic mice	 (25)
Wang et al	 2016	 Association between cartilage intermediate layer protein and degeneration of intervertebral	 (48)
		  disc: A meta‑analysis	
He et al	 2018	C ILP is regulated by mechanical stress and affects extracellular matrix synthesis to promote	 (24)
		  the progression of IDD 	

CILP, cartilage intermediate layer protein; IDD, intervertebral disc degeneration.
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the effect of SOX9 (45), which is the core transcription factor 
in chondrogenesis (76‑78). Instead, TGF‑β, another key regu-
lator of chondrocyte differentiation and proliferation (60), is 
able to promote the secretion of CILP by NP cells through the 
SMAD and MAPK signaling pathways (45). With regard to the 
CILP‑mediated suppression of the TGF‑β signaling pathway via 
the binding of CILP to TGF‑β (19), there appears to be a nega-
tive feedback loop between CILP and TGF‑β. Similarly, bone 
morphogenetic protein 2 (BMP‑2) also significantly increases 
CILP expression by increasing CILP promoter activity through 
the SMAD signaling pathway, an effect that increases with 
age (23). However, in contrast to TGF‑β and BMP‑2, IGF‑1 
downregulates CILP expression by binding to the N‑terminal 
polypeptide domain of CILP  (68). These results indicated 
that the regulatory effect on CILP by growth factors varies 
by type, and that the dysregulated secretion of growth factors 
may contribute to the aberrant expression of CILP. In addition, 
since IDD is characterized by an enhanced level of inflamma-
tory chemokines, including IL and TNF (17,79), which have a 
significant influence on the secretion of NP cells, it is possible 
that a high level of inflammatory chemokines may regulate 
CILP expression. However, it was revealed CILP expression 
does not undergo a significant change even in a conditioned 
medium with a high level of IL‑1, markedly increasing the 
expression of MMPs and ADAMTs (80). It remains unknown 
whether CILP is also unaffected by other inflammatory factors, 
and this requires further study for clarification. CILP expres-
sion is also influenced by mechanical factors; in human NP 
cells, CILP expression is regulated by mechanical stress, which 
affects the synthesis of ECM (24). In conclusion, these results 
suggested that, as a structural protein resident in the ECM, 
CILP expression is upregulated by aging and degeneration but 
is unaffected by IL‑1; in addition, various growth factors exert 
different, even contrary, regulations on CILP, which in turn 
affect the secretion of those growth factors.

7. Conclusions and future directions

As an NP matrix protein, CILP is specifically expressed in 
degenerative IVD tissues, which can accelerate the progres-
sion of IDD by altering the balance of intervertebral disc 
matrix metabolism.

CILP is an ECM glycoprotein that is highly expressed in 
degenerative disc tissues and accelerates the process of disc 
degeneration by altering the balance of the intervertebral disc 
matrix metabolism (18). Since the first discovery of CILP, 
the regulation, expression and function of CILP have been 
elucidated in numerous studies (Table I). Disc degeneration is 
a chronic metabolic disorder of the extracellular microenvi-
ronment. Several ECM proteins, such as CILP and connective 
tissue growth factor (81), are involved in this process. The end 
result of these cytokine pathways is an imbalance of catabolism 
and anabolism within the disc, leading to disc degeneration, 
herniation, and radicular pain. A recent study has revealed that 
the expression and function of CILP are regulated by specific 
tissue and cell types (82). In intervertebral disc‑related studies, 
CILP regulates the role of cytokines such as TGF‑β and IGF‑1 
in IVDs (25,68,82). The TGF‑β/CILP mutual regulation is 
important for ECM production and the two‑way regulation of 
TGF‑β and CILP (25,82). The TGF‑β/SMAD axis is inhibited 

by CILP eventually leading to the decrease of ECM production 
and aggrecan expression, as well as inhibiting programmed 
cell death and growth and differentiation of IVD cells (25). The 
activation of BMP‑2 also increases CILP expression through 
the SMAD signaling pathway (25). In contrast to TGF‑β and 
BMP‑2, the activation of IGF‑1 downregulates CILP expres-
sion, thereby inhibiting the progression of disc degeneration. 
IGF‑1 binds to IGFR1, activating the PI3K/AKT signaling 
pathway, promoting cell growth and proliferation, and inhib-
iting programmed cell death, which leads to an increase in 
IVD cell population and the production of new ECM (68). 
In a recent study, it was revealed that mechanical changes in 
the disc are another important regulatory factor of CILP (24). 
Increased CILP expression induced by mechanical changes 
in the disc NP cells can promote the process of disc tissue 
degeneration. In the intervertebral disc, mechanical alteration 
is a physiological niche condition, and in order to maintain its 
physiological level, it may be necessary to reduce unnecessary 
mechanical alteration. During disc degeneration, the blood 
oxygen status of NP is thought to be altered due to vascular 
infiltration. Therefore, a reasonable reduction of TGF‑β and 
increase of IGF‑1 expression can reduce the expression level 
of CILP in the disc. Further research on the role of CILP in 
the degenerative disc and surrounding tissues is required to 
determine the ultimate role of CILP in this process.

In vivo and in vitro studies have clearly revealed that CILP 
affects the anabolic effects of nucleus pulposus (CMCS) on 
stroma production, and that it may be able to use the prop-
erties of this protein as part of a regenerative mix to treat 
degenerative discs. However, there have been no clinical trials 
of CILP‑related therapy. To further investigate CILP‑related 
therapy, understanding the relationship between CILP and 
tissue inflammation will be important for the successful 
treatment of disc disease.
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