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The role of the Golgi apparatus in disease (Review)
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Abstract. The Golgi apparatus is known to underpin many
important cellular homeostatic functions, including trafficking,
sorting and modifications of proteins or lipids. These functions
are dysregulated in neurodegenerative diseases, cancer, infec-
tious diseases and cardiovascular diseases, and the number of
disease-related genes associated with Golgi apparatus is on the
increase. Recently, many studies have suggested that the muta-
tions in the genes encoding Golgi resident proteins can trigger
the occurrence of diseases. By summarizing the pathogenesis of
these genetic diseases, it was found that most of these diseases
have defects in membrane trafficking. Such defects typically
result in mislocalization of proteins, impaired glycosylation of
proteins, and the accumulation of undegraded proteins. In the
present review, we aim to understand the patterns of mutations
in the genes encoding Golgi resident proteins and decipher the
interplay between Golgi resident proteins and membrane traf-
ficking pathway in cells. Furthermore, the detection of Golgi
resident protein in human serum samples has the potential to
be used as a diagnostic tool for diseases, and its central role in
membrane trafficking pathways provides possible targets for
disease therapy. Thus, we also introduced the clinical value of
Golgi apparatus in the present review.
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1. Introduction

The Golgi apparatus is a processing and sorting hub in the
transport and targeting of soluble cargo proteins and lipids to
different destinations in the cell (1). Considering its central
role in the secretory pathway, alterations in the structure
and function of the Golgi apparatus are expected to affect
the homeostasis of cellular proteins and lipids. Increasing
evidence suggests that structural changes and functional
disorder of the Golgi apparatus are involved in many human
diseases such as neurodegenerative diseases (2-4), ischemic
stroke (5,0), cardiovascular diseases (7,8), pulmonary arterial
hypertension (9,10), infectious diseases (11-13), and cancer (14).
However, much work is still needed to elucidate how the Golgi
apparatus affects the progression of these diseases.

In this review, we describe the central roles of the Golgi
apparatus in cells, and discuss diseases associated with struc-
tural changes and functional disorder of the Golgi apparatus.
We highlight some of the studies that explore links between
mutation in genes encoding Golgi resident proteins and human
diseases. By analyzing their pathophysiology, we found that
the majority of genes leading to human diseases are involved
in membrane trafficking. Considering the mechanistic links
between Golgi resident proteins, membrane trafficking, and
the development of genetic diseases, we suggest a term for
these disorders based on their similar pathophysiology: Golgi
apparatus membrane trafficking disorders.

2. Golgi apparatus structure and function

In 1898, the Italian anatomist Camillio Golgi initially
described the cell organelle that bears his name, the Golgi
apparatus (15). The Golgi apparatus is characterized by a
series of flattened, cisternal membrane structures forming the
so-called Golgi stack, which is surrounded by vesicles. Based
on the distribution of resident proteins, the Golgi stack can be
divided into three regions: The cis-, medial-, and trans-Golgi
cisternae (16). The Golgi stacks in vertebrate cells are later-
ally interconnected by tubular membranes and exhibit a
twisted ribbon-like network known as the Golgi ribbon (17).
The structure of the Golgi ribbon is supported by the Golgi
matrix (18). The Golgi matrix is believed to comprise highly
dynamic structural proteins, which is important for structural
integrity and vesicular trafficking.

The Golgi apparatus has two main functions. The first
is the post-translational protein modification. Similar to
glycosylation, it is a common post-translational modification
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occurring in the endoplasmic reticulum (ER) and Golgi and
the glycan processing occurs throughout the Golgi stacks. The
second is the sorting, packing, routing and recycling of these
modified cargos to the appropriate cellular destinations (1).
The main secretory pathway can be divided into the following
steps (19): First, newly synthesized proteins or lipids enter the
exit sites of the ER and are sorted into budding vesicles that
are dependent on the COPII. Second, vesicles move to the
ER-Golgi intermediate compartment (ERGIC) and forward
to the cis-Golgi networks (CGN). Third, proteins or lipids
enter cis-Golgi cisternae and move towards the trans-Golgi
cisternae. Vesicular transport and cisternal maturation are the
two classical models of intra-Golgi transport (20). The vesic-
ular transport model proposes that Golgi cisternae are static,
and the cargos are transported through them by COPI vesicles.
The cisternal maturation model suggests that cisternae are
dynamic structures, while Golgi enzymes are recycled via
retrograde transport of COPI vesicles. Fourth, vesicles reach
the trans-Golgi networks (TGN), which are involved in the
sorting of products to their final destinations such as lyso-
somes, endosomes, or the plasma membrane.

3. Structural and functional changes of the Golgi apparatus
in diseases

The structural integrity of the Golgi apparatus is vital for its
normal function, and Golgi fragmentation could result in a
wide range of diseases and disorders. Functional changes of
the Golgi Apparatus include perturbations in Golgi pH, aber-
rant Golgi glycosylation, and membrane trafficking. Golgi
fragmentation has been found to often be an early causative
event in the process of cell apoptosis (21,22). With pharma-
cological or oxidative stress, a series of changes occur in the
Golgi apparatus, such as cargo overloading, ionic imbalance,
and abnormal luminal acidity. These changes can lead to
defects in membrane trafficking. We previously presented
‘Golgi stress’ as a new concept to explain the Golgi-specific
stress response (23). The Golgi stress response constitutes
autoregulation to repair the Golgi apparatus and may initiate
signaling pathways to alleviate stress. The nucleus signaling
pathways of the Golgi stress response was identified in a
previous study: The procaspase-2/golgin-160, TFE3, HSP47,
and the CREB3-ARF4 pathways (24). If these pathways fail to
repair overstimulation, the Golgi is completely disassembled,
inducing cell apoptosis.

Apoptosis triggered by structural changes and functional
disorder of the Golgi contributes to the pathogenesis of many
diseases, such as neurodegenerative diseases (25), ischemic
stroke (5,6), cardiovascular diseases (26), pulmonary arte-
rial hypertension (9,10), infectious diseases (12,13), and
cancer (27). A summary of diseases relating to the Golgi
apparatus, classified on the basis of the main organ affected
is shown in Fig. 1.

Neurodegenerative disease. Structural and functional changes
of the Golgi apparatus are associated with several neurode-
generative diseases, such as Amyotrophic lateral sclerosis (28),
Alzheimer's disease (29), Parkinson's disease (3), Huntington's
disease (30), Creutzfeldt-Jacob disease (31) and multiple
system atrophy (32). Golgi fragmentation is not a consequence

of apoptosis, but a very early event in the pathological
cascade in neurodegenerative disorders and precedes other
pathological changes in the neuron (33). Golgi fragmentation
may alter neuronal physiology, and induce failures in trans-
port to axons, dendrites, and synapses (34). Finally, Golgi
alteration may trigger a stress response and, as consequence,
result in neuronal death. Furthermore, Golgi fragmentation
in neurodegenerative disease alters protein trafficking and
production, such as amyloid precursor protein in Alzheimer's
disease (35), and sodium-dependent vitamin C transporter 2 in
Huntington's disease (36). The causes of Golgi fragmentation
in neurodegenerative diseases may be diverse. First, alteration
of the microtubule and microfilament stabilization may also
be the cause (37). In Alzheimer's disease and other tauopa-
thies, tau-induced microtubule-bundling may result in Golgi
fragmentation (38). Furthermore, perturbations in Golgi pH
are also responsible for Golgi fragmentation. The Purkinje
cells from the Golgi pH regulator conditional knockout mice
exhibited Golgi fragmentation, followed by axonal degenera-
tion and neuronal loss (39).

Infectious disease. Golgi fragmentation has been identified in
diseases such as infection by Orf virus (12), Chlamydia tracho-
matis (40,41), Hepatitis C virus (HCV) (42), Human Rhinovirus
(HRV) (13), and Rickettsia rickettsii (43). Golgi fragmentation
in these infectious diseases is mainly reflected in two aspects:
i) Escaping from the immune response. In infected cells,
Golgi fragmentation reduces MHC class I complex surface
expression by defective membrane trafficking (43,44), which
may aid in escaping host cellular immune recognition (12);
ii) Enhancing viral replication. In human rhinovirus-1A infec-
tion, the Golgi in host cells is fragmented and rearranged into
vesicles that appear to be used as the membrane source for the
assembly of viruses (45). Similarly, in Oropouche virus repli-
cation, proteins in the endosomal sorting complex required
for transport in the host cell are hijacked in Golgi cisternae
to mediate remodeling of Golgi membranes, resulting in
enlargement of the Golgi stacks, where the endosomal sorting
complex required for transport participates in the assembly
of viral factories (46). Thus, structural changes in the Golgi
apparatus may enhance viral replication in infectious diseases
by providing membranes.

Cancer. Aberrant Golgi glycosylation is reported to regulate
invasion of cancer cells, such as in prostate (47), breast (48),
and gastric cancer (49). Golgi glycosylation is involved in basic
molecular and cellular biology processes occurring in cancer,
such as cell signaling transduction and communication,
cancer cell dissociation and invasion, cell-matrix adhesion,
cancer angiogenesis, immune regulation and metastasis (50).
Similar to epithelial cadherin, a transmembrane glycoprotein,
is involved in epithelial cell-cell adhesion in tumors (51). The
Golgi glycosylation of N-linked glycans on epithelial cadherin
can affect the epithelial-mesenchymal transition, which
is related to the formation of metastatic lesions (49). This
process is suggested to help cancer cells leave their original
position during wound healing and other normal physiological
processes, which is an essential mechanism for metastasis and
diffusion of cancer cells (52,53). The GOLPH3 complex is an
important molecular component in the process of Golgi-driven
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Figure 1. Disorders relating to Golgi dysfunction. Disorders relating to Golgi apparatus dysfunction are grouped according to the main tissues/organs affected.

tumor progression. The role of the GOLPH3 complex in cancer
includes: i) Regulating Golgi glycosylation, which is important
in driving the cancer phenotype (54); ii) promoting the cellular
DNA damage response that enhances cellular survival under
DNA damage (55); iii) interacting with components of the
retromer complex that enhances growth-factor-induced mTOR
signaling (56); and iv) regulating cell migration by promoting
reorientation of the Golgi apparatus towards the leading
edge (57). In addition to GOLPH3, the Golgi protein GM130
is important in Golgi glycosylation and protein membrane
trafficking in cancer cells. Downregulation of GM130 induces
autophagy, inhibits glycosylation, decreases angiogenesis,
and suppresses tumorigenesis (58). In general, aberrant Golgi
glycosylation causes carcinogenesis, but may also be a conse-
quence of cancer progression.

Other diseases. Golgi dysfunction was also observed in
pulmonary arterial hypertension, and cardiovascular diseases.
In an in vivo model of pulmonary arterial hypertension,
Golgi dysfunction and intracellular trafficking with trap-
ping of diverse vesicle tethers, giantin, pl15, and soluble
N-ethylmaleimide-sensitive factor attachment protein recep-
tors (SNARESs) were observed in the Golgi membranes of
enlarged pulmonary arterial endothelial cells and smooth
muscle cells (9,10,59). Golgi-mediated membrane trafficking
dysfunctions play important roles in the pathogenesis of
pulmonary arterial hypertension (60).

Structural changes and functional disorder of the Golgi
apparatus have been identified in many cardiovascular diseases,
such as heart failure, dilated cardiomyopathy, arrhythmia, and
chronic arial fibrillation (61-64). A previous review clarified
the relationship between the Golgi apparatus and various
cardiovascular diseases (26). For example, in dilated cardio-
myopathy patients, morphological changes in Golgi vesicle are
consistent with the secretion of natriuretic peptide as the rate
of protein secretion affects the morphology and size of Golgi
vesicles (7). In addition, the Golgi vesicle area is inversely
proportional to the left ventricular end-diastolic diameter
and the end-systolic diameter, and is proportional to the left
ventricular ejection fraction (65).

4. Mutant Golgi resident proteins involved in disease

In addition to being an intermediate site in pathogenic cascades
in diseases, the Golgi apparatus can be the primary target for
diseases caused by genetic mutations in Golgi resident proteins.
Mutations in proteins localized to the Golgi apparatus can be
deleterious for the structure and function of this organelle,
impeding membrane trafficking pathways through it (Fig. 2)
and resulting in disease. We highlight some of the studies that
explore links between Golgi resident proteins and disease.

Golgi matrix protein and diseases. Adjacent Golgi stacks
are linked by tubules forming a membrane network termed
the Golgi ribbon (66). This structure is a highly ordered
and continuous structure that is adjacent to the nucleus.
The Golgi ribbon comprises proteins that mediate cisternal
stacking and the material supporting the Golgi ribbon is
the Golgi matrix (67). The concept of the Golgi matrix was
introduced by Slusarewicz and colleagues, who isolated a
detergent-insoluble, salt-resistant Golgi fraction in 1994 (18).
The main function of the Golgi matrix is maintaining normal
structure and mediating protein trafficking through the Golgi
cisternae. During cisternal progression, the Golgi matrix must
be dynamic to adapt to Golgi structural changes.

Golgi matrix proteins include golgins and Golgi reas-
sembly stacking proteins (GRASPs) (67), both of which are
important for maintaining Golgi structure and regulating
protein and lipid trafficking through the stacks. Golgins are a
family of conserved coiled-coil proteins that were originally
identified as a group of Golgi-localized antigens (68,69). The
golgins not only capture incoming vesicles, but also clearly
distinguish vesicles from different origins (70). GRASPs
include GRASP65 (71) and GRASP55 (72). The former local-
izes to the cis-Golgi cisternae while the latter localizes to
the medial/trans-Golgi cisternae. The functions of GRASPs
include Golgi structure formation, specific cargo transport,
apoptosis, and cell migration (73).

Given the important multiple functions of Golgi matrix
proteins, mutation of Golgi matrix proteins has serious
consequences on health. Increasing studies support that
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Figure 2. Golgi resident proteins and membrane trafficking pathway. The main membrane trafficking pathways are included. Newly synthesized proteins
enter the ER and are sorted into budding vesicles that are dependent on the COPII. Vesicles move to the ERGIC and forward to the CGN and the trans-Golgi
cisternae. Finally, vesicles reach the TGN and cargos sort to their final destinations such as lysosomes, endosomes or the plasma membrane. Different mutation
in Golgi resident proteins affect different membrane trafficking pathway: i) GM130, Giantin, Fukutin, Dymeclin and SCYL1BP1 (involving anterograde traf-
ficking); ii) COGs (involving retrograde trafficking); iii) TRAPPC2 and GMAP-210 (involving ER to ERGIC); iv) FGD1, ATP2C1 and ARFGEF?2 (involving
TGN to plasma membrane); and v) COGs, DENNDS5A and BICD (involving endosome to TGN).

the mutation of Golgi matrix proteins including GM130,
Bicaudal-D (BICD), GMAP-210, giantin (74), and SCYL1BP1
(also known as GORAB) (75), leads to diseases. The present
review included some proteins as examples to elaborate on the
pathogenic mechanism of Golgi matrix proteins.

The first example is GM130 (also known as GOLGA?2), the
first identified Golgi matrix protein (76). GM130 is a peripheral
membrane protein attached to the Golgi membrane that is impor-
tant in maintaining the adaxial Golgi reticular structure (77). In
neurodegenerative diseases, GM130 knockout in hippocampal
neurons is reported to cause damage to dendritic structures (78).
In mouse neuron experiments, specific knockout of GM130
resulted in disruption of the Golgi architecture and positioning
in cerebellar Purkinje cells and to deficient secretory cargo
trafficking. As a consequence, progressive cerebellar atrophy
of Purkinje cells resulted in delayed movement and ataxia in
mice (79). This animal experimental study indicates that GM130
mutations are causative in neurodegenerative disease.

A second example is BICD, a golgin that interacts with
Rab6 on the TGN (80). Of two homologous sequences, BICD1
and BICD?2, the latter binds to a subgroup of motility protein
activator proteins and is a connecting molecule between the
motility protein and cargo (81). High expression of BICD
in normal nervous systems is important for maintaining the
normal lamellar structure of the cerebral cortex, hippocampus,
and cerebellar cortex (82). The brain cortex, hippocampus
and cerebellar cortex neurons of BICD2-knockout mice have
impaired migration function (82,83) and eventually, damage
the brain and cerebellar cortex layer structure. Previous

findings showed that, missense mutations in BICD resulted
in spinal muscular atrophy (84,85) and hereditary spastic
paraplegia (86) by changing the normal morphological struc-
ture of the golgi. The core pathogenetic mechanism may be
a BICD?2 mutation resulting in abnormal cargo trafficking in
motor neurons. This trafficking results in neuronal growth
disorders and eventually neuronal dysfunction.

The third example is giantin, encoded by the Golgbl gene.
Giantin is a member of the golgin family and is a tethering
factor for COPI vesicles and functions in the CGN (87).
Mutations in the Golgbl gene lead to lack of expression of
giantin protein and a pleiotropic phenotype including osteo-
chondrodysplasia in a rat model (88) and a ciliopathy-like
phenotype in a zebrafish model (74). Both pathogenetic mecha-
nisms involve disturbance of extracellular matrix components,
which are transported by intracellular membrane trafficking
systems. Giantin knockout leads to changes in expression of
Golgi-resident glycosyltransferases, which could affect extra-
cellular matrix deposition (89).

The fourth example is GORAB (also known as SCYL1BP1).
GORAB, localized to the trans-side of the Golgi, is a member
of the golgin family and interacts with Rab6. Mutation in
GORAB results in gerodermia osteodysplastica (GO) char-
acterized by wrinkly skin and osteoporosis (75). GORAB
functions in COPI trafficking, and acts as a scaffolding factor
for COPI assembly at the TGN by interacting with Scyll.
GORAB mutations perturb COPI assembly at the TGN, and
result in reduced recycling of COPI-mediated retrieval of
trans-Golgi enzymes and improper glycosylation (90).
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A final example of the effects of loss of expression of a
Golgi matrix protein is GMAP-210 (also known as TRIP11).
This CGN golgin acts in asymmetric membrane tethering (91).
In animal experiments, a nonsense mutation in 7Trip/I led to
a loss of GMAP-210, which led to abnormal Golgi-mediated
glycosylation and cellular transport of proteins in chondrocytes
and osteoblasts of mice (92). Similarly, GMAP-210 mutations
were found in patients with human chondrodysplasia achon-
drogenesis 1A (92), and odontochondrodysplasia (93).

Other Golgi resident proteins and diseases. In addition
to matrix proteins, several proteins that localize to Golgi
membranes are also important for normal Golgi structure
and function such as the tethering factors Rab GTPases and
SNARES, which regulate the specific targeting and fusion of
transport carriers with Golgi membranes. The maintenance
of Golgi luminal ion concentrations depends on the secre-
tory pathway Ca?*/Mn** ATPases and vacuolar H* ATPase
(V-ATPase). Therefore, the impaired performance of mutated
Golgi resident proteins creates serious and highly diverse
pathologies in the Golgi. Emerging studies on patient genetics
have identified mutations in Golgi resident protein-coding
genes that are related to diseases. We focus on some of these
proteins, and discuss the activities of mutated Golgi resident
proteins that result in disease.

Golgi ion pump. The release and uptake of Ca** by Golgi
membranes is mainly mediated by secretory pathway
Ca*/Mn?** ATPases (SPCA1 and SPCA?2), which are encoded
by the ATP2CI/ATP2C2 genes. The proteins transfer Ca?*
from the cytoplasm to the Golgi and maintain the stability
of intracellular free Ca®* (94). The maintenance of Golgi
luminal Ca®" and Mn?** directly affects the optimal activity
of Golgi glycosyltransferase and the trafficking of cell adhe-
sion proteins to the cell plasma membrane (95). Knockdown
of SPCAI affects the morphology and structure of the Golgi
and causes mis-localization of proteins. Clinically, muta-
tions in the ATP2C1 gene on chromosome 3q21 can lead to
Hailey-Hailey disease, an autosomal dominant skin disorder
in humans (96,97). The possible pathogenetic mechanism may
be dysfunction in Ca?* signaling at the Golgi membrane and
dysfunction of processing, modification and trafficking of
desmosomal proteins (98).

Golgi acidity is an important role for maintaining the
morphological integrity of the Golgi and transporting various
kinds of cargo (99,100). Under normal conditions, the Golgi
cavity is weakly acidic and the pH of the Golgi reticular
structure decreases gradually from the CGN to the TGN (101).
The Golgi luminal pH is regulated by V-ATPase (102), AE2a
HCO3/CI exchanger, and Golgi pH regulator (103). Luminal
pH is closely tied to Golgi function. Partial V-ATPase
dysfunction is related to multiple disease states (104).
ATP6VIEI, ATP6VIA, and ATP6V0OA2 encode different
subunits of the V-ATPase pump. A study showed that Golgi
subunit-isoform of the V-ATPase (ATP6V0OA2) mutations
lead to structural changes in the extracellular matrix that is
responsible for skin elasticity (105). Clinically, the dysfunction
of the Golgi-localized V-ATPase caused by mutations in the
ATP6VOA?2 gene is directly related to cutis laxa. Mutations
in ATP6VIE] or ATP6VIA also cause autosomal-recessive

cutis laxa (106). Autosomal recessive cutis laxa type Il is a
heterogeneous condition characterized by sagging, inelastic,
and wrinkled skin (107,108). The mechanism may involve
impaired intracellular acidification of the Golgi and damaged
retrograde trafficking from the Golgi to the ER (100,108).
ATP7A and ATP7B are the key regulators of cellular
Cu?* metabolism. Under basal conditions (normal copper
levels), ATP7A is located in the TGN and travels to the plasma
membrane at high copper levels. Mutations in the ATP7A
result in mislocalization of ATP7A protein and impaired
copper-responsive trafficking between the TGN and plasma
membrane, which contributes to the development of Menkes
disease (109). Menkes disease is a lethal multisystemic
disorder characterized by neurodegeneration and connective
tissue abnormalities as well as typical sparse and steely hair.
Similarly, mutations in the ATP7B contributes to the develop-
ment of Wilson's disease (110). Wilson's disease, also known
as hepatolenticular degeneration, results in hepatic and/or
neurological deficits, including dystonia and parkinsonism.

Golgi resident glycosyltransferase. The Golgi apparatus is
an important organelle for the post-translational modification
of cargos. The post-translational modification of secreted
and membrane proteins is mediated by the Golgi resident
enzymes such as glycosyltransferases, glycosidases, and
kinases. Glycosylation is an enzymatic reaction that chemi-
cally links monosaccharides or polysaccharides (glycans) to
other saccharides, proteins, or lipids (111). Golgi glycosylation
is a modification by Golgi-resident glycosylation enzymes
including glycosidases and glycosyltransferases (112). The
normal function of Golgi glycosylation depends on the
precise Golgi localization and normal activities of Golgi
resident enzymes. The proper localization of Golgi resident
enzymes is controlled by finely regulated vesicular traf-
ficking in the Golgi. If the balance between anterograde and
retrograde trafficking is defective, Golgi glycosylation is
affected, resulting in Golgi glycosylation abnormalities (113).
Mutations in Golgi resident putative glycosyltransferases are
directly linked to human congenital muscular dystrophies:
Like-acetylglucosaminyl-transferase (LARGE) in congenital
muscular dystrophy syndrome (114), fukutin in Fukuyama-type
congenital muscular dystrophy (115), and fukutin-related
protein in band muscular dystrophy syndrome (116). These
mutations appear to affect cell migration in the developing
brain, resulting in combined clinical manifestations in muscle
and brain development. In an animal model, mutations in
Golgi resident glycosyltransferases are also associated with
the neurodegenerative disease, such as ST3GALS,p1,4-gala
ctosyltransferase 4 (B4GalT4) (117), and glycosyltransferase
8 domain containing 1 (GLT8DI1). GLT8DI is a glycosyl-
transferase enzyme located in the Golgi apparatus. A recent
study reported that mutated GLT8D1 induces motor deficits
in zebrafish embryos consistent with amyotrophic lateral scle-
rosis (118). However, another study suggested that GLT8DI is
not likely the causative gene for ALS in mainland China (119).

Rab GTPase. Rab proteins are members of the small Ras-like
GTPase family that regulate the four steps of membrane
transport by recruiting effector molecules. Golgi-associated
Rab proteins including Rabl, Rab2, Rab6, Rab18, Rab33B, and
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Rab43 have a central role in Golgi organization and membrane
trafficking (120). Rab33B is localized to medial-Golgi
cisternae and is important in Golgi-to-ER retrograde traf-
ficking. Rab39B, a neuronal-specific protein, is a novel Rab
GTPase that localizes to the Golgi and is related to synapse
formation. Mutations in the Rab33B coding gene cause
Smith-McCort dysplasia (121) and mutations in the Rab39B
gene cause X-linked mental retardation (122).

SNAREs. SNAREs are proteins involved in docking and
fusion of transport to intermediate membranes. Golgi SNAP
receptor complex member 2 (GOSR?2) is a member of the
SNAREs family that localizes to the CGN and is involved
in ER-to-Golgi trafficking (123). Homozygous mutations in
GOSR2 lead to progressive myoclonus epilepsy (124). Clinical
manifestations include early ataxia, myoclonus, and convulsive
seizures. A possible mechanism involves GOSR2 mutations
leading to GOSR?2 protein that cannot be localized to the CGN
and blocks SNAREs complex formation. SNARESs complex
dysfunction could lead to the impaired fusion of vesicles with
cis-Golgi cisternae, hindering ER-to-Golgi membrane traf-
ficking. The perturbation of early ER-to-Golgi transport may
result in changes in the regulated release of neurotransmitters
and proper sorting of neurotransmitter receptors at synapses in
neurons, potentially leading to epilepsy (125,126).

5. Golgi apparatus membrane trafficking disorders

In the above section, we introduced the pathophysiology of
some diseases related to Golgi resident proteins. A summary
of genetic diseases caused by mutations in genes encoding
Golgi resident proteins is presented in Table I. By analyzing the
pathophysiology of these diseases, we found that the majority
of genes leading to human diseases are involved in defects
in membrane trafficking (Fig. 2). For example, TRAPPC2
mutation, involving the membrane trafficking pathway
between ER-to-Golgi in bone cells and chondrocytes, results
in X-linked spondyloepiphyseal dysplasia tarda (127). The
conserved oligomeric Golgi (COG) complex is a conserved,
hetero-octameric protein complex localized in the Golgi
cis/medial cisternae (128). In addition to the COG3 subunit,
mutations in seven other COG subunits result in human
congenital disorders of glycosylation (CDG) type II, which is
mainly marked by misregulation of protein glycosylation, and
defects in retrograde trafficking through the Golgi (129,130).
The mutation in FGDI resulting in Aarskog-Scott syndrome
may lead to the obstruction of post-Golgi trafficking, such
as the Golgi-to-plasma membrane trafficking pathway (131).
Mutation in TRIPII mainly involves ER to ERGIC and
anterograde trafficking (132). Therefore, membrane trafficking
defects play a major role in the pathogenic process of muta-
tion in genes encoding Golgi resident protein. Intracellular
membrane trafficking is a fundamental process responsible
for compartmentalization of the biosynthesis pathway
and secretion cargos, including hormones, growth factors,
antibodies, matrix and serum proteins, digestive enzymes,
and many more. Defective membrane trafficking results in
protein sorting defects, undegraded proteins due to defective
Golgi-to-lysosome trafficking, downregulation of protein
secretion, and mislocalization of proteins.

Considering the mechanistic links between Golgi resi-
dent proteins, membrane trafficking, and the development of
genetic diseases, we suggest a term for these disorders based
on their similar pathophysiology: Golgi apparatus membrane
trafficking disorders. It is a group of genetic diseases in which
the mutation of the gene encoding Golgi resident protein
results in membrane trafficking defects within the cells. Golgi
apparatus membrane trafficking defects typically result in
the accumulation of undegraded proteins, mislocalization of
proteins, and impaired glycosylation of proteins. However, the
cascade events following the Golgi apparatus and defective
membrane trafficking, ultimately leading to human diseases,
remain to be clarified in further research.

Although the Golgi apparatus-mediated membrane traf-
ficking pathway exists in all kinds of tissues and organs in
human, the trafficking defects on tissues is often selective. The
most sensitive to membrane trafficking defects is the nervous
system, skin, bone, cartilage, and skeletal muscle and the
reasons for mutations occurring in these genes mostly affecting
these tissues remain to be elucidated. Firstly, neurons are
extraordinarily polarized cells, the extension of dendrites and
axons requires a significant expansion of the cell surface area,
and new plasma membrane proteins must be delivered through
the membrane trafficking. For the nervous system, intracel-
lular trafficking functionally impacts neuronal development,
homeostasis, as well as neurodegeneration (133). Secondly, it is
generally known that skin, bone, cartilage, and skeletal muscle
fiber comprise large amounts of the extracellular matrix
which define the structure and physical properties. Almost
all extracellular matrix components are transported by intra-
cellular trafficking systems. Alterations in Golgi apparatus
membrane trafficking can lead to glycosylation abnormalities.
The assembly and maintenance of the extracellular matrix are
susceptible to impairment of matrix protein glycosylation.
Thus, the skin, bone, cartilage, and skeletal muscle are most
sensitive to impaired glycosylation of cargo proteins, and
membrane trafficking defects. Therefore, the loss of some
Golgi resident proteins, such as ATP6V1A, ATP6VIE1 (106),
ATP6VOA2 (108), TMEM165 (134), GOLGBI1 (88),
SCYLIBPI (75), TRAPPC11 (135), TRAPPC2 (136), and
TRIP11 (92), manifest primarily in these matrix-rich tissues.

6. Clinical value of Golgi apparatus

The Golgi apparatus participates in the occurrence and devel-
opment of disease and could be the key to finding new targets
for disease diagnosis and therapy.

Biomarker discovery. Golgi glycoprotein 73 (GP73, also
referred to as GOLPH?2), a resident Golgi membrane protein,
is predominantly expressed in biliary epithelial cells in the
normal human liver (137). GP73 expression is upregulated
in chronic Hepatitis B virus (HBV) infection (138), chronic
HCYV infection (139), non-alcoholic fatty liver disease (140),
and hepatocellular carcinoma (HCC) (141,142). Serum GP73,a
new marker for HCC, is reported to appear earlier than serum
a-fetoprotein. The combined detection of serum a-fetoprotein
and GP73 can improve sensitivity and specificity for HCC
diagnosis (143,144). However, several studies showed GP73
levels were not higher in HCC patients than in patients with
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other liver diseases such as cirrhosis (145,146). In addition to
being a marker, the expression of GP73 is critical for chemo-
therapeutic resistance in HCC cell lines (147).

Transmembrane protein 165 (TMEMI165) functions in ion
homeostasis, membrane trafficking, and glycosylation in the
Golgi apparatus (148). Findings of a study showed that muta-
tions in TMEM165 cause CDG type II in humans (134). Other
research has found that expression of TMEM165 mRNA
and protein is apparently increased in HCC patient tissues
and contributes to the invasive activity of cancer cells (149).
This result indicates that TMEMI165 is a possible biomarker
for HCC. GS28 is a member of the SNAREs protein family.
GS28 protein immunoreactivity was observed in both nuclear
and cytoplasmic compartments of cancer cells. High nuclear
expression of GS28 is associated with poor prognosis for
colorectal (150) and cervical cancer patients (151).

Anti-Golgi antibodies (AGAs) were first found in 1982 in
the serum of patients with Sjogren's syndrome complicated
with lymphoma (152). AGAs have also been found in other
immunological diseases (153-155). Currently, at least 20
Golgi autoantigens are known, including golgin-97, golgin-67,
golgin-245, golgin-95, golgin-160, and giantin. AGA positivity
is commonly found in connective tissue diseases such as
Sjogren's syndrome, rheumatoid arthritis, and systemic lupus
erythematosus (154,156); cerebellar malignant disease such as
idiopathic late-onset cerebellar ataxia (157); infectious diseases
such as HBV/HCV infection, Epstein-Barr virus infection
and HIV infection (155,158,159); and tumors, such as HCC
and lung cancer (160). Although AGAs are not specific to any
disease, their clinical detection may be helpful for classifying
and following the progress of some connective tissue diseases.
For example, compared to anti-BICD2-negative patients, single
specificity anti-BICD2 patients may be more associated with
inflammatory myopathy and interstitial lung disease (161).

Biomarkers are crucial for early diagnosis, assessing response
to treatment, and classifying diseases into subtypes. Biomarker
discovery involves many critical steps such as clinical study
design, sample collection, data integration, and protein/peptide
identification and preservation. These steps should be carefully
controlled before confirmation and verification. Therefore, in
clinical applications, these biomarkers are potential diagnostic
markers. Large-scale investigations are needed and more sensi-
tive and specific detection methods need to be researched.

Golgi-based therapeutics. In addition to biomarker discovery,
the functions of the Golgi apparatus and its associated
molecules in maintaining cell structural integrity and its
central role in membrane trafficking pathways provide
possible targets for disease therapy. These targets may be
direct, due to genetic disease (Table I), or indirect, as in
cancer. Compared to non-transformed and normal cells,
cancer cells have morphological and functional changes in
the Golgi apparatus that drive invasion and migration in a
unique microenvironment. These changes provide therapeutic
targets for interventions. A research team developed a bovine
serum albumin pH-responsive photothermal ablation agent
that preferentially accumulates in the Golgi of cancer cells
compared to normal cells due to morphological changes in the
Golgi apparatus (162). The agent is activated by the weakly
acidic microenvironment of the Golgi in cancer cells for

photothermal therapy. In this method, a photothermal ablation
agent converts light energy into heat and kills cancer cells
with high specificity and minimal invasiveness by hyper-
pyrexia (162). Another research team developed a prodrug
nanoparticle system, which appeared to target the Golgi
apparatus and realized retinoic acid release under an acidic
environment. The retinoic acid-conjugated chondroitin sulfate
could reduce the expression of metastasis-associated proteins
by inducing Golgi fragmentation (163). Those findings suggest
that the Golgi apparatus is a promising target for the develop-
ment of novel drugs. A review summarized small molecules
as drugs targeting the Golgi apparatus for the treatment of
diseases (164), such as LTX-401, inhibitors of Golgi-associated
lipid transfer proteins, glucosylceramide synthase inhibitors,
O-glycosylation inhibitors, PI4KIIIb inhibitors and inhibi-
tors of ARF activation. Whether these drugs that target the
Golgi apparatus can be applied in clinical practice needs to be
determined.

7. Conclusion

The central role of the Golgi apparatus in critical cell processes
such as the transport, processing, and sorting of proteins and
lipids has placed it at the forefront of cell science. Several
previous studies have suggested that the Golgi apparatus
plays a critical role in diseases, particularly in neurode-
generative diseases. However, few studies focus on human
diseases caused by mutations in genes encoding Golgi resident
proteins and summarize the common features of these genetic
diseases. In the present review, we summed up the genetic
diseases caused by mutations in genes encoding Golgi resident
proteins. By analyzing their pathophysiology, we identified
that the majority of genes are involved in membrane traf-
ficking. The nervous system, skin, bone, cartilage, and skeletal
muscle are the most sensitive tissues to defective membrane
trafficking. It is reasonable to hope that our basic knowledge of
Golgi-mediated membrane trafficking will continue to provide
insights into the pathogenesis of genetic diseases and that
studies of these diseases will continue to enhance our under-
standing of the critical role of the Golgi apparatus in diseases.
In addition, the finding of Golgi-related biomarker and
Golgi-based therapeutics further emphasize the importance of
Golgi apparatus in human pathology. Taken together, advances
in Golgi apparatus biology provide opportunities to translate
discoveries into clinical medicine. Thus, we highlighted the
importance of underlying clinical insights and provided a new
direction for future research.
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