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Abstract. The biological abilities of interleukin‑6 (IL‑6) 
have been under investigation for nearly 40 years. IL‑6 works 
through an interaction with the complex peptide IL‑6 receptor 
(IL‑6R). IL‑6 is built with four α‑chain nanostructures, while 
two different chains, IL‑6Rα (gp80) and gp130/IL6β (gp130), 
are included in IL‑6R. The three‑dimensional shapes of the 
six chains composing the IL‑6/IL‑6R complex are the basis 
for the nanomolecular roles of IL‑6 signalling. Genes, pseu‑
dogenes and competitive endogenous RNAs of IL‑6 have been 
identified. In the present review, the roles played by miRNA 
in the post‑transcriptional regulation of IL‑6 expression are 
evaluated. mRNAs are absorbed via the ‘sponge’ effect to 
dynamically balance mRNA levels and this has been assessed 
with regard to IL‑6 transcription efficiency. According to 
current knowledge on molecular and nanomolecular structures 
involved in active IL‑6 signalling, two different IL‑6 models 
have been proposed. IL‑6 mainly has functions in inflamma‑
tory processes, as well as in cognitive activities. Furthermore, 
the abnormal production of IL‑6 has been found in patients 
with severe acute respiratory syndrome coronavirus  2 
(SARS‑CoV‑2; also known as COVID‑19). In the present 
review, both inflammatory and cognitive IL‑6 models were 
analysed by evaluating the cytological and histological loca‑
tions of IL‑6 signalling. The goal of this review was to illustrate 
the roles of the classic and trans‑signalling IL‑6 pathways in 
endocrine glands such as the thyroid and in the central nervous 
system. Specifically, autoimmune thyroid diseases, disorders 
of cognitive processes and SARS‑CoV‑2 virus infection have 

been examined to determine the contribution of IL‑6 to these 
disease states.
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1. Introduction

Interleukin‑6 (IL‑6) was first identified as a factor derived 
from T‑helper type 2 (Th2) lymphocytes >40 years ago (1). 
On the basis of the biological abilities of IL‑6 to stimulate 
B‑cell differentiation, the interleukin was categorised among 
the B‑cell stimulating factors (BSFs) and B‑cell differentiation 
factors (BCDFs) (2). As a member of the BSFs, IL‑6 was named 
BSF‑2 and grouped together with BSF1 and interleukin‑4 (2). 
IL‑6 was included in the group of BCDFs due to its capacity 
to stimulate the secretion of IgM and IgG in B cells (3). After 
the nomenclature meeting held in New York at the end of 
1988, BCDF/BSF‑2 was finally referred to as IL‑6 (4), as the 
biochemical properties of this factor showed an isoelectric 
point between 5 and 6 (2).

Over the last 40 years, several molecular features of IL‑6 
have been identified. Furthermore, new abilities of IL‑6 have 
prompted its use as a target in medical practice for infective 
and cancerous diseases, including COVID‑19. The present 
review highlights the current knowledge on the molecular 
and nanomolecular structures involved in active IL‑6 signal‑
ling. By examining both inflammatory and cognitive IL‑6 
models, new properties of the IL‑6 cytokine have been evalu‑
ated. Specifically, the cytological and histological locations 
of IL‑6 signalling have been analysed together with serum 
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concentrations of IL‑6 in order to distinguish between the 
classic and trans‑signalling IL‑6 pathways.

2. Three‑dimensional shapes of chains involved in 
nanomolecular IL‑6 signalling

Molecular analysis reveals that the human IL‑6 gene is local‑
ized on the short arm of chromosome 7 (5). Depending on 
the genetic approach, IL‑6 has been mapped to either the p21 
or p15.3 region of the chromosome (6). By expanding from 
22,725,889 to 22,732,002 base pairs, four introns and five exons 
were cloned in both human and mouse IL‑6 genes (https://ghr.
nlm.nih.gov/gene/IL6#location)  (7). A polymorphic locus, 
Rs1800796, has been identified in the IL‑6 promoter region (8). 
The recognition of genetic mutations in this genomic sequence 
has been used to assess human cancer risk (8).

In the 212‑amino acid human IL‑6 glycoprotein, 28 amino 
acids are linked to peptide signalling (https://www.genecards.
org). The molecular mass of IL‑6 is 23,718 Da, ranging 
between 21 and 30 kDa (https://www.genecards.org) (9‑11).

The IL‑6 topology is composed of a secondary struc‑
ture that includes helicoidal motives related to four long 
α‑chains. Via a bundle model, these α‑chains are structured in 
three‑dimensions to achieve the tertiary shape (9,12‑14).

The bundle helicoidal complex is also observed also in a 
number of human cytokines such as IL‑11, oncostatin M (OSM), 
ciliary neurotrophic (CNTF), leukemic inhibitory (LIF), 
cardiotrophin‑like factor 1 (CT‑1), erythropoietin, granulocyte 
colony‑stimulating factor, IL‑12, growth hormone, prolactin, 
IL‑10, interferon and leptin (12). However, despite these factors 
adopting structures similar to the IL‑6 bundle prototype model, 
they show little identity with the IL‑6 amino acid sequence (12). 
By contrast, a viral homolog to the human IL‑6 protein has 
been identified in herpesvirus 8 associated with Kaposi's 
sarcoma (15). This amino acid sequence is capable of arranging 
itself in a bundle helicoidal structure. This association is the 
reason that the viral protein is named viral IL‑6 (15).

IL‑6 works through interaction with the complex peptide 
IL‑6 receptor (IL‑6R). This receptor includes two transmem‑
brane glycoproteins referred to as the IL‑6Rα and gp130/IL6ß 
(gp130) subunits (16,17). Two different active genes contribute 
to the generation of human IL‑6R.

Originally, the IL‑6Rα gene was mapped on the long arm of 
chromosome 1 in the q21.3 cytoband (18) (Fig. 1). By counting 
13 exons, this was cloned in 64,258 bases (https://www.
genecards.org). The gene that codes for Gp130 is located on 
chromosome 5 at band q11 (19) (Fig. 1).

The IL‑6Rα transcript encodes a modular glycoprotein 
made up of one α‑chain with a size of 80 kDa, also known as 
IL6Q, gp80, CD126, IL6RA, IL6RQ, IL‑6RA or IL‑6R‑1 (18). 
Specifically, IL‑6Rα acts by binding the IL‑6 ligand; however, 
this activity is not enough to transduce any signal (18). By 
contrast, the gp130 glycoprotein chain is unable to directly 
bind IL‑6, but is capable of IL‑6 signal transduction (19).

The assembly of IL‑6 with its respective receptors occurs 
through a unique two‑phase process. First, the four α‑chains of 
IL‑6 capture the α‑chain of IL‑6R with a dissociation constant 
(Kd) of ~1 Nm (20) (Fig. 2). In this stage, IL‑6, composed 
of a dimeric structure, does not perform any signalling 
activity (21,22). The next assembly step is the construction of 

a hexameric cluster, where the complex of five α‑chains binds 
gp130 with a Kd of ~10 pM  (17,20) (Fig. 2). The previous 
binding of IL‑6 with IL‑6R occurs with lower affinity than 
that with the complex and gp130. In this second stage, the 
IL‑6 complex is composed of a trimeric structure that, like 
in the first step, does not perform any signalling. To begin 
signalling, the IL‑6/IL‑6Rα/gp130 trimer proceeds through a 
homodimerization process that forms a hexameric complex (22).

These data suggest that the transition from low to high 
affinity IL‑6 binding occurs due to phenomena pertaining to 
nanoparticle (NP) spheres. In fact, the geometric shape of the 
complex becomes crucial for the efficiency of binding at the 
nanometre scale (21,23). The five α‑chains of the IL‑6/IL‑6Rα 
complex are only suitable for binding in a pentameric orienta‑
tion. The hexamer is the competent form for energetic transition 
leading to the dimerization of the IL‑6/IL‑6Rα/gp130 cluster. 
Notably, the pentameric complex of α‑chains, corresponding 
with the dimeric form of the IL‑6/IL‑6Rα structure, may 
appear either in the serum or in cellular compartments (Fig. 2). 
By contrast, the clusters of IL‑6/IL‑6Rα/gp130 are closed in 
cellular structures. The IL‑6/IL‑6Rα/gp130 complex is found 
in both the non‑signalling trimer and signalling hexamer 
forms (Fig. 2) (23).

The trimeric model of IL‑6 signalling is replicated in 
several other cytokines, including IL‑11, LIF, OSM, CNTF 
and CT‑1. This is due to their ability to bind gp130 on the 
cellular surface to elicit signal transduction (24). For these 
reasons, the physiological responses of these cytokines could 
occur simultaneously. These cytokines have been included in 
the group of L‑6‑type cytokine receptor mediators (24‑26).

There are two main ideas that are inspired by the assess‑
ment of the nanomolecular structure of IL‑6 signalling: Firstly, 
the nanomolecular shapes of the IL‑6 system are largely 
independent of genetic composition. Therefore, genetic inves‑
tigation has to be associated with nanomolecular evidence to 
completely track the physiological and pathological signals 
of IL‑6. Secondly, the efficacy of IL‑6 therapeutic targets 
is also dependent on the geometric shape of IL‑6 signalling 
structures. Therefore, prior to determining the clinical benefits 
of IL‑6 therapy, the nanomolecular conformations of IL‑6 
signalling have to be estimated.

3. Genes, pseudogenes and competitive endogenous RNA 
(ceRNA) for molecular control of IL‑6 signalling

In contrast to the parental genes composing IL‑6R, a distinct 
pseudogene was demonstrated for IL‑6Rα and the gp130 gene 
(https://www.genecards.org) (19) (Fig. 2). These pseudogenes 
share much of their sequences with their corresponding parental 
genes (19). Conversely, pseudogene transcripts are equivalent 
to non‑coding RNA or to antisense RNA and therefore are 
unable to produce biologically active proteins (27).

The IL‑6Rα pseudogene, IL‑6RP1, is found on the long 
arm of chromosome 9 at the locus q22.2 (Fig. 2). A repetition 
of gp130 sequence, IL‑6STP1, is detected on the short arm of 
chromosome 17 and assigned at the p11 region (Fig. 2); this 
corresponds with a gp130 non‑transcribed pseudogene (19).

IL6‑STP1 transcripts have been shown to be involved in 
microbial defence processes (28). Via activation of the IL‑6 
family cytokines, IL6‑STP1 stimulates inflammatory cells 
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to secrete acute‑phase proteins (APP), including fibrinogen, 
a1‑antitrypsin and hepcidin (28). In a mouse polymicrobial 
infection model, removal of IL‑6STP1 caused inhibition of 
APP production associated with the dysregulation of the 
inflammatory response and an increase in mortality (28).

Pseudogene RNAs are part of an intricate network of 
competitive endogenous RNAs (ceRNAs) where all non‑coding 
RNAs are assigned to two large groups: microRNAs (miRNAs) 
and long non‑coding RNAs (27,29,30). miRNAs have <200 

nucleotides, while long non‑coding RNAs are >200 molecular 
bases. However, by using the same code, the full set of ceRNAs 
competes with parental mRNA (31).

ceRNAs absorb mRNA as a ‘sponge’ to dynami‑
cally balance mRNA levels for protein transcription 
efficiency (27,32). As a consequence, the ceRNA matrix serves 
to regulate protein expression (27,32). It is likely that ceRNAs 
mimic an ancient anti‑viral defence biomechanism that 
appeared during the evolutionary scale of eukaryotic species 

Figure 1. Chromosomal location of IL‑6R genes and pseudogenes. Genetic diagrams for chromosomal location of IL‑6Rα, IL‑6RP1 and IL‑6STP1 have 
been provided through the Genecards website (www.genecards.org) (104). To record Gp130 loci, Ensembl's GRCh38.p10 ideogram was used (105). IL‑6Rα 
was found on chromosome 1 at loci q21.3 (red line). IL‑6RP1 was detected on chromosome 9 q22.2 (red line). Gp130 was located on chromosome 5 at 
loci q11 (yellow arrow). IL‑6STP1 was identified on chromosome 17 at loci p11 (red line). IL‑6Rα, interleukin 6 receptor; IL‑6RP1, interleukin 6 receptor 
pseudogene 1; Gp130, glycoprotein 130; IL‑6STP1, interleukin 6 signal transducer pseudogene 1.

Figure 2. Location of IL‑6 signalling components. A geometric representation of bonds that group the chains of IL‑6 was designed. Pentameric and hexamer 
shapes were deducted in accordance with the number of chains pertaining to low and high affinity of IL‑6 binding, respectively. Five chains composed the 
low‑affinity IL‑6 complex, whereas six chains composed the high‑affinity IL‑6 complex. IL‑6, interleukin 6; IL‑6 free, serum interleukin 6 unbound with IL‑6 
serum receptor; sIL‑6R α subunit or gp80, serum receptor of IL‑6 corresponding with an α‑chain of 80‑kDa; cIL‑6Rα subunit or gp80, cellular receptor of 
IL‑6 corresponding with an α‑chain of 80‑kDa; gp130 β subunit, 130‑kDa glycoprotein.
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such as those in plants (33). For these reasons, ceRNAs are the 
cornerstone of recent molecular strategies that use ‘silencing’ 
genes to test cancerous biological aggressiveness, as well as 
to develop innovative molecular therapeutic approaches for 
cancer (27,34‑37).

Data on the role of miRNA in the post‑transcriptional 
regulation of IL‑6 expression are gradually increasing (38). In 
line with the algorithms of miRanda, MicroCosm v5 and the 
TargetScan v7.1 database (http://multimir.org), 15 miRNAs 
profiles have been recorded to have potential involvement with 
IL‑6 expression (38,39) (Table I).

In non‑cancerous cellular models of polymorphonuclear 
leukocytes (PMNs) taken from cord blood and adult blood, 
post‑transcriptional regulation of IL‑6 expression was demon‑
strated by lethal 7g (let‑7g) and miR‑142‑3p modulation (38). 
The let‑7g gene has been located on chromosome 3 at loci 
p21 (40,41). This is a genomic region involved in carcinogenic 
processes of the lung (40,41). miR‑142‑3p has been associated 
with colorectal cancer and has been recorded on chromo‑
some 17 at loci q22 (41). Let‑7g and miR‑142‑3p have been 
found to be related with IL‑6 expression, as both downregulate 
the production of IL‑6 mRNA as well as protein (38). The role 
of miR‑142‑3p with regard to the endogenous expression of 
IL‑6 has been previously predicted by mouse models (42).

In a cancerous cellular model and in normal controls, IL‑6 
overexpression was combined with decreases in let‑7c, let‑7d, 
let‑7f, let‑7g and mir‑98 (43). Furthermore, all of these miRNAs 
were expressed in higher concentrations in the normal controls 
than in the cancerous cells (43). Finally, the let precursor let‑7c 
exhibited a similar effect to let‑7g in normal PMNs, as let‑7c 
downregulated the mRNA and protein expression of IL‑6 in 
the cancerous cells and controls (38,43).

In summary, the ceRNAs involved in IL‑6 signalling play 
roles in the regulation of IL‑6 expression in physiological 
processes and even in cancerous transformation of cells.

4. Inflammatory and cognitive models of IL‑6 cytokines

Since the identification of IL‑6 in stromal, epithelial and muscle 
cells, new roles and functions have been attributed to this 
cytokine. It is clear that IL‑6 could operate through paracrine, 
autocrine and endocrine mechanisms (44,45). As long as IL‑6 
signalling is detected in the endocrine and nervous systems, 
the model of function for the IL‑6 inflammatory cytokine is 
changed; IL‑6 may have roles in the regulation of endocrine 
secretion and in nervous impulse propagation (46,47).

IL‑6 inflammatory model. IL‑6 controls the inflammatory 
response primarily through orchestration of pro‑inflammatory 
and anti‑inflammatory effects (48,49). This is due to the activa‑
tion of two different IL‑6 pathways. The first is known as classic 
signalling, which operates in support of anti‑inflammatory 
effects. Gp80 and gp130 are triggered through serum‑derived 
free IL‑6 in the cellular compartment (49). This pathway is 
dependent on cellular expression of the IL‑6R components and 
the concentration of free IL‑6 in the serum (Fig. 1) (49). The 
second trans‑signalling pathway, promotes pro‑inflammatory 
activities via IL‑6 (49). In the serum compartment, free IL‑6 
recruits gp80 and the gp80/IL‑6 complex activates cellular 
gp130 (Fig. 1) (49). Therefore, during trans‑signalling with 

IL‑6, a balance is maintained between the amount of serum 
gp80/IL‑6 complex and the cellular expression of gp130 (49).

Expression of IL‑6 associated with cognate receptor 
IL‑6‑Rα has been detected in cancerous and autoimmune endo‑
crine diseases of the thyroid such as Grave's disease (GD) and 
Hashimoto's thyroiditis (HT) (50‑53). In ex vivo pathological 
tissue, thyroid follicular cells exhibited intracellular IL‑6 and 
IL‑6‑Rα. Greater immunoexpression of IL‑6 and IL‑6R were 
reported in cancerous follicular cells, as well as in HT and GD 
cases with high lymphoid infiltration (50‑53). Simultaneous 
expression of receptor and ligand was not observed in normal 
follicular thyroid cells (50‑53). To characterize classic and 
trans‑signalling IL‑6 in HT patients, free IL‑6 and bound 
gp80/IL‑6 complex levels were measured in the serum (48,49). 
Both IL‑6 pathways appeared to be involved in the develop‑
ment and progression of HT. This was due to an increase in 
bound gp80/IL‑6 in the serum of HT patients compared with 
that of healthy controls (48). Furthermore, free IL‑6 was a 
candidate for an early diagnostic marker for the development 
of autoimmune disease in the HIV‑seropositive (HIV+) popu‑
lation (49). This was due to a high concentration of free IL‑6 
in the serum, which was correlated with the occurrence of 
autoimmune disease in HIV+ subjects.

The inflammatory IL‑6 model is frequently used to 
explain IL‑6 modulation of the response to toxicity of nano‑
materials (54). In vitro and in vivo studies have underlined the 
pro‑inflammatory effects of several natural and synthetic NPs. 
Due to their capacity for internalization, inhalation of NPs 
actives several pathways that, in addition to causing apoptosis, 
fibrosis, genotoxicity and tumourigenesis, also causes strong 
inflammation at the lung level and beyond (55‑59). Briefly, 
following phagocytosis by macrophages, the NPs trigger 
the response of other immune cells. The macrophages also 
release the inflammasome NLRP3, a multiprotein complex 

Table I. Data source for mioRNA profiles involved in the 
regulation of interleukin 6 expression.

miRNA	 (Refs.)

hsa‑let‑7a	 (38)
hsa‑let‑7d	 (38)
hsa‑let‑7e	 (38)
hsa‑let‑7f	 (38)
hsa‑let‑7g	 (38,39)
hsa‑let‑7i	 (38)
hsa‑miR‑23a	 (38)
hsa‑miR‑23b	 (38)
hsa‑miR‑26a	 (38)
hsa‑miR‑26b	 (38)
hsa‑miR‑126	 (38)
hsa‑miR‑132	 (38)
hsa‑miR‑155	 (38)
hsa‑miR‑142‑3p	 (38)
hsa‑miR‑146‑a	 (38)

hsa, Homo sapiens; let, lethal; miR/miRNA, microRNA.
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whose activation is prompted by numerous different signals, 
including pathogen‑associated molecular patterns and 
danger‑associated molecular patterns (60,61). NLRP3 is acti‑
vated by reactive oxygen species (ROS) overproduction and 
the inflammatory cascade continues since NLRP3, in turn, 
induces the expression of IL‑6, IL‑1β and TNF‑α genes (62).

In the central nervous system, the NP induction of microglia 
activation causes the onset and progression of chronic brain 
inflammation, leading to a loss of neuronal cells and an 
increase in white matter abnormalities; this is associated with 
an increased risk for autism spectrum disorders, a lower IQ 
in children, neurodegenerative diseases, such as Parkinson's 
disease (PD), Alzheimer's disease and multiple sclerosis, and 
strokes (63). As demonstrated by Visalli et al (57) in the differ‑
entiated SH‑SY5Y neuronal model, the exposure to synthetic 
NPs significantly increased transcript levels of IL‑6, IL‑1β 
and TNF‑α, confirmed by the measurement of cytokine levels 
detected in the cell supernatants. The role of neuroinflamma‑
tion and microglia activation in neurotoxicity was detected 
in an in vivo study using cortical stereotactic injection of 
carbon‑based NPs into the mouse brain (64). According to 
Bussy et al (65) the brain region‑specific sensitivity to NP 
exposure is most likely related to the number of microglial 
cells in the different brain regions.

IL‑6 cognitive model. Two main sources have contributed to 
set the cognitive model of IL‑6 cytokines: The cellular distri‑
bution and histological localization of IL‑6/IL‑6R signalling 
in brain tissue; and the different neurological responses to IL‑6 
serum concentrations due to activation of either the classic or 
trans‑signalling pathway (66,67).

Normal neurons and microglia are able to secrete IL‑6 poly‑
peptide, as well as transcribe genomic IL‑6‑Rα mRNA (66). 
IL‑6 has been implicated in the pathogenesis and cure of PD. 
Environmental exposure to pesticides also causes degenera‑
tion of dopaminergic neurons by activation of inflammatory 
cytokines such as IL‑6 (68,69). The alteration of dopaminergic 
transmission produces a complex symptomology due to 
impairment of motor and cognitive performance. Several new 
medicinal plant extracts and phytochemicals, such as ellagic 
acid, are potentially suitable for use to alleviate PD symptoms 
due of their ability to decrease the anti‑inflammatory activities 
of cytokines in cellular models (70,71)

Conversely, IL‑6‑Rα sequences have uniquely been detected 
in microglia and remain undetected in oligodendrocytes and 
astrocytes (66,72). In human and rat brain tissues, IL‑6 was 
mainly localized in the hippocampal region (67,73,74). Several 
reports have associated the grey matter of the human brain with 
cognitive processes such as memory consolidation and learning, 
appearance of depression, post‑traumatic stress and childhood 
maltreatment disorders (74‑76). Under physiological conditions, 
the left hippocampus showed an association between decreased 
grey matter volume and an increase in serum IL‑6 (74). An 
increase in right hippocampal volumes involving the head, 
parahippocampal gyrus and dorsal parts of the amygdala were 
associated with the IL‑6 polymorphism rs1800795 (76).

In neurons and oligodendrocytes, the IL‑6 response was 
mediated by trans‑signalling  (66). In microglia, the IL‑6 
classic and trans‑signalling pathways were observed (67). In 
target brain cells neurons, IL‑6 trans‑signalling promoted 

neuronal degeneration (77,78). By contrast, the regeneration of 
neural tissue was mediated through IL‑6 classic signalling via 
the involvement of microglia cells (66,78).

In summary, the classic and trans‑signaling pathways 
are the basis of two models, the inflammatory and cognitive 
models, with cellular expression and serum levels of IL‑6 used 
to distinguish between them.

5. Role of IL‑6 in COVID‑19

IL‑6 is a cytokine with a number of different functions that 
plays a role in the host acute response to inflammation; it 
modulates host defence through numerous different mecha‑
nisms and actions directed towards monocytes, B cells and 
controlling homeostasis between Th1 and Th2 activity (75‑79).

Severe acute respiratory syndrome coronavirus 2 
(SARS‑CoV‑2; also known as COVID‑19) primarily attacks 
airway and alveolar epithelial cells, vascular endothelial cells 
and macrophages in the lung, where there is expression of its 
host target receptor, angiotensin‑converting enzyme 2 (80). 
Since IL‑6 is relevant during infection that affects the 
mucosal sites, particularly at the upper and lower respiratory 
tract levels, it represents one of most important cytokines 
involved in the host response to SARS‑CoV‑2 infection (81). 
Severe COVID‑19‑induced pneumonia is marked by hyper‑
activation of the immune system and especially by excessive 
production of IL‑6 (82,83). In this regard, several studies have 
revealed a strong correlation between high systemic levels 
of IL‑6 and respiratory failure in severely affected patients 
with COVID‑19 (84). According to these studies, a 2.9‑fold 
higher mean IL‑6 serum concentration was observed in 
patients with complicated COVID‑19 compared with that in 
patients presenting with non‑complicated disease. The strong 
correlation between IL‑6 and COVID‑19 has led to the consid‑
eration of serum IL‑6 levels as potential diagnostic markers, 
disease severity stratification indicators and prognostic 
indexes (85,86). Moderately elevated IL‑6 levels (>80 pg/ml) 
were, in fact, sufficient to identify COVID‑19‑infected patients 
and to predict progression towards respiratory failure. In addi‑
tion, IL‑6 has emerged as the most significant predictor of 
mortality in patients with COVID‑19 (87).

The pathophysiological role of IL‑6 in COVID‑19 is 
well documented by several studies (83,88). IL‑6 is gener‑
ally considered the key driver of the hyperinflammatory 
process in COVID‑19; it exerts effects on numerous different 
cellular targets that express a functional IL‑6R, including 
T cells, B cells, vascular endothelial cells, monocytes and 
hepatocytes (79). By means of these actions on such a wide 
array of cellular targets, IL‑6 mediates key effects on cellular 
immunity, exerting, at the same time, pro‑inflammatory and 
anti‑inflammatory functions (83,88).

The relevance of IL‑6 is also demonstrated by the 
numerous studies that have explored its potential utility 
as a potential therapeutic target (89‑93). The efficacy of a 
number of targeted monoclonal antibodies, directed against 
IL‑6 or its receptor, is currently under investigation in 
several different countries. Numerous interventional clinical 
trials are, in fact, currently ongoing, using drugs that target 
IL‑6, such as tocilizumab (Actemra) (38 interventional 
clinical trials, none of them yet with final and published 
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results; https://www.clinicaltrials.gov/ct2/results?cond=​
COVID‑19+and+tocilizumab&age_v=&gndr=&type=Intr&r
slt=&Search=Apply; accessed on 28 march 2021), sarilumab 
(Kevzara) (9 interventional clinical trials, none of them yet 
with final and published results; https://www.clinicaltrials.
gov/ct2/results?recrs=&cond=COVID‑​19+and+Sarilumab&t
erm=&cntry=&state=&city=&dist=; accessed on 28 March 
2021), siltuximab (Sylvant) (1 interventional clinical trial; 
ClinicalTrials.gov identifier, NCT04329650) and clazaki‑
zumab (formerly ALD518 and BMS‑945429) (6 interventional 
clinical trials, none of them yet with final and published 
results; https://www.clinicaltrials.gov/ct2/results?cond=COV
ID‑19+and+Clazakizumab&age_v=&gndr=&type=Intr&rslt
=&Search=Apply; accessed on 28 March 2021). These drugs 
act by inhibiting both classical and trans IL‑6 pathways, and 
represent promising therapeutic options for the treatment of 
the most severe forms of COVID‑19 (94‑103).

6. Conclusion

In the present review, the molecular and nanomolecular 
structures involved in active IL‑6 signalling were examined. 
Specially, the review reported that energetic transition from 
low to high affinity of IL‑6 binding has to occur at the nano‑
metre scale through changes of geometric orientation by 
conversion from the pentamer to hexamer shape.

The role played by miRNA in the post‑transcriptional 
regulation of IL‑6 expression has been evaluated through 
genes, pseudogenes and ceRNA of IL‑6.

In addition, classic and trans‑signaling pathways were anal‑
ysed to evaluate the role of IL‑6 in inflammatory and cognitive 
processes through anatomical localization and serum levels of 
active compounds in both pathways. Finally, the analysis of the 
pathogenic, diagnostic, prognostic and therapeutic roles of IL‑6 
in SARS‑CoV‑2 infection clearly demonstrates the central role 
of IL‑6 in the ongoing global COVID‑19 pandemic.
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