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Abstract. Calcium silicate‑based bioceramics have been 
applied in endodontics as advantageous materials for years. 
In addition to excellent physical and chemical properties, the 
biocompatibility and bioactivity of calcium silicate‑based 
bioceramics also serve an important role in endodontics 
according to previous research reports. Firstly, bioceramics 
affect cellular behavior of cells such as stem cells, osteo‑
blasts, osteoclasts, fibroblasts and immune cells. On the 
other hand, cell reaction to bioceramics determines the effect 
of wound healing and tissue repair following bioceramics 
implantation. The aim of the present review was to provide 
an overview of calcium silicate‑based bioceramics currently 
applied in endodontics, including mineral trioxide aggre‑
gate, Bioaggregate, Biodentine and iRoot, focusing on their 
in vitro biocompatibility and bioactivity. Understanding their 
underlying mechanism may help to ensure these materials are 
applied appropriately in endodontics.
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1. Introduction

The stem cell population in dental pulp possesses multilineage 
differentiation potential and the pulp vascular system partici‑
pates in the reaction of dental pulp tissue to external stimulus, 
the initiation of dental pulp inflammation and pulp tissue 
repair (1). When sound dentin suffers damage, such as tooth 
wear, fracture, or caries, bacterial infection and the subse‑
quent inflammatory response lead to damage of pulp tissue 
and impaired periapical tissue through blood circulation (2). 
Therefore, endodontic therapy has become a necessary option to 
preserve teeth by removing microorganisms, their by‑products 
and residual necrotic tissue (3). However, the success rate of 
traditional endodontic therapy was only 70‑80% over the past 
decade globally (4‑6). The apical seal is important to improve 
the success rate in endodontic therapy; an excellent apical seal 
by root‑end filling prevents the spread of dental pulp inflam‑
mation to the periapical tissue (7). In order to achieve a higher 
success rate in endodontic therapy, an ideal root‑end filling 
material is required that possesses excellent root‑end sealing 
capacity, good biocompatibility with surrounding cells/tissue, 
superior antibacterial properties and ability to promote tissue 
regeneration.

Mineral trioxide aggregate (MTA) has been used in 
root‑end filling as calcium silicate‑based bioceramic and 
displays better root apical sealing ability and higher success 
rates compared with conventional root‑end filling materials, 
such as amalgam and intermediate restorative material (8‑10). 
Furthermore, given its clinical effect in root‑end filling 
in endodontic therapy, MTA has also been used in other 
endodontic application, such as pulp capping and regeneration 
and root perforation repair, and is currently considered as the 
gold standard in endodontics. As ProRoot MTA (Dentsply 
Sirona) has shown good clinical performance in endodon‑
tics, other calcium silicate‑based bioceramics have been 
developed, including Bioaggregate (Innovative Bioceramix, 
Inc.), Biodentin (Septodont Holding) and iRoot BP/FS/SP 
(Innovative Bioceramix, Inc.) (11,12).

The chemical constituents of these novel calcium 
silicate‑based bioceramics are similar to that of MTA, but 
Bioaggregate, Biodentine and iRoot BP/BP Plus display better 
color stability than MTA because bismuth oxide is replaced by 
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tantalum or zirconium oxide as a radiopacifier. Bioaggregate 
exhibits superior stable bond strength but inferior mechanical 
properties and bond strength in comparison with MTA. 
Biodentine shows increased mechanical strength and longer 
setting time as it does not contain calcium aluminate and 
calcium sulfate, which are present in MTA (13). iRoot BP/BP 
Plus, novel calcium silicate‑based bioceramics applied in 
permanent root canal repair and filling, exhibit easier manipu‑
lation and faster setting time compared with MTA (14).

It is essential to clarify the effect and mechanism how 
these bioceramics influence the surrounding cells/tissue 
when used in endodontics. Numerous studies have investi‑
gated the biocompatibility and bioactivity of bioceramics in 
endodontics. Materials with good biocompatibility should not 
induce notable and continuous toxic effects on surrounding 
cells and tissue  (15,16). Biocompatibility can be defined 
as the interaction between implanted biomaterials and the 
associated tissue (17). Bioactive materials also induce apatite 
layer formation and biomineralization (18). Increased deposi‑
tion of hydroxyapatite over time is observed when calcium 
silicate‑based bioceramics are exposed to PBS, which suggests 
that these materials are bioactive (19‑22). Bioceramics have 
been demonstrated to have excellent biocompatibility and 
lasting bioactivity during and after setting by the secretion 
of molecules. When calcium silicate‑based bioceramics are 
applied in endodontics, the interaction between the materials 
and cells affect the biological behavior, such as proliferation, 
differentiation, migration and apoptosis (23,24). Various types 
of cell are involved in changes of biological behavior when 
bioceramics are used in endodontics (Fig. 1). For example, 
calcium silicate‑based bioceramics affect the biological 
behavior of dental pulp stem cells (DPSCs) in dental pulp 
capping, whereas osteoblasts/osteoclasts are influenced when 
bioceramics are applied as root‑end filling material (25,26). 
Despite the weakness of in vitro studies in mimicking the 
human body reaction to environmental stimuli and providing 
accurate results compared with animal or human studies, it 
is essential to investigate biocompatibility and bioactivity 
in vitro to clarify the mechanism underlying how calcium 
silicate‑based bioceramics influence cell behavior. The present 
review focuses on in vitro biocompatibility and bioactivity 
when calcium silicate‑based bioceramics are applied in 
endodontics. All information is summarized in Table I.

2. Stem cells

Mesenchymal stem cells (MSCs) derived from dental tissue 
originate from teeth and surrounding support tissue, possess 
similar biological characteristics to bone marrow‑derived 
MSCs and differentiate into osteoblasts, adipocytes, chondro‑
cytes and neural cells (27,28). MSCs derived from dental tissue 
are capable of dentinogenesis or angiogenesis and secretion 
of growth factors, which influence behavior, such as prolif‑
eration, differentiation and mineralization (29). MSCs derived 
from dental tissue include DPSCs, periodontal ligament stem 
cells (PDLSCs), stem cells from human exfoliated deciduous 
teeth (SHED) and stem cells from apical papilla (SCAPs) that 
are involved in renewal and regeneration of dental tissue via 
the repair of injured dentin, root structure and the pulp‑dentin 
complex (26,30,31) (Fig. 2). Calcium silicate‑based bioceramics 

significantly promote attachment and survival of stem cells 
derived from dental tissue but their effects on biological 
behavior appear to be cell type‑dependent  (25). Several 
common markers are used to test the osteo/odontogenic and 
angiogenic potential of stem cells in the presence of calcium 
silicate‑based bioceramics. For example, alkaline phosphatase 
(Alp) is a marker protein of mineralization and is associated 
with early osteo/odontogenic differentiation (32,33). Collagen 
type I (COL1), osteocalcin (Ocn) and osteopontin (OPN) are 
expressed in the extracellular matrix and serve an important 
role in osteoblastic mineralization (34). Runt‑related transcrip‑
tion factor 2 (Runx2) acts as a marker of osteogenesis in the 
early stage (35,36), while Ocn functions in the late stage of 
osteogenic differentiation (37,38). Regarding dentinogenesis, 
Runx2 and its downstream molecule osterix (Osx), dentin 
sialoprotein and dentin sialophosphoprotein (DSPP) and its 
downstream molecule dentin matrix protein 1 (DMP1) (39,40) 
are considered as protein markers closely associated with the 
formation and mineralization of odontoblasts.

DPSCs. MTA promotes the proliferation and survival of 
human DPSCs, bone marrow stromal/stem cells (BMSCs) and 
PDLSCs via the ERK signaling pathway (25), and also exhibit a 
positive effect on viability of human DPSCs (41). MTA at high 
concentrations (20 and 10 mg/ml) is toxic to human DPSCs 
but MTA at low concentrations (2.0, 1.0, 0.2 and 0.1 mg/ml) 
enhances viability of human DPSCs but has no effect lower 
concentrations (0.020 and 0.002 mg/ml) (42). Similarly, undi‑
luted MTA extract slightly increase survival of human DPSCs, 
while 1/2 and 1/4 dilutions of MTA extract have no effect on 
cell viability (43). In addition, MTA at high concentrations 
(20 mg/ml) decreases proliferation of DPSCs under inflam‑
matory conditions but has no effect at low concentrations 
(0.020 and 0.002 mg/ml) (44). Moreover, various commer‑
cial MTA extracts, such as Angelus MTA (Angelus Dental 
Products Industry) and Root MTA (University of Tabriz, 
Iran), show similar effects on human DPSCs but were more 
biocompatible when applied at lower concentration (1:2) and 
longer exposure times compared with MTA. These results 
suggested that the biocompatibility of MTA is dependent 
on not only dosage but also exposure time (45). In terms of 
time‑dependent biocompatibility of MTA, the cytotoxicity 
of MTA decreased over time and the viability and prolifera‑
tion of human DPSCs increased following two aging cycles, 
which further supported the aforementioned time‑ and 
concentration‑dependent effects of MTA (46). Moreover, the 
proliferation and viability of DPSCs decreased significantly 
when in direct contact with MTA for the first day but subse‑
quently raised after three days (47). The initial cytotoxicity of 
MTA to growth and viability of DPSCs (47‑49) may be partly 
ascribed to the relatively rough surface of biomaterials (50) or 
leakage of components such as bismuth oxide (51) and Al (52) 
and Si ions (53). Higher levels of Si ion concentrations from 
the SiO2 phase of materials may lead to hyperosmoticity 
and subsequently stimulates production of inflammatory 
cytokines (54). Furthermore, production of MTA during the 
hydration reaction and its exposure concentration may result 
in early slight cytotoxicity of MTA. Calcium hydroxide is 
produced when calcium silicate contained in MTA reacts 
with water and increases pH of the culture media  (55,56). 
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Basic pH environment and release of inorganic salts induced 
by high concentrations of MTA significantly decreases cell 
proliferation  (57). Furthermore, 24‑h set MTA promotes 
viability of human DPSCs, whereas 1‑h set MTA exhibits an 
inhibitory effect after 7 days, which suggests that incompletely 
solidified MTA is cytotoxic (58). The subsequent rise in cell 
viability may be caused by hydroxyapatite layer formation on 
the hydrated bioceramic surface (59) controlled continuous 
production of calcium, silica and phosphate ions from bioc‑
eramics along with alkaline pH in the later stage  (60,61). 
Regarding differentiation of human DPSCs, in the first week 
following induction with MTA in odontogenic differentiation 
medium, DPSCs began to change from spindle to rounded 
shape upon reaching confluency and then migrated to form 
clusters (62). DPSCs began to differentiate at day 7 (63) and 
mineralization was observed by Alizarin Red staining until 
day 21. Combination of MTA and odontogenic differentiation 
medium enhanced odontogenic differentiation of DPSCs but 
MTA extract‑alone did not induce this (62). Treatment with 
MTA for 1 day affected more genes in uninduced DPSCs than 
in DPSCs induced by odontogenic differentiation medium, 
which suggested that MTA exhibits a greater stimulative effect 
on odontogenic differentiation of uninduced DPSCs compared 
with induced DPSCs (64). In addition, MTA at a concentra‑
tion of 0.2 mg/ml displayed the strongest capacity to induce 
odontoblastic differentiation of human DPSCs via the p42/44 
ERK signaling pathway (42). MTA‑conditioned medium at the 
same concentration enhances the odonto/osteogenic capacity 
of DSPCs from inflammatory sites by activating the NF‑κB 
pathway, as shown by significantly upregulated odonto/osteo‑
blastic gene expression levels, such as ALP, RUNX2, OSX, OCN 
and DSPP (44). Consistent with the changes in genes associ‑
ated with osteo/dentinogenic differentiation, MTA promotes 
mineralized nodule formation of human DPSCs  (65,66). 
Increased secretion of angiogenic factor VEGF has been 
detected in human DPSCs induced by MTA (63), which in turn 
affects viability and function of DPSCs (67). MTA contributes 
to dentin bridge formation in endodontics (68,69). In addition, 

MTA is applied in pulp capping because of its excellent bioac‑
tivity, which has been confirmed by the elongated shape of 
DPSCs, formation of collagen fibers and calcified deposition 
in the presence of MTA in a model simulating indirect pulp 
capping (70). In previous studies, accelerants, including 5% 
CaCl2 and 2.5% Na2HPO4, have been mixed with MTA to 
shorten setting time. Compared with MTA in the presence of 
distilled water, MTA in the presence of 5% CaCl2 and 2.5% 
Na2HPO4 is more biocompatible and exhibits greater ability to 
promote odontoblastic differentiation of DPSC niches (48,71). 
Propolis, a natural alternative endodontic material produced 
by honeybees from tree resin, also enhances the ability of 
MTA to promote odontogenic differentiation and mineraliza‑
tion of DPSCs via the ERK pathway (72).

Compared with human PDLSCs and tooth germ stem cells 
(TGSCs), human DPSCs exhibit better viability in the pres‑
ence of both Biodentine and MTA (73). Moreover, Biodentine 
displays a superior ability to promote viability, adhesion and 
migration of human DPSCs compared with MTA. Human 
DPSCs spread on the surface of Biodentine show a spindle, 
polygonal and flattened morphology (74). Similar to MTA, high 
concentrations of Biodentine extract (20 mg/ml) exhibit slight 
cytotoxicity, whereas 0.2 mg/ml Biodentine enhances biolog‑
ical behaviors of human DPSCs, including cell proliferation, 
viability, migration, adhesion and mineralization formation. 
In addition, low concentrations of Biodentine (0.2 mg/ml) 
promote odontoblast differentiation and biomineralization of 
human DPSCs by activating ERK1/2 and JNK and attenuating 
the NF‑κB pathway (75,76). Increased Alp activity and dentin 
matrix protein expression levels have been observed in human 
DPSCs stimulated with Biodentine  (75‑78). Furthermore, 
Biodentine significantly increases calcium deposition (79) and 
enhances the production of Ocn and Runx2 in human DPSCs 
stimulated with lipopolysaccharide (LPS) although there is no 
change in ALP expression levels (53). In terms of the inflam‑
matory response, Biodentine does not affect high expression 
of IL‑6 and IL‑8 in DPSCs induced by LPS stimulation but 
decreases levels of the anti‑inflammatory cytokine TGF‑β1 (53). 

Figure 1. Application of calcium silicate‑based bioceramics in endodontics and associated cells. Calcium silicate‑based bioceramics affect the biological 
behavior of (A) DPSCs, DPCs and DPFs when used in dental pulp capping, (B) PDLSCs, PDLCs and PDLFs when applied in root perforation repair and 
(C) BMSCs, osteoblasts and osteoclasts when used as root‑end filling material. (D) Immune cells, such as monocytes and macrophages, respond to implantation 
of calcium silicate‑based biomaterials into tissue. DPSCs, dental pulp stem cells; DPCs, dental pulp cells; DPFs, dental pulp fibroblasts; PDLSCs, periodontal 
ligament stem cells; PDLCs, periodontal ligament cells; PDLFs, periodontal ligament fibroblasts; BMSCs, bone marrow stromal/stem cells.
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Table I. In vitro studies of biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics.

Bioceramic	C ell type 	 Subtype	 Biocompatibility and bioactivity	 References

MTA	 Stem cells	D PSCs	 Promotes proliferation and survival of human DPSCs,	 (25)
			   BMSCs and PDLSCs via ERK signaling pathway	
			C   oncentration‑ and time‑dependent biocompatibility	 (42‑45,48,49,99)
			   Set MTA shows better biocompatibility than incompletely	 (58)
			   set MTA
			C   ells change shape and migrate to form clusters during the	 (62)
			   first week, and apparent mineralization at day 21 following	
			   induction with MTA	
			   Begin to differentiate at day 7 following induction with MTA	 (63)
			   Affect more genes in uninduced DPSCs than in DPSCs	 (64)
			   induced by odontogenic differentiation medium	
			   Promotes odonto/osteogenic differentiation via p42/44 ERK	 (42,44)
			   and NF‑κB pathways	
			   Enhances formation of collagen fibers and mineralized	 (65,66,70)
			   nodules
			   Increases secretion of angiogenic factors, such as VEGF	 (63)
		  PDLSCs	 Bioroot BC Sealer is more biocompatible than Endoseal	 (100‑102)
			   MTA and MTA Fillapex	
			   Induces odonto/osteogenic differentiation by activating	 (103)
			   NF‑κB and MAPK pathways	
		  BMSCs	 Respond more rapidly to MTA than human PDLSCs and	 (25)
			D   PSCs
			   Rat BMSCs respond more rapidly to MTA than human	 (107‑109)
			   BMSCs
			   Induces proliferation and odonto/osteoblastic 	 (25,110,111)
			   differentiation in a dose‑dependent manner via ERK and	
			   JNK signalling pathways	
		  SHED	 Enhances attachment, proliferation, migration and	 (125,126)
			   odontogenic differentiation	
			   Fresh mixed MTA and direct incubation with MTA induce	 (130)
			   cytotoxicity  	
		  SCAPs	C oncentration‑/time‑dependent biocompatibility	 (25,133‑135,138)
			   Induces odonto/osteogenic differentiation via NF‑κB,	 (138‑140,142)
			   p38 and ERK signaling	
			   Increases expression of pro‑inflammatory cytokines IL‑1α,	 (139)
			   IL‑1β and IL‑6	
			   Increases expression of angiogenic genes VEGFA and 	 (134)
			   FIGF/VEGFD
		  TGSCs	 Biocompatible and increases release of PDGF, FGF‑2	 (73)
			   and VEGF
			D   irect incubation with MTA inhibits viability and	 (151)
			   odontogenic differentiation	
	 Osteoblasts	 Primary	 Inhibit cell proliferation and differentiation 	 (156‑158)
		  osteoblasts	 Biocompatible with primary osteoblasts cultured in 3D	 (166)
			   culture system and promotes differentiation	
		  MC3T3‑E1	 Promotes viability, osteoblastic differentiation and	 (168‑171)
			   by activating transcription factor 6 and endoplasmic
			   reticulum stress response	
		  MG‑63	 Cytotoxicity and inflammation decrease as material sets	 (167,174)
		  Saos‑2	 Promote the adhesion, spreading, proliferation and	 (176,177)
			   secretion of collagen	
			   Enhances osteogenic differentiation	 (178)
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Table I. Continued.

Bioceramic	C ell type 	 Subtype	 Biocompatibility and bioactivity	 References

	 Osteoclasts	 Osteoclasts	 Inhibits bone resorption and osteoclast differentiation by	 (191,193,194)
			   preventing migration and fusion of osteoclast precursors
			   via attenuation of the autophagic pathway	
			   Inhibit osteoclastogenesis dose‑dependently	 (195,196)
	 Fibroblasts	D PCs	 More biocompatible with rat pulp cells (RPC‑C2A) than	 (218)
			   SuperEBA and Vitrebond	
			   Promotes proliferation and odontogenic differentiation, 	 (219,220)
			   and decreases secretion of IL‑1β and IL‑6	
			   Enhances expression of VEGF and angiogenin	 (222)
		D  PFs	 Less cytotoxic than Ca(OH)2	 (232)
			   No cytotoxicity or genotoxicity	 (233)
		  PDLCs	 Inhibits proliferation, viability and differentiation	 (111,244)
			   Enhances calcification and BMP‑2 expression	 (245)
		  PDLFs	 Fresh MTA inhibits proliferation, attachment and	 (250‑253)
			   differentiation of PDLFs	
			   More biocompatible than commonly used endodontic	 (105,254‑257)
			   materials
			   Induces differentiation	 (105)
			C   oncentration‑/time‑dependent biocompatibility 	 (251,258‑261)
	 Immune	 Monocytic	 Biocompatible with THP1 cells and increases secretion of	 (272)
	 cells	 cells	 cytokines by THP1 cells
			   Induces THP‑1 polarization toward M2 phenotype by	 (286)
			   activating Axl/Akt/NF‑κB signaling pathway	
		  Neutrophils	 Increases expression of IL‑1β and IL‑8	 (278)
			   Enhances chemotaxis and chemokinesis by activation of	 (279)
			   calcium‑sensing receptors and downstream pathways	
		  Macrophages	 Induces release and upregulates expression of neutrophil	 (275‑277)
			   chemotactic factor substances from macrophages and
			   mast cells 	
			   Biocompatible	 (282‑284)
			   Increases expression of inflammatory cytokines and	 (282,285)
			   induces M2 polarization in RAW 264.7 macrophages	
		  Lymphocytes	 No DNA breakage to human peripheral lymphocytes	 (287)
Bioaggregate	 Stem cells	 BMSCs	 Biocompatible	 (115)
	 Osteoblasts	 MC3T3‑E1	 Shows no cytotoxicity and increases expression of COL1,	 (180)
			   OCN and OPN	
	 Osteoclasts	 Osteoclasts	 Similar ability to MTA to prevent migration and fusion to	 (191‑193)
			   inhibit bone resorption and differentiation via NF‑κB	
			   signaling pathway	
	 Fibroblasts	D PCs	 Similar compatibility and ability to enhance odontogenic	 (223,224,226)
			   differentiation by activation of MAPK signaling pathway
			   to MTA	
			   Superior to MTA in promoting cell adhesion and migration	 (225)
			   Stronger potential to induce osteogenic differentiation	 (223)
			   than MTA
		  PDLCs	 Better biocompatibility than MTA	 (246)
			   Promotes mineralization and osteogenic differentiation in	 (247)
			   a concentration‑/time‑dependent manner via miR‑146a	
		  PDLFs	C omparable biocompatibility with MTA	 (262)
Biodentine	 Stem cells	D PSCs	 Superior to MTA in biocompatibility and mineralized nodule	 (74,82,86)
			   formation
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Table I. Continued.

Bioceramic	C ell type 	 Subtype	 Biocompatibility and bioactivity	 References

			   Promotes osteo/odontogenic differentiation and	 (53,75‑78)
			   mineralization by activating ERK1/2 and JNK, and
			   attenuating NF‑κB pathways	
			   No effect on expression of IL‑6 and IL‑8 but decreases	 (53)
			   expression of TGF‑β	
			   More compatibility when stored in acid rather than saline	 (58)
			   Slight toxicity and more odontogenic differentiation when	 (49,77,80)
			   directly contacting DPSCs
			   Similar ability to improve expression of VEGF compared	 (49)
			   with MTA	
		  PDLSCs	 Similar dose‑dependent biocompatibility to MTA	 (104)
		  BMSCs	 Promotes proliferation 	 (116‑118)
			   Inferior to MTA in promoting proliferation and osteoblastic	 (119)
			   differentiation	
		  SHED	 Similar dose‑dependent biocompatibility to MTA	 (126,126,128,129)
			   Superior to MTA in promoting proliferation and calcified	 (125,127)
			   matrix deposition	
		  SCAPs	 Similar biocompatibility to MTA	 (133,134,136)
			   Induce odonto/osteogenic differentiation in dose‑dependent	 (138,139)
			   manner 	
			   Superior to MTA in inducing odontoblastic differentiation	 (133,134,137) 
			   Similar capacity to enhance expression of pro‑inflammatory	 (139)
			   cytokines, such as IL‑1α, IL‑1β, IL‑6 and TNF‑α, compared
			   with MTA	
			   Similar ability to promote expression of VEGFA and FGIF	 (134)
		  TGSCs	 Similar to MTA in biocompatibility and release of angiogenic	 (73)
	 Osteoblasts	 Primary	 Similar cytocompatibility to MTA 	 (164,181)
		  osteoblasts
		  MG‑63	 Similar cytocompatibility to MTA	 (182)
		  MC3T3‑E1	 Similar ability to promote calcification compared with MTA	 (183)
		  Saos‑2	 Similar dose‑dependent biocompatibility to MTA and	 (184)
			   induces expression of ALP and mineralization	
	 Osteoclasts	 Osteoclasts	 Lower inhibitory effect on differentiation and activity via	 (197)
			   ERK1/2 and NF‑κB signaling pathways	
	 Fibroblasts	D PCs	 Biocompatible and promotes odontoblastic differentiation	 (224,229)
			   and biomineralization	
			   Similar ability to MTA in increasing TGF‑β1 secretion	 (228)
		D  PFs	 Similar biocompatibility to MTA in concentration‑/time‑	 (233,234)
			   dependent manner	
			   Affects differentiation in a concentration‑dependent manner	 (228,234)
			   by modulating TGF‑β1 secretion	
			   More biocompatibility and less	 (78,240,243)
			   inflammation compared with TheraCal 	
		  PDLCs	 Similar biocompatibility to MTA	 (55,181)
			   Superior to MTA in terms of attachment and proliferation	 (181)
		  PDLFs	 Viability increases with time	 (261)
			   More cell aggregates on surface compared with MTA	 (267)
			   Higher expression of Integrin β1 and Vinculin compared	 (268)
			   with MTA	
	 Immune cells	 Monocytes	D ecreases adhesion of THP‑1 cells to endothelial cells,	 (240)
			   migration and activation to macrophages	
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Table I. Continued.

Bioceramic	C ell type 	 Subtype	 Biocompatibility and bioactivity	 References

			   Similar biocompatibility compared with MTA	 (289)
		  Macrophages	 No effect on activation and inflammatory response of	 (288)
			   THP‑1 macrophages	
			   Greater inhibitory effect on expression of inflammatory	 (183)
			   cytokines compared with MTA	
iRoot	 Stem cells	D PSCs	 Greater ability to promote adhesion, migration and	 (93)
BP Plus			   mineralization than MTA	
			   Similar ability to enhance formation of focal adhesions	 (94)
			   and reorganization of the actin cytoskeleton compared with MTA
		  BMSCs	 Enhances osteo/odontogenic differentiation via MAPK	 (114)
			   pathway and autophagy	
		  SHED	 Similar in promoting proliferation but superior in enhancing 	 (93)
			   migration, adhesion and osteogenetic differentiation	
	 Osteoblasts	 Primary 	 More cytotoxic than MTA 	 (185)
		  osteoblasts		
		  MC3T3‑E1	 Improved viability under inflammatory acidic environment	 (186)
			   compared with MTA	
	 Fibroblasts	D PCs	 Superior to MTA in proliferation, mineralization and	 (226,230)
			   odontoblastic differentiation	
			   Promotes migration and upregulates expression of focal	 (231)
			   adhesion molecules via FGFR‑mediated ERK 1/2, JNK and	
			   Akt pathways	
iRoot FS	 Stem cells	D PSCs	 Promotes proliferation, migration and osteogenic differentiation	 (97)
			   Superior to Biodentine in terms of proliferation and migration	 (98)
		  SCAPs	 Similar biocompatibility but stronger capacity to enhance	 (147)
			   migration and osteo/odontogenesis via the Wnt/β‑catenin	
			   pathway in comparison with MTA	
	 Osteoblasts	 MC3T3‑E1	 More biocompatible than iRoot BP Plus or MTA	 (187)
		  MG63	 More biocompatible than iRoot BP Plus or MTA	 (188)
	 Fibroblasts	 PDLCs	 Superior to Biodentine in cell viability, proliferation and	 (248)
			   osteogenic differentiation	
iRoot FM	 Stem cells	 SCAPs	 Induces proliferation and osteo/odontogenic differentiation	 (148)
			   dose‑dependently without affecting cell morphology	
iRoot SP	 Stem cells	 TGSCs	 Biocompatible	 (152)
			   Inferior to MTA in inducing odontogenic differentiation and	 (153)
			   hard tissue deposition	
	 Osteoblasts	 MG63	 Biocompatible and enhances expression of COL1, OCN and BSP	 (190)
	 Osteoclasts	 Osteoclasts	 More cytotoxicity than MTA, but similar potential to inhibit	 (200)
			   osteoclastogenesis 	
	 Fibroblasts	 PDLCs	D isplays biocompatibility and enhances osteoblastic	 (249)
			   differentiation via the integrin‑mediated signaling pathway	
	 Immune cells	 Macrophages	 More cytotoxic and primarily induces M1 macrophage	 (200)
			   polarization compared with MTA	
			   Similar ability to MTA in enhancing expression of	 (200,282,285)
			   inflammatory cytokines in RAW 264.7 macrophages	
			   Similar ability to shift balance of M1/M2 polarization to M2	 (282,285)
			   polarization compared with MTA	

MTA, mineral trioxide aggregate; DPSCs, dental pulp stem cells; DPCs, dental pulp cells; DPFs, dental pulp fibroblasts; PDLSCs, periodontal 
ligament stem cells; PDLCs, periodontal ligament cells; PDLFs, periodontal ligament fibroblasts; BMSCs, bone marrow stromal/stem cells.
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Although Biodentine medium is biocompatible with DPSCs, 
when in direct contact with DPSCs, Biodentine exhibits a slight 
toxic effect and delays closure of wound edges, which implies 
that direct contact between Biodentine and DPSCs leads to cell 
death or decreased proliferation (80,81). However, unaltered 
expression levels of actin, tubulin and vimentin indicate that 
Biodentine neither induces apoptosis, inflammation and geno‑
toxicity nor impairs cellular architecture. The inhibitory effect 
of Biodentine on cell proliferation and migration may result from 
the decreased space for cell growth in a direct culture model and 
prolonged cell doubling time (80). Similarly, other studies have 
observed that the viability of human DPSCs in direct contact 
with Biodentine is initially decreased (49,77), which may be 
due to substantial calcium ion released from Biodentine in the 
first 3 h (82). Relatively large amounts of Ca and Si ions and the 
absence of Sr, Al and S in Biodentine extract contribute to the 
biocompatibility of Biodentine (74). Considering the increased 
release of Ca and Si ions  (83) and microstructural  (84,85) 
changes induced by acidic conditions, human DPSCs cultured 
in Biodentine stored in acidic environment display more 
spindle‑shaped formation and higher adherent cell density 
compared with that in Biodentine stored in saline (58) Similar 
to MTA, Biodentine also increases gene expression levels of 
osteogenic and odontogenic markers, such as OPN and DSPP 
in human DPSCs when in direct contact with DPSCs (49,77). 
However, Biodentine promotes odontogenic differentiation of 
DPSCs more significantly than osteogenic differentiation, as 
indicated by detection of expression levels of odontoblastic 
marker DSPP and osteogenic gene markers ALP, COL1A1 and 
OPN (80). Moreover, Biodentine promotes biomineralization 
and secretion of extracellular mineral matrix in human DPSCs 
cultured with osteogenic medium for 21 days (77) and induces 
more mineralized nodules in the osteogenic medium compared 
with MTA, suggesting that increased calcium ion release, along 
with a neutral pH, promotes differentiation and mineraliza‑
tion of DPSCs and subsequently generates a greater number 
of structured dentin bridges (82). Similarly, when DPSCs are 
cultured with three‑dimensional models, Biodentine induces 
higher viability compared with MTA. Furthermore, expres‑
sion levels of COL1A1, ALP and DSPP in DPSCs on MTA 
and Biodentine are initially upregulated significantly and 
then decrease gradually until day 21; however, expression of 
RUNX2 in three‑dimensional cultures remains lower than that 

in control group (86). The reason for this may be that COL1A1, 
ALP and DSPP are associated with initiation of dentinogen‑
esis and mineralization. Low expression levels of RUNX2 
contribute to odontoblast differentiation and cell maturation, 
whereas increased expression is observed during terminal 
odontoblast differentiation  (87,88). MTA and Biodentine 
stimulated angiogenesis by improving the expression levels of 
VEGF in human DPSCs on day 14 (49). VEGF enhances the 
proliferation, migration, and tubulogenesis of endothelial cells 
close to microvessels, which regulates both vascularization and 
angiogenesis. Angiogenesis is a key factor for wound healing 
and tissue regeneration of damaged dental pulp (89‑91). The 
pro‑angiogenic capacity of bioceramics depends on dissolution 
products, such as Si, Mg and Ca ions, which induce secretion of 
angiogenic factors from cells. Dissolution of calcium ions and 
subsequent precipitation reactions on the surface of bioceramics 
leads to vascular penetration and osteoblastic differentiation. 
Interconnections and pore size of the scaffold also influence the 
size and amount of the blood vessels, which are necessary for 
the vascularization of bioceramic material (92).

iRoot BP Plus promotes proliferation, attachment, migra‑
tion and mineralization of DPSCs compared with MTA (93). 
Furthermore, iRoot BP Plus releases more Si ions than MTA, 
which may explain why iRoot BP Plus induces greater apatite 
formation. iRoot BP Plus and MTA promote stretched and 
highly organized stress fibre assembly of DPSCs, which 
is indicative of reorganization of the actin cytoskeleton. 
Moreover, iRoot BP Plus and MTA enhance phosphorylation 
of both Paxillin and focal adhesion kinase (FAK) and increase 
protein expression levels of Vinculin, FAK and Paxillin in 
human DPSCs (94); this is associated with the formation of 
focal adhesions (95). Cytoskeleton reorganization and focal 
adhesion formation is essential for cell adhesion and migra‑
tion (96). These results confirmed that both iRoot BP Plus and 
MTA promote attachment and migration of human DPSCs. 
Likewise, iRoot FS enhances proliferation, migration, and 
osteoblastic differentiation of human DPSCs (97). Additionally, 
iRoot FS displays superior ability than Biodentine to promote 
proliferation and migration of human DPSCs on day  7. 
However, iRoot FS showed no significant effect on osteogenic 
differentiation on day 7 (98), which implied that iRoot FS 
affects proliferation and migration of human DPSCs and later 
influenced osteoblastic differentiation. A longer experimental 

Figure 2. Stem cells involved in the interaction with calcium silicate‑based bioceramics in endodontic application. (A) DPSCs. (B) PDLSCs. (C) SHEDs. 
(D) SCAPs. (E) TGSCs. (F) BMSCs. DPSCs, dental pulp stem cells; PDLSCs, periodontal ligament stem cells; SHED, stem cells from human exfoliated 
deciduous teeth; SCAPs, stem cells from apical papilla; TGSCs, tooth germ stem cells; BMSCs, bone marrow stromal/stem cells.
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observation period should be used to investigate the bioactivity 
of calcium silicate‑based bioceramics on human DPSCs.

PDLSCs. MTA exhibits concentration‑dependent cellular 
compatibility with human PDLSCs; MTA at higher dilution 
exhibits better biocompatibility with human PDLSCs (99). Due 
to the biological characteristics of MTA, other MTA‑based 
endodontic materials have been developed, including Endoseal 
MTA (ES; Maruchi Co., Ltd.), Nanoceramic Sealer (NCS; 
B&L Biotech USA, Inc.), Bioroot BC Sealer (BR; Septodont 
Holding) and MTA Fillapex (Angelus Dental Products 
Industry). Although human PDLSCs in the presence of these 
MTA‑based bioceramics maintain high expression levels 
of MSC markers, including CD105, CD73 and CD90, the 
capacity of human PDLSCs to migrate, adhere and grow is 
higher when treated with BR at different concentrations 
compared with ES and NCS. ES and MTA Fillapex show 
cytotoxicity to human PDLSCs at 24, 48 and 72 h and give 
rise to worse cell attachment and spread, which may be 
caused by tungsten contained in MTA Fillapex (100‑102). By 
contrast, 2 mg/ml MTA extract is the optimal concentration 
to markedly increase calcified nodule formation, Alp activity 
and odonto/osteogenic differentiation in human PDLSCs; 
these effects are mediated by activating NF‑κB and MAPK 
signaling pathways (103). Likewise, 2 mg/ml Biodentine is 
the most biocompatible concentration to promote migration, 
attachment, and mineralization of human PDLSCs. Biodentine 
at low concentrations (2.00, 0.20 and 0.02 mg/ml) significantly 
enhances viability of human PDLSCs, while Biodentine at 
higher concentrations (20 mg/ml) exhibits cytotoxicity, which 
may be associated with high pH (104). High pH of Biodentine 
results in an increased concentration of iron and calcium ions 
in the extracellular environment (105). The inhibitory effect of 
Biodentine at high concentration (20 mg/ml) on the viability of 
human PDLSCs may be explained by increased or unbalanced 
ions levels, which generate a toxic effect on cells (106).

BMSCs. BMSCs are used as an in vitro model of MSCs associ‑
ated with wound healing and tissue regeneration of alveolar 
bone. MTA promotes the adhesion and proliferation of human 
DPSCs, PDLSCs and BMSCs, which display an elongated 
morphology and are well‑spread. Moreover, positive effects 
of MTA on proliferation are cell type‑dependent (25). Human 
PDLSCs and DPSCs rapidly respond to MTA with signifi‑
cantly increased cell number by day 3, whereas human BMSCs 
stimulated with MTA show slow increase by day  5  (25). 
Furthermore, MTA promotes migration of human BMSCs 
significantly after 18 h and cells spread well on the surface 
of MTA after 24 h. MTA increases proliferation of human 
BMSCs when incubated in normal medium, whilst the same 
phenomenon was delayed by 7 days when cultured in differ‑
entiation medium (107). When human BMSCs are cultured in 
osteogenic differentiation medium, MTA does not stimulate 
osteogenic differentiation by day 10, as indicated by decreased 
mRNA and protein expression levels of osteogenic markers, 
such as RUNX2, OSX, MSX2 and OCN (108). A positive effect 
of MTA on viability of rat BMSCs is observed up to day 7, 
which is sooner than in human BMSCs. Simultaneously, MTA 
stimulates rat BMSC differentiation into osteoblast‑like cells 
over 7 days, which is confirmed by enhanced ALP staining and 

upregulation of gene expression levels of bone morphogenetic 
protein 2 (BMP‑2), ALP, bone sialoprotein (BSP) and osteo‑
calcin (OC) (109). Low concentrations of MTA‑conditioned 
media (2.000, 0.200, 0.020 and 0.002 mg/ml) are not toxic to 
BMSCs and 0.02 mg/ml MTA is the optimal concentration to 
upregulate odonto/osteogenic capacity of BMSCs originating 
from rat mandible; this finding was supported by enhanced 
Alp activity, calcified nodule formation and expression levels 
of odonto/osteoblastic genes in BMSCs, such as ALP, RUNX2, 
OSX, OCN and DSPP. However, MTA at lower dilution inhibits 
the proliferation of BMSCs (110). Likewise, 1:5 MTA medium 
decreases viability and osteogenic differentiation of primary 
BMSCs from the hind limb of mice, as indicated by decreased 
von Kossa staining and low expression levels of OCN and 
BSP  (111). Furthermore, tricalcium aluminate, a primary 
composite of MTA, contains aluminum and exhibits signifi‑
cant toxicity to rat BMSCs from femur and tibia bone marrow 
in vitro, whereas good tissue compatibility has been observed 
with tricalcium or dicalcium silicate (112). In addition, bismuth 
oxide in MTA is cytotoxic to human BMSCs (113). Therefore, 
the negative effect of MTA on the viability of BMSCs at high 
concentrations may partly be caused by tricalcium aluminate 
and bismuth oxide. Investigation of the mechanism underlying 
how MTA affects behavior of BMSCs has demonstrated that 
the ERK signaling pathway is associated with the positive 
effect of MTA on proliferation (25) and odonto/osteogenic 
differentiation of BMSCs. JNK signaling pathway is also 
involved in the odonto/osteogenic capacity of BMSCs induced 
by MTA (110). In addition, iRoot BP Plus promotes osteo‑
genic/odontogenic differentiation of BMSCs via the MAPK 
signaling pathway and autophagy (114).

Bioaggregate is non‑toxic to human BMSCs throughout a 
culture period of 24 h (115). Similarly, Biodentine promotes 
proliferation of rat (116) and human BMSCs (117,118). Both 
Biodentine and MTA at high concentrations (1:2) show 
cytotoxicity to human BMSCs, while Biodentine at low concen‑
trations (1:10 and 1:20) and long incubation periods exhibits 
an inferior ability to enhance proliferation and osteoblastic 
differentiation of human BMSCs compared with MTA (119). 
Moreover, Biodentine and MTA display an inhibitory effect 
on survival of human BMSCs in a concentration‑dependent 
manner over 7 days but do not affect cell morphology (120). 
The cytotoxicity of Biodentine to human BMSCs may be 
ascribed to the calcium chloride contained in its liquid (121), 
which has been reported to exhibit less biocompatibility when 
added to MTA compared with MTA mixed with water (122). 
Therefore, Biodentine prepared following complete setting is 
more compatible with human BMSCs than MTA (120). High 
Alp activity with mineral deposits in rat BMSCs have been 
found in the presence of Biodentine after 12 days (116) but 
the capacity of Biodentine to induce osteogenic differentiation 
in human BMSCs is inferior to that of MTA (117,118). MTA 
exhibits earlier and more pronounced calcium deposits than 
Biodentine (120), which may be explained by the fact that MTA 
produces high pH and Alp activity and promotes production of 
high concentration of Ca ions (123).

SHEDs. SHEDs originate from deciduous teeth and regenerate 
bone and dentin, but not dentin/pulp‑like complexes as human 
DPSCs do (124). Due to the good porous microstructures in 
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MTA or Biodentine, SHEDs attach and spread well on the 
surface of MTA and Biodentine, which helps SHEDs maintain 
mesenchymal properties in the presence of MTA or Biodentine 
with positive expression of CD105, CD90 and CD73 (125). 
Moreover, the capacity of SHEDs to adhere and proliferate is 
enhanced by MTA or Biodentine after 48 h (125). MTA and 
Biodentine exhibit a comparable ability to promote migration 
of SHEDs. In addition, the viability and proliferation of SHEDs 
cultured with 1  mg/ml MTA‑ or Biodentine‑conditioned 
medium is similar to that of negative control during the 
whole incubation period, which implies that both MTA 
and Biodentine at 1 mg/ml are non‑toxic to SHEDs (126). 
However, MTA shows greater potential to promote odonto‑
genic differentiation compared with Biodentine (126), whereas 
Biodentine has better capability to promote proliferation and 
calcified matrix deposition in SHEDs than MTA (125,127). 
Furthermore, Biodentine affects behavior of SHEDs in a 
concentration‑dependent manner. Biodentine at low concen‑
trations (2.00, 0.20 and 0.02 mg/ml) stimulates proliferation, 
viability and migration of SHEDs, whereas high concentrations 
of Biodentine (20 mg/ml) exhibit slight cytotoxicity to SHEDs. 
Changes in the concentration of Biodentine have no impact on 
the adhesion ability of SHEDs (128). Similarly, Biodentine at 
higher dilutions (1:16 and 1:32) is more effective in promoting 
proliferation, odontogenic differentiation and biomineraliza‑
tion of SHEDs, which may be because Sr and Si are gradually 
released from Biodentine as the concentration of Biodentine 
decreases over time  (129). By contrast, fresh mixed MTA 
impairs the viability and migration of SHEDs and enhance 
apoptosis over 7 days. Furthermore, the cytotoxicity of MTA 
to SHEDs is more apparent when SHEDs directly contact 
MTA (130). The different results may be associated with the 
preparation of MTA. For example, freshly mixed MTA is 
frequently used in endodontics whereas bioceramic eluate or 
aged bioceramics were used in the aforementioned in vitro 
studies (86). However, the cytotoxicity of these bioceramics 
generally decreased as the bioceramic set and pH changed of 
medium over time. Freshly mixed MTA caused severe damage 
to cells due to the initially high concentration of calcium 
hydroxide and subsequent raise in pH to 12.5 after mixing 
for 3 h (131,132). Although iRoot BP Plus possesses a similar 
capacity to MTA in terms of SHEDs proliferation, it displays 
more prominent capacity to enhance adhesion, migration and 
osteogenesis of SHEDs compared with MTA (93).

SCAPs. Both MTA and Biodentine have been shown to 
promote the proliferation, odontoblastic differentiation and 
biomineralization of SCAPs over 14 days (133,134). However, 
Schneider et al (135) found MTA induces early short‑term 
proliferation of SCAPs over 5 days and promotes the migra‑
tion of SCAPs after 6 h. Saberi et al (136) discovered that 
the cytotoxicity of both complete set MTA and Biodentine to 
SCAPs decreased over time. By contrast, Miller et al (137) 
revealed that incompletely set MTA inhibits proliferation 
of SCAPs, whereas Biodentine promotes proliferation of 
SCAPs. The difference in results may be due to the method of 
cytotoxicity assessment, contact between cells and material, 
concentration of material and assessment time points. MTA 
affects survival of SCAPs in concentration‑dependent manner. 
MTA at lower concentrations (0.02, 0.20 and 2.00 mg/ml) 

exhibits excellent biocompatibility with SCAPs; however, 
proliferation of SCAPs is inhibited and normal morphological 
cells disappeared when treated with MTA at higher concentra‑
tions (10 and 20 mg/ml) (138). Low concentrations of MTA or 
Biodentine (2.00, 0.20 and 0.02 mg/ml) enhance Alp activity 
and osteoblastic/odontoblastic differentiation in SCAPs, 
while high concentrations of MTA or Biodentine (20 mg/ml) 
exhibit a negative effect (138,139). MTA extract enhances the 
ability of osteogenic medium to induce mineralization and 
increase expression of mineralization‑associated genes, such 
as Ocn (140). In comparison with MTA, SCAPs treated with 
Biodentine display greater odontoblastic differentiation, as 
demonstrated by positive alizarin red staining and expression 
of genes encoding DMP‑1, DSPP, OCN and matrix extracel‑
lular phosphoglycoprotein  (133,134). Biodentine enhances 
expression of odontoblast specific marker DSPP, while MTA 
promotes osteoblastic differentiation of SCAPs by increasing 
expression of the osteoblastic marker integrin‑binding 
sialoprotein (137). Both MTA and Biodentine enhance the 
secretion of pro‑inflammatory cytokines, such as IL‑1α, 
IL‑1β and IL‑6 (139), and MTA activates NF‑κB signaling 
pathway, which affects the odonto/osteogenic differentiation 
of SCAPs  (141,142). In addition, p38 and ERK signaling 
pathways serve an essential role in odontoblastic/osteoblastic 
differentiation of SCAPs stimulated by MTA (138). MTA 
and Biodentine enhance the angiogenic potential of SCAPs; 
these bioceramics promote the expression of angiogenic genes 
in human SCAPs, such as VEGFA and c‑fos induced growth 
factor (FIGF) (134), which induce endothelial cell prolifera‑
tion, migration and differentiation, and promote formation of 
endothelial tubules (143‑146).

Compared with MTA, iRoot FS exhibits similar biocom‑
patibility with human SCAPs but possesses markedly stronger 
capacity to enhance migration and osteo/odontogenesis differ‑
entiation of human SCAPs, and mineralized nodule formation 
via the Wnt/β‑catenin signaling pathway (147). iRoot FM at 
low concentrations (0.5 mg/ml) increases proliferation and 
osteo/odontoblastic differentiation of SCAPs, whereas there 
is no marked effect on SCAPs stimulated with iRoot FM at 
high concentrations (1.0 and 2.5 mg/ml). Moreover, mineral‑
ized nodule formation and expression of DMP‑1 and ALP are 
enhanced by iRoot FM compared with Ca(OH)2. However, 
iRoot FM at different concentrations has no impact on 
morphology of SCAPs (148).

Human TGSCs. TGSCs, a popularized stem cell source 
derived from wisdom teeth, display MSC properties and 
can differentiate into endothelial or epithelial cells in dental 
tissue regeneration (149,150). Consistent with human DPSCs 
and PLSCs, MTA and Biodentine exhibit no cytotoxicity to 
TGSCs (73). Nonetheless, viability and odontogenic differ‑
entiation of TGSCs are inhibited slightly when in direct 
contact with MTA, which has been confirmed by decreased 
numbers of attached cells and Alp activity (151). MTA and 
Biodentine induce angiogenesis of TGSCs by promoting the 
release of angiogenic growth factors (platelet‑derived growth 
factor, fibroblast growth factor‑2 and VEGF) and enhancing 
tube formation of human umbilical vein endothelial cells (73). 
Furthermore, iRoot SP exhibits good biocompatibility with 
human TGSCs and promote their attachment (152). iRoot SP 
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possesses an inferior capacity to MTA in terms of inducing 
odontogenic differentiation of human TGSCs and hard tissue 
deposition; human TGSCs in the presence of MTA exhibit 
higher Alp activity and enhanced odontoblastic differentiation 
compared with those in the presence of iRoot SP (153).

3. Osteoblasts/osteoclasts

Restoration of bone tissue around teeth with lesions relies on 
the amount of, and balance between, osteoblasts and osteo‑
clasts (154). When calcium silicate‑based bioceramics are used 
in perforation repair, apical plugs in necrotic teeth or root‑end 
filling in endodontics, the interaction between the bioceramics 
and osteoblasts in periapical tissue is key to inflammation 
control and wound repair of (155). The biological influence of 
calcium silicate‑based bioceramics on osteoblasts/osteoclasts 
must be characterized.

Osteoblasts. Proksch et al (156) found that MTA impairs prolif‑
eration, osteogenic differentiation and extracellular matrix 
mineralization of primary human osteoblasts derived from the 
alveolar bone; this could be restored by addition of fluoride to 
MTA. Similarly, MTA inhibits proliferation and COL1 gene 
expression in bone marrow osteoblasts from rat femur (157). 
MTA inhibits proliferation and differentiation of rat primary 
calvarial osteoblasts, as demonstrated by decreased calcified 
nodule formation and osteoblastic differentiation (158). When 
primary osteoblasts are cultured with MTA, the highest ionic 
concentration in areas around MTA results in an inhibi‑
tory effect on primary osteoblasts in the central area (158). 
High dissolution rate of MTA and large release of calcium 
hydroxide from MTA contribute to highest ionic concentra‑
tion in areas around MTA (159). Excess calcium concentration 
induces cell death by apoptosis or necrosis  (160), whereas 
slight increases in extracellular Ca2+ concentration  (161) 
and continuous low levels of calcium ion release, along with 
slower change in pH, promote proliferation and differentiation 
of osteoblasts (162,163). The decreased viability of primary 
human osteoblasts induced by MTA may be due to the cumu‑
lative effect of the release of toxic components, such as Bi 
and Al ions, following contact with bioceramic extract (164). 
These different results may be due to different methods and 
concentrations of bioceramics used in the experiments. MTA 
exhibit higher biocompatibility with osteoblasts cultured in 
three‑dimensional culture systems and are attracted toward 
the material compared with cells cultured directly on mate‑
rials or in extract. Increased percentage of mature osteoblasts 
or osteocytes with high expression levels of green fluorescent 
protein and osteogenic genes, including ALP, BSP and OSX, 
in primary mouse mandibular osteoblasts demonstrates that 
MTA promotes differentiation of primary mouse osteoblasts 
in a three‑dimensional cell culture model without differentia‑
tion medium, which is required for osteoblastic differentiation 
in a two‑dimensional cell culture model (165,166).

MTA exhibits minimal cytotoxicity to the human osteo‑
blast MG‑63 cell line  (167). MTA promotes viability and 
increases mRNA expression levels of COL1 and OCN in 
MC3T3‑E1 cells induced by MTA, accompanied by enhance‑
ment of Alizarin Red‑S staining and Alp activity, which 
suggests that MTA promotes bone matrix formation and 

mineralization of MC3T3‑E1 cells (168‑171). Moreover, when 
incubated on the surface of set MTA, a thick mineralized 
matrix layer covered with multilayered flat cells is observed 
in MC3T3‑E1 cells after three weeks (169). The mechanism 
underlying MTA‑induced osteoblastic differentiation, miner‑
alization and bone matrix formation in MC3T3‑E1 cells 
in vitro may be associated with the activation of activating 
transcription factor 6 by MTA and the subsequent endoplasmic 
reticulum stress response (170). Moreover, Ca, Si and P ions 
released from MTA (157,172) and alkaline pH value of MTA 
extract (171) contribute to the bioactivity of MTA. Alkaline 
pH neutralizes lactic acid, which dissolves mineralization of 
dentin, and promotes formation of hard tissue by activating 
alkaline phosphatase (173). MTA with high surface pH exhibits 
cytotoxicity to MG‑63 cells initially (174); the inhibitory effect 
of MTA on viability of MG‑63 cells weakens with the setting 
of MTA (174), which may be due to the fact that the expression 
of pro‑inflammatory cytokines in MG‑63 cells are increased 
by MTA during the first 24 h but decreased over time (167). 
Growth factor BMPs promote osteoblastic differentiation 
and biomineralization (175); the mixture of BMPs and MTA 
attenuates the cytotoxic effect of MTA to MG‑63 cells and 
inflammation response of tissue to MTA (174). MTA promotes 
the adhesion, spreading, proliferation and collagen secretion in 
Saos‑2 cells (176,177). Moreover, MTA enhances osteogenic 
differentiation, Alp activity and calcified nodule formation in 
Saos‑2 cell line (178). By contrast, Modareszadeh et al (179) 
reported that MTA does not affect survival and Alp activity in 
Saos‑2 cell line. The inconsistency between these studies may 
due to differences in the preparation of MTA, experimental 
methods and assessment of Alp activity. Bioaggregate shows 
no cytotoxicity to MC3T3‑E1 and markedly increases expres‑
sion levels of mineral‑associated genes, including COL1, OCN 
and OPN, in MC3T3‑E1 cells compared with MTA (180).

Compared with MTA, Biodentine displays good cyto‑
compatibility with primary human osteoblasts, indicated 
by enhancement of cell viability, attachment and prolif‑
eration  (164,181). Similar biocompatibility of MTA and 
Biodentine has been observed with human osteoblast‑like cell 
line MG63; both enhance viability, adhesion and proliferation 
of MG63 cells, which may be because Biodentine and MTA 
have similar surface roughness, heterogeneous morphology 
and particle size  (182). Biodentine and MTA both exhibit 
positive effects on viability and calcification of MC3T3‑E1 
cells (183). Biodentine and MTA show dose‑dependent effects 
on viability of Saos‑2 cells. Biodentine or MTA at lower 
concentrations (1:4 and 1:8) result in higher viability of Saos‑2 
cells. Furthermore, Biodentine stimulates proliferation and 
migration of Saos‑2 cells and induces expression of ALP and 
mineralization (184).

Compared with MTA, iRoot BP Plus induces greater cyto‑
toxicity to primary human osteoblasts but is still considered as 
biocompatible because cell viability in the presence of iRoot 
BP Plus remained >70% compared with that in the control 
group (185). When MTA or iRoot BP Plus is applied in acidic 
pH conditions, the secretion of Ca and Si ions is enhanced and 
apatite formation is decreased. However, cell attachment of 
MC3T3‑E1 on these bioceramics is not affected significantly in 
an acidic environment. Furthermore, MTA decreases viability, 
whereas iRoot BP Plus increases survival of MC3T3‑E1 cells, 
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which suggests that, compared with MTA, iRoot BP Plus may 
be more suitable as root‑end filling material under inflam‑
matory acidic conditions when used in endodontics (186). By 
contrast, iRoot FS exhibits better biocompatibility with human 
osteoblast‑like MC3T3‑E1 and MG63 cells by promoting their 
attachment and proliferation (187,186). iRoot FS shows better 
biocompatibility than MTA or iRoot BP Plus because certain 
toxic metal substances, such as bismuth (189), aluminium and 
manganese, are excluded in iRoot FS to enhance its compat‑
ibility. On the other hand, smaller particle size on the surface 
of iRoot FS results in higher cell attachment and subsequent 
proliferation (188). iRoot SP is non‑cytotoxic to MG63 cells 
and enhances osteoblastic differentiation, which is beneficial 
to healing inflammatory periapical tissue (190).

Osteoclasts. The migration and fusion of osteoclast precursors 
is key to osteoclast formation. MTA and Bioaggregate inhibit 
bone resorption and osteoclast differentiation via preventing 
the migration and fusion of osteoclast precursors, including 
mouse bone marrow macrophages (191) and RAW264.7 macro‑
phages (192‑194). In addition, MTA inhibits osteoclastogenesis 
in a dose‑dependent manner in the co‑culture of mouse bone 
marrow cells with primary osteoblast cells. Furthermore, 
MTA suppresses expression of osteoprotegerin in primary 
osteoblast cells without affecting receptor activator of NF‑κB 
ligand (RANKL) expression levels (195,196). Moreover, MTA 
solution at low concentration (20%) impairs phosphorylation of 
c‑Src, decreases expression levels of genes encoding MMP‑9 
and cathepsin K and disrupt formation of actin rings. MTA 
solution at high concentration (50%) upregulate expression 
levels of Bim to increase apoptosis of osteoclasts (196). The 
mechanism underlying MTA‑induced inhibition of osteo‑
clastogenesis is associated with attenuation of the autophagic 
pathway, as demonstrated by decrease in autophagic vacuole 
and expression levels of autophagic genes and proteins (194). 
Bioaggregate inhibits osteoclastogenesis via the NF‑κB/RANK 
signaling pathway by decreasing expression levels of Rank, 
TNF receptor‑associated factor 6, NF‑κB and nuclear factor of 
activated T cells 1 (192,193). Bioaggregate and MTA possess 
comparable ability to decrease osteoclast numbers and attenuate 
bone resorption (191). Bioaggregate or MTA inhibit osteoclast 
differentiation and bone resorption due to activation of autophagy 
in osteoclast differentiation; MTA inhibits osteoclast differenti‑
ation via inhibition of the autophagic pathway (194). Compared 
with MTA, Biodentine exhibits a lower inhibitory effect on 
osteoclast differentiation and activity of murine bone marrow 
macrophages by inhibiting ERK1/2 and NF‑κB signaling 
pathways (197). Moreover, the inhibitory effect on osteoclast 
differentiation and activity of both MTA and Biodentine is 
similar to that of alendronate, which has been reported to 
prevent root resorption by inhibiting macrophages (197), which 
suggests the application of calcium silicate‑based bioceramics 
as treatment to prevent root resorption in endodontics (198,199). 
iRoot SP shows more cytotoxicity to RAW264.7 cells than 
MTA but possesses a similar ability to inhibit osteoclastogen‑
esis (200). The aforementioned studies suggested that calcium 
silicate‑based bioceramics attenuate osteoclast differentiation 
and the primary mechanism is associated with their bioactive 
elements. Bioactive elements contained in these bioceramics, 
such as Ca, Mg, Si and Sr, enhance osteoblastic differentiation 

and suppress RANKL‑induced osteoclastogenesis (201‑204). 
A significant increase in Si and Sr ions has been observed in 
extracts of calcium silicate‑based bioceramics (192,205). Si ions 
enhance the viability, adhesion, differentiation, mineralization 
and angiogenesis of osteoblasts via the Wnt/β‑catenin and 
MAPK signaling pathways (206‑210). Meanwhile, the effect 
of Si ion on surface roughness is characterized by increased 
adhesion and proliferation of human osteoblast cell lines (211). 
Furthermore, Si and Sr ions suppress RANKL‑mediated 
osteoclastic differentiation and bone resorption by inhibiting 
expression levels of cathepsin K, tartrate‑resistant acid phospha‑
tase and c‑Fos (205,212,213). In addition, Si and Sr ions create 
alkaline conditions, which neutralize lactic acid from osteo‑
clasts and promotes accumulation of mineralized components 
of teeth (214,215). Therefore, the bioactive elements exhibit 
synergistic effects on osteogenesis, osteoclastogenesis and 
angiogenesis of associated cells in endodontics (216).

4. Dental pulp or periodontal ligament cells/fibroblasts 
(PDLC/Fs)

Dental pulp or PDLC/Fs are associated with wound healing 
and tissue regeneration of dental or periapical tissue, respec‑
tively (217). When calcium silicate‑based bioceramics are 
used in pulp capping, cells/fibroblasts from dental pulp are 
involved in interactions between cells and bioceramics. 
Cells/fibroblasts from periodontal ligament are affected by 
bioceramics applied in perforation repair or root‑end filling. 
Numerous studies have investigated the effect on biocompat‑
ibility and bioactivity of cells/fibroblasts from dental pulp or 
periodontal ligament.

Dental pulp cells (DPCs). Compared with SuperEBA and 
Vitrebond, MTA exhibits decreased suppression of mito‑
chondrial activity in the rat DPC RPC‑C2A cell line (218). 
Furthermore, MTA significantly promotes proliferation, odon‑
togenic differentiation and mineralization of human DPCs 
but inhibits secretion of lL‑1β and IL‑6 (219,220). In order to 
improve the bioactivity potential of MTA, the growth factor 
FGF‑2 has been added to MTA to enhance its effect on prolif‑
eration and osteogenic differentiation of human DPCs (221). Set 
and fresh MTA display similar biocompatibility with human 
DPCs. In addition, MTA increases expression of the angiogenic 
factors VEGF and angiogenin (222). In comparison with MTA, 
Bioaggregate and Biodentine possess equal biocompatibility 
with human DPCs. Moreover, Bioaggregate, Biodentine and 
MTA enhance mRNA expression levels of ostogenic/odon‑
togenic genes, such as ALP, OPN, OCN, DSPP and DMP‑1, 
increase Alp activity and promote mineralization nodule 
formation due to activation of the MAPK signaling pathway 
induced by these calcium silicate‑based bioceramics (223,224). 
In addition, Bioaggregate exhibits superior capacity to MTA 
in terms of adhesion, attachment and migration of human 
DPCs (225). Moreover, compared with MTA, Bioaggregate 
induces enhanced mineralization and odontoblastic differ‑
entiation in human DPCs  (226). In terms of osteogenic 
differentiation of human DPCs, Bioaggregate displays stronger 
potential than MTA (223). Both Biodentine and MTA promote 
mineralization by increasing secretion of TGF‑β1 from human 
DPCs, which mediates mineralization‑associated cellular 
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activity and subsequent dentin bridge formation  (227,228). 
Biodentine enhances cell proliferation, viability, migration, 
adhesion, odontoblastic differentiation and biomineralization 
of the immortalized murine DPC OD‑21 cell line (229). iRoot 
BP Plus exhibits a higher proliferation rate of human DPCs 
compared with MTA during the whole culture period (230). 
Moreover, iRoot BP Plus promotes migration and upregulates 
the expression of focal adhesion molecules in human DPCs via 
the ERK 1/2, JNK and Akt signaling pathways (231). In addi‑
tion, iRoot BP Plus possesses stronger potential than MTA to 
enhance the mineralization and odontoblastic differentiation of 
human DPCs (226).

Dental pulp fibroblasts (DPFs). Given that Ca(OH)2 and MTA 
are used in pulp capping, Kierat et al (232) compared cytotox‑
icity to human DPFs; MTA was less cytotoxic to human DPFs 
compared with Ca(OH)2. Likewise, Zakerzadeh et al (233) 
compared the biocompatibility of MTA and Biodentine with 
human DPFs; MTA and Biodentine did not display cytotox‑
icity or genotoxicity at 0‑1,000 µg/ml concentration. Similarly, 
Biodentine does not influence the morphology, proliferation 
or cell integrity of human DPFs, but affects cell survival in a 
concentration‑ and time‑dependent manner (234). Moreover, 
higher concentration of Biodentine suppress differentiation of 
DPFs by decreasing production of COL1 and TGF‑β1 (234), 
whereas Biodentine at lower concentrations stimulate TGF‑β1 
secretion  (228). Both TGF‑β1 and COL1 exhibit notable 
effects on collagen synthesis, mineralization and hard dental 
tissue generation (228,235‑237). TGF‑β1 and FGF‑2 are also 
involved in proliferation, differentiation and migration of 
DPFs (228,238,239). Giraud et al investigated the effect of 
Biodentine on injured human DPFs; Biodentine increased 
cellular survival and migration, as well as the secretion of 
FGF‑2 and TGF‑β1 in lipoteichoic acid‑stimulated and physi‑
cally injured human DPFs. Moreover, injured DPFs exhibit 
decreased levels of pro‑inflammatory cytokines, such as IL‑6, 
and inflammatory cell recruitment in the presence of Biodentine 
compared with that in the presence of resin‑containing 
TheraCal  (240). TheraCal inhibits proliferation of human 
DPFs while Biodentine has no effect on proliferation of 
human DPFs. In addition, decreased release of pro‑inflam‑
matory cytokine IL‑8 and higher mineralization have been 
observed in human DPFs induced by Biodentine compared 
with TheraCal (78). In addition, complement, particularly the 
C5a fragment, is involved in initiation of inflammation (241) 
and recruitment of DPSCs in regeneration (242). Due to the 
fact that C5a is produced by local DPFs when dental pulp is 
injured, Giraud et al compared several pulp capping materials 
and their effect on release of C5a in human DPFs. The results 
revealed that C5a secretion of injured human DPFs was not 
affected by Biodentine, whereas TheraCal increased C5a 
secretion. Furthermore, compared with TheraCal, Biodentine 
significantly decreased recruitment of THP‑1 cells involved in 
inflammation by affecting C5a/C5a receptor interactions (243). 
These results suggested that calcium silicate‑based Biodentine 
affects the balance between initial pulp inflammatory reaction 
and subsequent pulp healing by affecting complement activa‑
tion following pulp injury. Calcium silicate‑based bioceramics 
shift the balance toward pulp healing, whereas resin‑containing 
materials shift the balance toward pulp inflammation (78,240).

PDLCs. Vidovic Zdrilic et al (111) found that MTA‑conditioned 
medium promotes healing of injured periapical tissue in vivo, 
whereas MTA inhibits viability and biomineralization in 
mouse PDLCs in vitro. Eluate extract from MTA results in 
decreased viability and increased death of human PDLCs 
compared with those in a control group (medium‑only) (244). 
By contrast, when human PDLCs are incubated with set 
MTA, MTA enhances mineralization and BMP‑2 expres‑
sion levels, which is caused by gradual production of Ca2+ 
from MTA and the interaction of BMP2/BMP‑2 receptors in 
human PDLCs (245). These contradictory results may be due 
to different preparation methods of MTA. Set MTA releases 
calcium gradually and calcium at low concentrations stimu‑
lates cells mildly, whereas MTA‑conditioned medium leads 
to immediate release of calcium at high concentrations; this 
may exert a negative effect on bioactivity of MTA to PDLCs. 
Compared with MTA, Bioaggregate displays better biocompat‑
ibility with human PDLCs, which may be due to the absence 
of aluminium in Bioaggregate. Moreover, the primary compo‑
nents of Bioaggregate, calcium silicate, calcium hydroxide and 
hydroxyapatite, stimulate proliferation of human PDLCs (246). 
In addition, Bioaggregate significantly increases mineraliza‑
tion in PDLCs in a concentration‑ and time‑dependent manner. 
Furthermore, Bioaggregate enhances differentiation of PDLCs, 
particularly osteogenic differentiation, via microRNA‑146a 
upregulation, as demonstrated by increased expression levels 
of ALP, DMP1 and BMP and decreased cementum protein 1 
expression levels in PDLCs  (247). In comparison with 
MTA, Biodentine exhibits equally good biocompatibility 
with human PDLCs (55,181). Moreover, Biodentine displays 
greater potential in terms of attachment and proliferation of 
human PDLCs compared with MTA, which may be due to 
its hydroxyl apatite‑like surface characteristics and greater 
release of calcium and silicon ions compared with MTA (181). 
Luo et al compared bioactivity of Biodentine and iRoot FS to 
human PDLCs and showed that both Biodentine and iRoot FS 
increased the adhesion of human PDLCs. iRoot FS possesses 
superior ability to Biodentine to promote viability, prolifera‑
tion and osteoblastic differentiation of human PDLCs (248). In 
order to clarify the bioactivity of iRoot SP to human PDLCs, 
Chang et al investigated the biocompatibility and bioactivity of 
four root canal sealers: iRoot SP, Sealapex (Kerr Corporation), 
ARS (Dentsply‑Sankin KK) and MTA Fillapex. The results 
revealed that all sealers were non‑toxic to human PDLCs and 
increased Alp activity and formation of mineralization nodules. 
However, compared with Sealapex, an epoxy resin‑based 
material, the other three sealers induced lower inflammatory 
response and enhanced osteogenic differentiation in PDLCs 
via the integrin‑mediated signaling pathway (249).

PDLFs. Human PDLFs exhibit decreased proliferation rate 
when cultured on the surface of MTA compared with culturing 
on the surface of a coverslip (250); PDLFs on the surface of 
MTA have a rounded morphology with blunted extensions, 
while PDLFs on the surface of glass coverslips show good 
attachment and spreading (251). Balto investigated the effect of 
MTA surface characteristics on attachment of human PDLFs; 
human PDLFs did not attach to fresh MTA and the surface 
of cells appeared less smooth and exhibited more vacuoles. 
By contrast, human PDLFs on the surface of set MTA were 
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round and flattened with smooth surfaces and attached well 
to MTA (252). Similarly, Bonson et al reported that human 
PDLFs exposed to washed MTA possess greater proliferation 
capacity those exposed to fresh MTA. Moreover, compared 
with fresh MTA, washed MTA exhibits stronger potential 
to induce osteogenic differentiation of human PDLFs (253). 
Compared with other endodontic materials, such as Diaket 
(ESPE; 3M), Super‑EBA (Harry J Bosworth Company) and 
amalgam, MTA also displays better biocompatibility with 
human PDLFs and does not induce apoptosis and necrosis of 
human PDLFs (254‑257). Compared with these other mate‑
rials in root perforation models in vitro, MTA also results 
in higher viability in human PDLFs and induces mRNA 
expression levels of COL1 and RUNX2 in human PDLFs, 
which suggests that MTA has potential to induce osteogenic 
differentiation of PDLFs, which is key for periodontal regen‑
eration  (105). Likewise, MTA‑conditioned medium at low 
concentrations (0.5, 5.0 and 50.0 µg/ml) possesses superior 
capacity to formocresol and ferric sulphate in maintaining the 
viability of human PDLFs, whereas MTA at higher concen‑
trations (5,000 µg/ml) shows slight cytotoxicity to human 
PDLFs (258,259). Bioaggregate displays biocompatibility with 
human PDLFs comparable to that of MTA, whereas viability 
of human PDLFs in the presence of Biodentine is slightly 
decreased compared with MTA  (260‑262). By contrast, 
Akbulut et al (263) reported that Biodentine possesses better 
biocompatibility with human PDLFs. This discrepancy may 
be associated with chemical composition of the material, 
assessment time point and surface characteristics. In terms of 
chemical composition, calcium chloride used in the liquid of 
Biodentine as an accelerator decreases the setting time (264) 
and results in early production of calcium hydroxide, which 
contributes to relatively decreased cell survival after 24 h in 
the presence of Biodentine (265). Moreover, zirconium oxide 
in Biodentine is non‑toxic to murine PDLFs, but bismuth oxide 
in MTA has no impact on cell growth (266). MTA supports 
higher cell viability during the first 24 h but decreases cell 
viability to 80% later (251,260). Biodentine maintains lower 
cell viability during the first 24  h but viability increases 
gradually over time (261). Human PDLFs attach well to the 
surfaces of both MTA and Biodentine and maintain their 
original morphology. Nevertheless, more cell aggregates 
have been observed on the surface of Biodentine, whereas 
human PDLFs tend to show greater spread and elongation on 
MTA (267). Moreover, expression levels of Integrin β1 and 
Vinculin, which are associated with focal contacts between 
human PDLFs and bioceramics, are higher in human PDLFs 
treated with Biodentine than in those treated with MTA, which 
suggests that the surface characteristics of Biodentine promote 
the adhesion and survival of human PDLFs more strongly 
compared with MTA (268).

5. Immune cells

Immune cells, such as monocytes and macrophages, respond 
immediately when biomaterials are placed into tissue, which 
causes the initial inflammatory response and tissue healing. 
Macrophages release pro‑inflammatory cytokines in the 
beginning of an acute inflammatory response, such as TNF‑α, 
IL‑1 and IL‑12, but release anti‑inflammatory cytokines 

during regeneration and healing of tissue, such as IL‑4, which 
contributes to the production of fibronectin (269‑271). MTA 
displays detectable, but not statistically significant, cytotox‑
icity to human monocytic cell line THP1 and alters secretion 
of inflammatory cytokines (272). In addition, macrophages 
and mast cells participate in leukocyte recruitment and 
extravasation via secretion of inflammatory cytokines that 
regulate inflammation control and tissue healing in pulpitis 
and apical periodontitis  (273,274). Moreover, neutrophil 
chemotactic factor is induced from macrophages and mast 
cells by MTA; the upregulation of these neutrophil chemotactic 
factor substances participates in migration and accumula‑
tion of neutrophils, monocytes and lymphocytes (275‑277). 
Similarly, Cavalcanti et al (278) found that MTA increases 
secretion of IL‑8 and IL‑1β, which supports the migration of 
human neutrophils. Chang et al (279) discovered that MTA 
enhances migration of immune cells, which is regulated by 
calcium‑sensing receptors and the PI3K pathway for chemo‑
taxis, as well as the Ca2+‑calmodulin‑dependent MLCK 
pathway for chemokinesis.

M1/M2 macrophage polarization is associated with the 
inflammatory response and subsequent tissue regeneration 
following biomaterial implantation (270,280,281). Tu et al 
found that iRoot SP induces greater cytotoxicity to RAW264.7 
macrophages than MTA. Furthermore, both MTA and iRoot 
SP induce expression of pro‑inflammatory cytokines without 
inducing osteoclastogenesis in RAW264.7 macrophages. 
In addition, MTA primarily induces M2 macrophage 
polarization, whereas iRoot SP induces M1 macrophage 
polarization (200). Both MTA and iRoot SP are non‑toxic to 
RAW264.7 cells (282). Moreover, MTA does not affect the 
viability and adherence of M1 and M2 macrophages isolated 
from mice (283,284). MTA and iRoot SP reinforce expression 
of inflammatory cytokines in RAW264.7 cells. Furthermore, 
MTA and iRoot SP possess equal capacity to stimulate M1/M2 
macrophage polarization but greater M2 macrophage polar‑
ization is induced, which implies that calcium silicate‑based 
bioceramics shift M1/M2 polarization balance to M2 macro‑
phage polarization under inflammatory conditions (282,285). 
Yeh et al reported that MTA induces THP‑1 cells toward 
M2 polarization by activating the Axl/Akt/NF‑κB signaling 
pathway. MTA promotes tissue regeneration and wound 
healing via M2 macrophage polarization (286). MTA does 
not induce DNA breakage of human peripheral lymphocytes, 
which is the first step in carcinogenesis. This suggests that 
MTA exhibits no potential carcinogenic risk when used in 
endodontics (287).

Compared with other pulp capping materials, such 
as TheraCal and Xeno  III, Biodentine decreases migra‑
tion and adhesion of THP‑1 cells to endothelial cells and 
inhibits their activation to macrophages in  vitro  (240). In 
addition, Biodentine does not stimulate expression of inflam‑
mation‑associated enzymes in vitro, such as prostaglandin E2 
and thromboxane (288). Compared with MTA, Biodentine 
displays a more notable inhibitory effect on mRNA and protein 
expression levels of inflammatory cytokines in RAW264.7 
macrophages (183). Biodentine is biocompatible with immune 
cells, which is consistent with another study that demonstrated 
that Biodentine exhibits similar biocompatibility with human 
monocytes compared with MTA (289).
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6. Conclusion

There have been numerous studies on the in vitro biocompatibility 
and bioactivity of calcium silicate‑based bioceramics in endodon‑
tics (16,79,147,192). MTA has been investigated most thoroughly 
and is considered the gold standard. However, compared with 
MTA, there are not enough studies to assess the biocompatibility 
and bioactivity of other calcium silicate‑based bioceramics, such 
as Bioaggregate, Biodentine and iRoot BP/FS/SP, in endodontics. 
Therefore, further studies are required. Results from various 
in vitro models are inconsistent due to several reasons. Considering 
the discrepancy in cell types and methods to prepare the sample 
and evaluate the effect of MTA, it is difficult to compare the 
results and conclusions from different studies. Firstly, (patho‑)
physiological and anatomical differences between cells may lead 
to discrepancies in results. Secondly, experimental procedures 
and associated assessment criteria are distinctive so it is difficult 
to compare results directly and apply them to use in humans. 
It is essential to establish a well‑defined gold standard model, 
experimental procedures and evaluation criteria to overcome this. 
Although calcium silicate‑based bioceramics display excellent 
biocompatibility and bioactivity, the combined use of calcium 
silicate‑based bioceramics with other materials/procedures 
improves efficiency of the calcium silicate‑based bioceramics in 
endodontics. For example, the addition of TGF‑β1 and VEGF to 
bioceramics displays better biocompatibility with human DPSCs 
and promotes formation of dentin bridge in rat pulp capping 
compared with MTA (290). Further studies are required to deter‑
mine the effects of combined bioceramics.
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