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Abstract. Ciliopathies comprise a group of complex disorders, 
with involvement of the majority of organs and systems. In 
total, >180 causal genes have been identified and, in addition 
to Mendelian inheritance, oligogenicity, genetic modifications, 
epistatic interactions and retrotransposon insertions have all 
been described when defining the ciliopathic phenotype. It is 
remarkable how the structural and functional impairment of 
a single, minuscule organelle may lead to the pathogenesis of 
highly pleiotropic diseases. Thus, combined efforts have been 
made to identify the genetic substratum and to determine the 
pathophysiological mechanism underlying the clinical presen‑
tation, in order to diagnose and classify ciliopathies. Yet, 
predicting the phenotype, given the intricacy of the genetic 
cause and overlapping clinical characteristics, represents a 
major challenge. In the future, advances in proteomics, cell 
biology and model organisms may provide new insights that 
could remodel the field of ciliopathies.
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1. Introduction

Ciliopathies comprise a heterogeneous group of genetic disor‑
ders caused by structural or functional disruption of cilia, or 

by abnormal cilia biogenesis (1,2). The two main subcatego‑
ries, namely motile and immotile/primary ciliopathies, both 
involve disruption of the cilium, and also share several causal 
genes  (3‑5). However, clinically, they are quite different; 
while motile ciliopathies (Kartagener syndrome and primary 
ciliary dyskinesia) are characterized by pulmonary disease, 
infertility, situs inversus or reversal of organ laterality (6), 
primary ciliopathies include a wide class of diseases that range 
from organ‑specific disorders to pleiotropic syndromes with 
multiorgan involvement. These distinct phenotypes may be 
explained through the structural differences between primary 
and motile cilia, as well as their distinct functions (7).

The aim of the present review was to comprehensively 
describe the primary ciliopathies, focusing on genetic hetero‑
geneity, diagnosis and clinical aspects, with a brief overview 
of their biological basis.

2. Cilium

Structure. Motile cilia have been observed in protozoa since 
the early microscopy era (8). Unlike motile cilia, which are 
concentrated in clusters and line the respiratory tract, fallopian 
tubes, the efferent ductules of the testis and brain ventricles (9), 
the primary cilium is a single hair‑like organelle, with variable 
length (1‑9 µm) (10), projecting from the apical surface of 
almost all types of cells, with certain exceptions (lymphocytes, 
granulocytes, hepatocytes and acinar cells) (11). Primary cilia 
are dynamic organelles that are assembled in the G0/G1 cell 
cycle stage and become disassembled with the onset of cell 
division (12).

Both types of cilia are structurally composed of a micro‑
tubule backbone, termed the axoneme, surrounded by matrix 
and covered by the ciliary membrane, which is continuous with 
the plasma membrane (Fig. 1). At the base of this ensemble, a 
specialized centriole, referred to as the basal body (BB), docks 
the cilium to the cell (13). The axoneme of the primary cilium 
consists of 9 outer doublet microtubules, (9 + 0 type), while 
motile cilia possess an extra inner pair of microtubules, rein‑
forced by nexin bridges (9 + 2 type) and an accessory structure 
involved in motility, formed of dynein arms and radial 
spokes (14). Each doublet contains a complete microtubule 
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(A tubule) and one incomplete microtubule (B tubule), which 
are composed of tubulin protofilaments and are attached to each 
other through tektins and Ca‑binding ribbon proteins (15). The 
BB structure contains 9 radially arranged microtubule triplets 
(A, B and C) and no central pair. The A and B tubules expand 
into the proximal segment of the cilium and are connected to 
the ciliary membrane by Y fibers, constituting a distinctive 
subcompartment known as the transition zone. Proximal to 
the Y fibers are the transitional fibers, which help to anchor 
the BB to the plasma membrane (16). The BB is responsible for 
the configuration of the microtubule scaffold and coordinates 
the ciliary trafficking pathway; thus, it is involved, together 
with transitional fibers, in ciliogenesis (17). Surrounding the 
transitional fibers are numerous strings of particles, acting as 
a selective filter for intraflagellar transport (IFT) molecules, 
known as the ciliary necklace (18,19). In the distal region of 
the cilium, the backbone contains a single microtubule fiber 
(A tubule), which delimits the ciliary tip, a proteic zone with 
cell type‑specific structure and function (20,21). In addition to 
this classical structure of the cilia, there is evidence showing 
the existence of motile 9 + 0 cilia, covering the node, which 
are responsible for left‑right asymmetry, or sensory 9 + 2 cilia, 
which are observed in the inner ear cells (22‑26).

Function of the primary cilium. Since their discovery in 
the kidneys and the thyroid gland by Zimmermann in 1898, 
primary cilia have been considered as vestigial organelles, 
without a specific function, due to their lack of motility and 
their absence in several cells during mitosis (27). In 1975, 
Webber and Lee  (28) raised the hypothesis of a possible 
sensory role of mammalian nephron cilia, by comparing them 
to those in sensory tissues. This hypothesis was confirmed 
in 2000 in a study by Pazour et  al  (29), which presented 
experimental evidence showing the physiological function 
of the primary cilium. Once the implication of primary cilia 
in human diseases was demonstrated (30), the awareness of 
the significance of this organelle increased. Subsequently, a 
number of studies demonstrated the complex roles of primary 
cilia as mechanoreceptors, chemoreceptors and osmosen‑
sors (31‑34).

A highly specialized process occurring in the ciliary 
compartment is the IFT: A bidirectional movement during 
which a protein complex (IFT particle) is shuttled along the 
microtubule backbone from the BB to the tip of the cilium 
(through kinesin‑anterograde transport) and back (facilitated 
by dynein‑retrograde transport)  (35). As the synthesis of 
proteins essential for the development of cilia is not possible 
inside the ciliary compartment and proteins are carried 
through IFT, the importance of IFT in ciliogenesis must be 
emphasized, as well as its involvement in the delivery of 
signals from the cilium to the cell, higlighting its significant 
role in cilia‑mediated signaling pathways (36).

Furthermore, >25 receptors and ion channels have been 
localized to the ciliary membrane, where a growing number of 
extracellular signals are received and transduced by the ciliary 
ensemble, facilitating certain signaling pathways that control 
the development of organs, as well as behavioral processes. 
Particularly important primary cilia‑related signaling path‑
ways include the following: Wingless (Wnt), Hedgehog (Hh), 
receptor tyrosine kinase (RTK), G‑protein coupled receptors 

(GPCRs), Notch, transforming growth factor‑β (TGF‑β), mech‑
anistic target of rapamycin (mTOR) and Salvador‑Warts‑Hippo 
(SWH) signaling. In addition, other signaling pathways that 
have been linked to primary cilia include extracellular matrix 
protein‑mediated signaling, transient receptor potential 
channel‑mediated signaling, vasopressin signaling in renal 
epithelial cells, somatostatin, serotonin and melanin‑concen‑
trating hormone signaling (37,38).

The Wnt signaling pathway comprises a large family of 
secreted, cysteine‑rich proteins, acting as a network of signal 
transduction pathways that are responsible for embryonic 
development, as well as tissue homeostasis and regeneration 
in adults (39). At least three signaling pathways have been 
described: The canonical Wnt pathway (or Wnt/β‑catenin 
pathway), and the non‑canonical planar cell polarity (PCP) 
and Wnt/Ca2+ pathways. The primary cilium and BB were 
found to be required for the regulation of both canonical 
and non‑canonical Wnt signaling pathways. Canonical Wnt 
signaling acts through its end effectors as co‑transcriptional 
factors, together with the T‑cell factor/lymphoid enhancer 
factor 1 family of proteins, and co‑activates the expression 
of Wnt target genes to modulate the cell cycle, leading to cell 
differentiation, proliferation, adhesion and migration, and 
tissue development (40). Canonical Wnt signaling appears 
to be directly or indirectly implicated in the formation of 
almost all organ systems during embryogenesis; it has been 
shown to be involved in anterior head fold formation and 
neuroectodermal patterning, in controlling further posterior 
patterning, as well as in the genesis and development of the 
heart, lungs, kidney, eyes, skin, blood cells and bone (41,42). 
In addition, the essential role of the Wnt pathway in stem 
cell renewal has been highlighted (42,43). The non‑canonical 
PCP pathway appears to act independently on transcription 
and plays a key role in the modification and rearrangement of 
the actin cytoskeleton. Moreover, the molecular constituents 
of this pathway were shown to randomize the orientation of 
polarized epithelial cells and to coordinate the morphology 
and convergent extension of dorsal mesodermal and ecto‑
dermal cells during gastrulation and neural tube closure (44). 
Yet, the role of cilia in canonical Wnt signal transduction is 
controversial, although several studies have suggested the 
importance of primary cilia in the decrease of canonical 
Wnt signaling (45‑47). By contrast, the contribution of the 
integrity of primary cilia to the non‑canonical PCP Wnt 
pathway is well established. Movement of the BB to the 
apical cell surface and centriolar position are essential for the 
establishment of cell polarity; thus, defects in ciliary proteins 
implicated in ciliogenesis and BB migration lead to various 
PCP errors (48). The Wnt/Ca2+ pathway shares a number of 
components with the PCP, but has been described as a sepa‑
rate pathway, which stimulates intracellular Ca2+ release from 
the endoplasmic reticulum. Ca2+ waves are hypothesized to 
serve as a key modulator in early pattern formation during 
embryo gastrulation. The Wnt/Ca2+ pathway regulates 
embryogenesis in a complex manner, including promoting 
ventral cell fate, negative regulation of dorsal axis develop‑
ment, regulation of tissue separation and convergent extension 
movements during gastrulation, as well as heart formation. 
The Wnt/Ca2+ pathway also functions as a critical modulator 
of both the canonical and PCP pathways (44). Wnt signaling 
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also regulates a number of other signaling pathways that have 
not been yet completely elucidated, but appear to be linked 
with myogenesis, axonal guidance, neuronal migration and 
synaptogenesis (49,50).

Another key signaling pathway that was demonstrated 
to be essential for a variety of developmental processes 
is the Hh signaling pathway, described through its three 
Hh homologues: Desert Hh, Indian Hh (Ihh) and Sonic Hh 
(Shh). The Shh pathway, the most extensively investigated 
signaling pathway, functions due to the synergy of several 
molecule/proteins acting as transmembrane receptors, namely 
Patched homolog 1, Smoothened (SMO) and GLI transcription 
factors, leading to the transcription of Hh target genes (51). 
The role of Shh proteins emerges during embryonic develop‑
ment and morphogenesis, controlling left‑right asymmetry, 
dorso‑ventral axes and distal limb patterning. Moreover, 
proliferation of hematopoietic, retinal and neural stem cells, as 
well as development of epithelial tissues during organogenesis, 
appear to be modulated by Shh (52). Primary cilia are essen‑
tial for the transduction of Hh signaling, playing a dual role 
through positive and negative regulation. It has been shown 
that abnormal cilia may lead to either loss‑of‑function Hh 
phenotypes in the neural tube, or gain‑of‑function Hh pheno‑
types in the limbs, indicating that the Hh pathway may play an 
important role in primary cilia biogenesis (38).

The migration, proliferation, differentiation and apoptosis 
of cells are also controlled by another cilia‑related pathway, 
the platelet‑derived growth factor receptor‑α  (PDGFRα) 
pathway  (53,54). PDGFRα belongs to the large family of 
RTK transmembrane receptors and is required for activation 
of the Ras‑Mek1/2‑Erk1/2 pathway, thus causing axonemal 
reestablishment, cell cycle progression and chemotaxis (55). 
The development of numerous cells and tissues, including 
neurons, oligodendrocytes, astrocytes, alveolar smooth muscle 
cells, cardiac fibroblasts and bone cells, relies on PDGFα 

signaling (56). PDGFRα, which is bound to the membrane of 
the primary cilium, regulates cytoskeletal reorganization to 
drive directional migration of fibroblasts in wound healing. 
Defects in primary cilia lead to abnormal wound healing. 
Moreover, disassembly of cilia, which allows the centriole to 
participate in mitosis during cell cycle progression, is modu‑
lated by PGFRα signaling (57). Along with this signaling, 
other RTK signaling pathways have recently been described, 
including EGFR, which plays an important role in mechano‑
sensation and the migration of kidney epithelial cells or airway 
smooth muscle cells, and insulin‑like growth factor receptor, 
which is involved in preadipocyte differentiation (37).

GPCRs comprise a large family of transmembrane recep‑
tors divided into six classes (A‑F), for which >30 receptors 
belonging to the A  (rhodopsin‑like receptors), B  (secretin 
receptor family) and F  (frizzled/SMO‑component of Shh 
signaling) classes are found on the ciliary membrane. Among 
these receptors, opsin, olfactory, serotonin (HTR6), soma‑
tostatin (SSTR3), vasopressin (V2R), dopamine (D1R, D2R and 
D5R) and prostaglandin (EP4) receptors are involved in a wide 
spectrum of cellular and physiological processes, including 
photoreception, olfactory sensation, feeding behavior, pain 
sensation, osmotic function in kidney cells, physiological 
function in cardiac myocytes, neuronal processes and energy 
homeostasis  (58,59). GPCRs are involved in neuronal or 
retinal cilia function and control the length of primary cilia 
or ciliogenesis. Conversely, absence or shortening of primary 
cilia may interfere with normal brain development, inter‑
neuron connectivity, gonadotropin hormone release at the 
nerve terminals or the sensory potential of cells (48).

In addition to these main signaling cascades, an increasing 
number of pathways have been associated with primary cilia. 
It has been concluded that the Notch signaling is involved in 
the physiology of primary cilia. Notch3 receptor, which is 
localized in the ciliary membrane, is activated by presenilin 2, 

Figure 1. Schematic representation of the cilium structure. (A) Longitudinal section, (B‑a) transversal view of the motile cilium and (B‑b) transversal view of 
the primary cilium. IFT, intraflagellar transport; Wnt, wingless.
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a ciliary BB enzyme, thereby regulating epidermal cell 
proliferation and differentiation (60). Loss of primary cilia or 
knockdown of IFT molecules may result in diminished Notch 
activation, leading to decreased cell proliferation and differen‑
tiation defects. In the neuroepithelia of the developing neural 
tube, activation of Notch signaling leads to increased primary 
cilium length, as well as accumulation of Smo molecules 
within the primary cilium. This interplay between the Notch 
and Shh pathways in primary cilia may specify ventral cell 
fate in the developing neural tube (38).

TGF‑β signaling has been recently associated with cilia, 
whereas TGF‑β1 and TGF‑β2 receptors are located on the 
ciliary tip. Primary cilia use diverse methods to regulate 
TGF‑β pathways, through SMAD2/3 and ERK1/2 activation 
by TGF stimulation, modulating various cellular processes, 
such as the differentiation of cardiomyocytes, osteocytes and 
myofibroblasts. Moreover, endothelial primary cilia, which 
act as flow sensors in the blood vessels, inhibit the endothe‑
lial‑to‑mesenchymal transition, and this process is related 
to attenuation of the TGF‑β signaling. There is also strong 
evidence regarding the impairment of mechanosensation and 
maturation in human osteoblasts due to shortening of primary 
ciliary length through TGF‑β signaling (61,62).

The SWH pathway controls organ size and cell prolifera‑
tion through a core of serine/threonine‑kinases that interact 
with nephrocystin 4 or Crumbs 3 receptors located in the 
cilium. One of the major components of SWH signaling, 
MST1/2, which is localized to the BB, has been found to be 
crucial for primary cilia biogenesis, with loss of MST1/2 
leading to defects in ciliogenesis (63).

It has also been demonstrated that the primary cilium regu‑
lates mTOR signaling, which plays a pivotal role in metabolism 
and cell proliferation, thereby determining cell size, through 
the Lkb1 tumor suppressor, AMP‑activated protein kinase and 
folliculin. In epithelial primary cilia, the mTOR pathway is 
upregulated by polycystin‑1 through the tuberin protein, thus 
being involved in cyst formation (64,65).

Brain‑derived neurotrophic factor signaling, which is 
involved in neuronal development, synaptic plasticity, satiety 
and weight control, has recently been proposed to be linked 
with the BBS4 protein and primary cilia (66).

3. Ciliopathies

Given the notable complexity of interconnected signaling 
pathways in cilia, the role of the primary cilium as a cellular 
hub is becoming increasingly obvious; its clinical importance 
emerges from the consequences of its structural or functional 
defects, which lead to a broad category of disorders, collec‑
tively termed as ciliopathies.

The term ‘ciliopathy’ is most likely attributed to immotile 
or primary cilia‑related disorders, and it has been recently 
allocated to certain conditions that have long been known 
as separate clinical entities (67). The first ciliophathy ever 
defined was Bardet‑Biedl syndrome  (BBS) in 2003  (68), 
although this disease had been known since 1866, when 
Laurence  and  Moon  (69) first described the phenotype, 
including retinitis pigmentosa, mental retardation, hypogo‑
nadism and spastic paraplegia, in four cases. Decades later, 
a similar phenotype, consisting of obesity, retinal dystrophy, 

polydactyly and cognitive problems with learning difficulties, 
was reported in 1920 by Bardet and in 1922 by Biedl (70).

Clinical overlaps in primary ciliopathies. As a result of the 
presence of primary cilia in nearly all tissues and organs, 
impairment of their structure or function may result in a vast 
group of phenotypes, ranging from single organ impairment 
to complex systemic disorders (Fig. 2). In addition to their 
isolated involvement, the kidney and the eyes (retina) are also 
implicated in defining the heterogeneous pattern of primary 
ciliopathies, with the participation of other organs, including 
the brain, skeletal system and liver (71). Additional system 
contributions in defining the ciliopathic clinical picture are 
summarized in Table I.

Renal manifestations. Renal impairment is the most common 
sign in primary ciliopathies, histologically characterized 
by renal cysts, a thickened and irregular tubular basement 
membrane, and interstitial fibrosis. Clinically, two frequently 
observed categories have been defined: Polycystic kidney 
disease (PKD) and nephronophthisis (NPHP). Both entities 
are characterized by a progressive decline in renal func‑
tion, eventually leading to renal failure  (72,73). The onset 
of the diseases varies. Some signs could be detected prena‑
tally due to the presence of oligohydramnios and enlarged 
kidneys, or shortly after birth due to the occurrence of severe 

Figure 2. Organ and system involvement in primary ciliopathies.
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hypertension or respiratory insufficiency  (74,75). During 
childhood, the symptoms of renal disease are unspecific and 
may include polydipsia, polyuria, secondary enuresis and 
urinary concentration defects. Poor growth may occur due to 
chronic dehydration. As a result of renal insufficiency and its 
progression to end‑stage renal failure, new complications may 
develop, including anemia, metabolic acidosis, anorexia and/or 
hypertension (76). Renal ultrasound examination shows large, 
normal‑sized or small kidneys, with increased echogenicity, 
loss of corticomedullary differentiation and the presence of 
renal cysts (76,77). Dysplastic, lobulated or horseshoe kidneys, 
kidney malrotation and renal agenesis are less frequently 
encountered in ciliopathic disorders (78).

Liver manifestations. Liver cysts, liver fibrosis and ductal plate 
malformation with abnormal bile ducts may be summarized as 
liver fibrocystic diseases, and they are often found, in addition 
to PKD, in primary ciliopathies (79). The liver disease can 
remain asymptomatic, or it can lead to complications, particu‑
larly portal hypertension and esophageal varices, cholangitis 
or cholestasis (80). End‑stage hepatic disease requiring trans‑
plantation has also been reported in some patients (81,82). The 
cardinal symptom is hepatomegaly, which can be associated 
with elevated serum levels of hepatic enzymes, or liver hyper‑
echogenicity on abdominal ultrasound (83).

Ocular manifestations. Retinal dystrophy (with both rod and 
cone photoreceptor involvement) is commonly encountered in 
primary ciliopathic disorders. The clinical manifestations of 
visual impairment range from night blindness, color blindness 
and loss of peripheral vision, to progressive visual loss and 
complete blindness (84). Disruptions of ocular motility, such 
as oculomotor apraxia and nystagmus, are also frequently 
described  (85,86). Additional ocular defects include stra‑
bismus, amblyopia, astigmatism, congenital cataracts and 
coloboma (78).

Central nervous system (CNS) manifestations. The major 
neuroimaging finding, which characterizes a distinct group 
of diseases referred to as Joubert syndrome (JS) and related 
disorders, is the ‘molar tooth sign’ (MTS), comprising 
cerebellar vermis hypoplasia or aplasia, with enlargement 

of the fourth ventricle, thickened and horizontalized supe‑
rior cerebellar peduncles and a deepened interpeduncular 
fossa (87,88). Neurological abnormalities may also include 
Dandy‑Walker malformation (DWM), ventriculomegaly, 
periventricular nodular heterotopia, hydrocephalus, encepha‑
locele/meningocele, polymicrogyria, absence of the pituitary 
gland, corpus callosum defects and morphological brainstem 
abnormalities (83,89‑91). A wide range of clinical signs may 
be observed, such as hypotonia, ataxia, developmental delay, 
intellectual disability (ID), impaired or absent speech, behav‑
ioral disturbances such as hyperactivity and aggressiveness, 
and self‑mutilation (92,93).

Skeletal manifestations. Clinical manifestations of the skeletal 
system may vary from mild phenotypes, such as polydactyly, 
to severe deformities, possibly leading to death. Polydactyly 
of the hands and/or feet, which is usually post‑axial, but may 
also be pre‑axial and, in some cases, central or mesoaxial, is 
present in most individuals with cilia‑related disorders (94‑96). 
In addition to polydactyly, the hands and feet may be affected 
to various degrees by oligodactyly, syndactyly, campto‑
dactyly, brachydactyly, carpal and tarsal shortening, short 
long bones, rhizomelic micromelia, fibular aplasia or limb 
agenesis  (97,98). Truncal skeletal defects may include a 
constrictive thoracic cage, with shortened and horizontalized 
ribs, which may be life‑threatening in some cases; abnormal 
or absent clavicles, small scapulae and scoliosis may also be 
observed (99). Cranioskeletal characteristics include cranio‑
synostosis, macro‑ or microcephaly, head shape anomalies, 
frontal bossing, a prominent forehead, bitemporal narrowing, 
cleft palate, zygomatic arch hypoplasia, maxillary hypoplasia 
and micrognathia (100).

Diagnosis of primary ciliopathies
Clinical diagnosis. Given the numerous overlapping features 
and marked genetic heterogeneity, considerable efforts have 
been made to diagnose and classify ciliopathies, in order to 
optimize clinical management of the patients and improve the 
accuracy of genetic counseling.

For some of these diseases with severe phenotypes leading 
to a high mortality rate in  utero or during the perinatal 
period, a prenatal diagnosis is possible in the presence of 

Table I. Additional clinical features of ciliopathiesa.

Type of system	C linical feature

Cardiovascular	� Atrial or/and ventricular septal defects, dilated cardiomyopathy, hypertrophic cardiomyopathy and 
valvular defects

Respiratory	� Breathing abnormalities, respiratory insufficiency, pulmonary hypoplasia, atelectatic lungs and intersti‑
tial fibrosis

Endocrine	 Panhypopituitarism, growth hormone deficiency, hypothyroidism, diabetes mellitus and hypogonadism
Genital	 Genital hypoplasia, micropenis and ambiguous genitalia
Pancreatic	 Pancreatic dysgenesis, pancreatic fibrosis and cystic pancreas
Aural	 Sensorial hearing loss

aFeatures displayed in this table were collected after an overview analysis of OMIM clinical synopsis (www.omim.org). OMIM, Online 
Mendelian Inheritance in Man.
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pathognomonic ultrasonographic signs in conjunction with 
α‑fetoprotein testing of the amniotic fluid and DNA testing 
of the fetus (101). Early in the pregnancy (weeks 8‑11), ultra‑
sonographic screening can detect certain fetal malformations, 
such as an enlarged cisterna magna or encephalocele (102). 
Between 11 and 14 weeks of pregnancy, enlarged polycystic 
kidneys or polydactyly may be detected  (103), while later 
in the second trimester, other brain anomalies (e.g., DWM 
and hydrocephalus)  (104) and severe skeletal anomalies 
(e.g., rhizomelic shortening of the long bones and hypoplastic 
thoracic cage) may be identified (105). Fetal MRI can detect 
MTS at 27 weeks of pregnancy (106).

Postnatally, Beales and Kenny proposed a clinical diag‑
nosis algorithm starting with the presence of renal and retinal 
involvement and/or polydactyly (Fig. 3). Adding limb or rib 
abnormalities to this core of clinical manifestations may easily 
direct the diagnosis to ciliary skeletal dysplasias. Furthermore, 
identification of ectodermal defects in this group suggests the 
diagnosis of oral‑facial‑digital syndrome (OFDS) or cranio‑
ectodermal dysplasia (CED), while their absence indicates 
the diagnosis of short‑rib polydactyly syndrome (SRPS). 
The detection of MTS and other CNS abnormalities should 
raise the suspicion of JS or JS‑related disorders, whereas the 
presence of obesity points towards the diagnosis of BBS or 
Alström syndrome (ALMS) (107).

Genetics and molecular diagnosis. Since the description 
of the first ciliopathy gene, BBS6, by two distinct research 
groups in 2000, due to the advances in genomic sequencing 
technologies, a number of genes have been associated with 
ciliary phenotypes (108,109). Only in the last 5 years, through 
the intensive use of specific gene panels, whole exome and 
whole genome sequencing >100 new ciliary genes have been 
identified. At present, there are >190 known genes associated 

with recognized ciliopathies, of which >140 genes (Table SI) 
are implicated in primary ciliopathies. Other candidate genes 
(>240), of which the protein products have been shown to be 
associated with cilia function or structure, may be involved in 
either new or confirmed primary or motile ciliopathies (110). 
Ciliopathies are considered to be Mendelian disorders (111), 
although a plethora of evidence has also indicated a non‑Mende‑
lian pattern of inheritance, or even environmental contribution 
to defining the phenotype. Genetic locus heterogeneity, copy 
number variants (112,113), oligogenicity (114,115), multiple 
allelism (116‑119) and transposon‑mediated mutagenesis (120) 
have been described, highlighting the marked complexity of 
the genetic mechanisms responsible for ciliopathic pheno‑
types. Moreover, the severity or variability of the phenotypes 
is suggested to be modulated by the pattern of ciliary gene 
expression and its effect on protein function (null, truncating 
or hypomorphic) (121), by epistatic interactions (122,123) and 
by genetic modifiers or stochastic effects (45,111,124‑128).

Classification of primary ciliopathies. Several types of ciliop‑
athies have been recognized, considering the level to which an 
organ is affected for defining their phenotype.

Retinal ciliopathies. Retinal ciliopathies include clinical enti‑
ties manifesting as retinal degeneration, and they are caused by 
defective morphogenesis or dysfunction of specialized sensory 
cilia from the retina that form the outer segment of photorecep‑
tors. Proteins, such as rhodopsin or ambient lighting‑dependent 
proteins, are trafficked along these specialized primary cilia 
by means of IFT particles. Impairment of IFT leads to the 
accumulation of rhodopsin, defects in outer segment develop‑
ment and cell death, which result in the phenotype of retinal 
degeneration (129,130). Among non‑syndromic retinal ciliopa‑
thies, the ocular phenotype ranges from the most common 

Figure 3. Diagram of the clinical diagnosis algorithm of primary ciliopathies. Adapted with permission from (107). MTS, molar tooth sign; PKD, polycystic 
kydney disease; RP, retinitis pigmentosa.
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retinitis pigmentosa [Mendelian Inheritance in Man (MIM), 
26800]  (47), which initially manifests as night blindness, 
followed by loss of peripheral vision, due to the impairment 
of rod photoreceptor function, and can progress to complete 
blindness  (84,131) to the most severe congenital retinal 
dystrophy, Leber congenital amaurosis (LCA; MIM, 204000), 
which frequently results in blindness within the first year of 
life. Visual loss is usually accompanied by sensory nystagmus, 
amaurotic pupillary response and absent electroretinogram 
signs. Photophobia, high refractive errors, keratoconus and 
enophthalmos are often seen in LCA. Involvement of the retina 
may range from normal, to retinal degeneration, retinal aplasia 
or biochemical dysfunction (dysplasia)  (132). Overlapping 
with these two disorders, other ocular dystrophies have also 
been described as retinal ciliopathies: Cone dystrophy (MIM, 
304020), characterized by visual loss and color vision defects, 
cone‑rod dystrophy (MIM, 120970), characterized by photo‑
phobia, abnormal color vision, night and peripheral vision loss, 
and macular dystrophy (MIM, 300834), characterized by loss 
of color and sharp vision (133). Progressive retinal degeneration 
and sensorineural hearing loss are the first symptoms found in 
ALMS (MIM, 203800); these are accompanied later in child‑
hood by obesity and diabetes mellitus. Additional features, 
such as cardiomyopathy, epilepsy, respiratory disturbance 
and renal or endocrine dysfunction, support the classification 
of these disorders as syndromic retinal ciliopathies (134). A 
rare combination of retinal and renal ciliopathies character‑
izes Senior‑Løken syndrome (SLSN; MIM, 266900), with a 
specific clinical presentation consisting of retinal dystrophy 
and NPHP. Consequently, SLSN is considered by some studies 
as a syndromic retino‑ciliopathy or, by others, as a renal 
(NPHP‑related) ciliopathy (135,136).

Renal ciliopathies. Renal ciliopathies encompass a group of 
disorders, the hallmark of which is kidney disease, including 
autosomal dominant polycystic kidney disease (ADPKD; 
MIM, 173900), autosomal recessive polycystic kidney disease 
(ARPKD; MIM, 263200) and NPHP (MIM, 256100). In the 
kidney, epithelial primary cilia lining the nephron tubules 
and collecting ducts act as sensory antennae sensitive to urine 
composition, osmolarity and flow. Defects in several signaling 
pathways, such as G‑protein signaling, mTOR or Wnt, induced 
by decreased of flow‑mediated intracellular calcium concen‑
tration, may lead to cyst formation. Moreover, disruption of the 
balance between canonical and non‑canonical Wnt signaling 
may affect the polarity of epithelial tubular cells, also resulting 
in cyst formation (137).

ADPKD and ARPKD are different, not only due to the 
inheritance pattern, but also based on the microscopic and 
ultrasonographic appearance of the cysts, associated organ 
anomalies, age at onset, severity and prognosis (138). While 
ADPKD is characterized by large cysts originating from the 
distal nephrons and collecting ducts, which grow in volume 
and number with age, and by the presence of cysts in the liver, 
pancreas or other epithelial organs, intracranial aneurysms and 
mitral valve prolapse (139), the cysts in ARPKD are small, orig‑
inate from the distal tubules and collecting ducts and display 
a salt‑and‑pepper pattern, and the liver is always affected by 
fibrosis (138). In contrast to ADPKD, which starts in late adult‑
hood and slowly progresses to end‑stage renal disease (ESRD), 

ARPKD is more severe, with antenatal onset and diagnosis 
during late pregnancy or at birth, leading to increased perinatal 
death rate (30‑50%). Death occurs as a consequence of respira‑
tory insufficiency due to pulmonary hypoplasia and thoracic 
compression by the extremely expanded kidneys (75). NPHP, 
which is characterized by corticomedullary cysts, atrophy 
and interstitial fibrosis resulting in nephron disintegration, is 
the main cause of ESRD in children (140). The severity and, 
subsequently, the progression to ESRD, depend on the clinical 
variant, namely the infantile, juvenile or adolescent variant. The 
infantile variant is the most severe, with prenatal manifestations 
consisting of oligohydramnios and bilateral enlarged cystic 
kidneys. Thus, ESRD develops in the first year of life. The first 
symptoms of the classical juvenile form, which is characterized 
by renal interstitial fibrosis and inflammation, with progression 
to tubular atrophy and small cyst formation, develop during 
the first decade of life and ESRD occurs at the mean age of 
13 years (74). NPHP may be limited to the kidneys or may be 
part of other ciliopathic conditions, such as Joubert/COACH 
syndrome, SLSN, BBS, Meckel‑Gruber syndrome  (MKS) 
or skeletal disorders (141). BBS (MIM, 209900) is the most 
extensively investigated ciliopathy, and it has provided valuable 
data for the entire spectrum of human cilia‑related disorders 
due to its overlapping characteristics at the level of phenotype, 
genotype, protein‑protein interactions and participation in 
signaling pathways (142). BBS is a multisystem disorder, but 
renal impairment is its most prominent cause of morbidity and 
mortality. The major clinical characteristics, including retinal 
dystrophy, obesity, post‑axial polydactyly, renal anomalies, 
cognitive impairment and hypogonadism, are suggestive of 
the diagnosis. The presence of four of those characteristics, or 
association of three primary characteristics with two secondary 
features is considered as sufficient for clinical diagnosis (143). 
Secondary features include speech delay, developmental delay, 
diabetes and congenital heart disease. BBS is characterized by 
marked clinical variability, which cannot be fully attributed 
to the 24 genes identified to date (144). MKS (MIM, 249000), 
which displays renal (cystic kidney dysplasia) as well as neuro‑
logical [occipital encephalocele (OE)] manifestations, may 
be considered as either a renal or a CNS‑related ciliopathy. 
Hepatic fibrosis completes the specific clinical triad of this 
condition, although polydactyly is often considered as the 4th 
pathognomonic feature (145). MKS has a heterogeneous, severe 
phenotype, which is not compatible with life, with death occur‑
ring in utero or shortly after birth. Renal dysfunction may often 
lead to oligohydramnios or anhydramnios. Apart from OE, 
which is the most frequent finding, additional CNS malforma‑
tions found in MKS include olfactory bulb dysgenesis, optic 
nerve hypoplasia, agenesis of the corpus callosum, holopros‑
encephaly, cerebellar hypoplasia or total anencephaly. Cleft 
lip and palate, shortening of the long bones, congenital heart 
defects and pulmonary hypoplasia may further complicate the 
clinical picture (45,101).

CNS‑related ciliopathies. CNS‑related ciliopathies comprise a 
group of conditions, the hallmark of which is the MTS, which 
is required for diagnosis. Impairment of the Wnt pathway, 
which is a major signaling pathway involved in cerebellar 
development, may be responsible for defective cerebellar 
vermis hypoplasia, one of the components of MTS. In addition 
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to this pathway, other neuronal primary cilium‑specific path‑
ways are required for normal brain development, regulating 
neuronal fate, proliferation, migration and differentiation. 
Dysregulation of these pathways, including Shh, PDGFRα 
and GRCR, may manifest with malformations during cortical 
development or midline defects, which are often found in JS 
or CNS‑related ciliopathies (71). Depending on the additional 
clinical characteristics, JS (MIM, 213300) has been classified 
into several groups as follows: i) Pure or classic JS, charac‑
terized by hypotonia, developmental delay, abnormal eye 
movements, breathing abnormalities, ataxia and ID; ii)  JS 
with ocular defects, including retinal dystrophy or LCA; iii) JS 
with renal defects (NPHP); iv) JS with oculorenal defects, also 
named cerebello‑oculorenal syndrome, comprising SLSN 
(retinal dystrophy, LCA and NPHP) associated with MTS, 
and Dekaban‑Arima syndrome (cerebrooculohepatorenal 
syndrome) characterized by chorioretinal coloboma or retinal 
dystrophy, PKD, MTS and hepatic fibrosis in some cases; v) JS 
with congenital hepatic fibrosis; vi) JS with congenital hepatic 
fibrosis and associated chorioretinal coloboma, also known as 
COACH syndrome; and vii) JS with orofaciodigital defects, 
including a lobulated or bifid tongue, hamartomas, cleft lip 
and/or palate and polydactyly, also known as orofaciodigital 
syndrome type VI (83,87). To date, ~40 causative genes covering 
>90% of clinical subjects have been identified (146‑152).

Ciliopathies with skeletal involvement. This group of disor‑
ders is characterized by variable severity, ranging from mild 
to severe or even lethal phenotypes. Two subgroups have been 
distinguished: Those with major skeletal system involvement, 
including craniofacial, thoracic cage and long bone involve‑
ment, known as short‑rib thoracic dysplasias (SRTDs), with or 
without polydactyly or ciliary condrodysplasias, and OFDS, 
with milder involvement of the skeletal system (153).

Development of the cartilage and bones is a complex 
process that is modulated mainly by the IFT and Hh pathways. 
Disruption of Ihh signaling in chondral primary cilia affects 
chondrocyte maturation during the ossification process. 
Consequently, various skeletal abnormalities, including poly‑
dactyly, shortening of the ribs or long bones and craniofacial 
abnormalities, may occur (154,155). Dysregulation of IFT, 
which is involved in the trafficking of the transmembrane 
SMO receptor, a signal transducer in Hh signaling, may lead 
to premature differentiation and decreased proliferation of 
chondrocytes, manifesting as specific SRTDs and defects of 
long bone growth plates (156).

There are >19  types of SRTDs, classified based on 
phenotype severity, radiological findings and confirmation 
of genetic defects (100,157). Chondroectodermal dysplasia 
or Ellis‑van‑Creveld syndrome (EVC; MIM, 2255000), 
Weyers acrodental dysostosis (WAD; MIM, 193530) and 
Sensenbrenner syndrome or CED (MIM, 218330) are the 
milder disorders in this group. EVC is characterized by dispro‑
portionate short limb dwarfism, short ribs, polydactyly, cardiac 
malformations and ectodermal defects affecting the hair, teeth 
and nails (158‑160). WAD is an allelic disorder to EVC, but 
displays a milder phenotype, consisting of moderate short 
stature, postaxial polydactyly, and nail and dental anomalies, 
and is inherited in an autosomal dominant manner (161). CED 
is characterized by craniofacial abnormalities, such as sagittal 

craniosynostosis, leading to dolichocephaly, frontal bossing 
and dental defects, in conjunction with skeletal abnormalities 
(short stature, rhizomelic limbs, brachydactyly and narrow 
thorax) and ectodermal anomalies (thin/sparse hair, hypo‑
plastic nails and skin laxity) (162,163). Kidney involvement 
(NPHP progressing to renal failure) and liver involvement 
(ranging from asymptomatic hepatomegaly to acute chol‑
angitis, liver cirrhosis and severe cholestasis) are common 
findings in CED (164).

The second group with more severe phenotypes is 
comprised of Jeune asphyxiating thoracic dystrophy (JATD; 
MIM, 208500) and conorenal syndrome or Mainzer‑Saldino 
syndrome (MZSDS; MIM, 266920). The specific presentation 
of JATD includes a constrictive thoracic cage and secondary 
respiratory distress due to restrictive pulmonary hypoplasia. 
Respiratory distress is the main cause of mortality in ~60% 
of the patients (100). Additional skeletal findings may include 
a short stature, short limbs with irregular metaphyses, 
cone‑shaped epiphyses in the hands, foot polydactyly, a 
shortened ilium and a trident‑shaped acetabulum. Retinal 
degeneration, NPHP‑like or cystic renal disease, pancreatic 
and liver involvement or brain malformations are occasionally 
found in patients with JATD (100,165). MZSDS is character‑
ized by the triad of retinal dystrophy, renal disease (typically 
NPHP) and phalangeal cone‑shaped epiphyses  (166). The 
thorax is less narrow compared with that in patients with 
JATD. Short stature, hepatic fibrosis and cerebellar ataxia are 
variable traits that may be observed in MZSDS (166,167).

The last subtype is the perinatally lethal SRPS, the 
core features of which include a constrictive thoracic cage, 
significantly shortened long bones, polydactyly, brahydactyly 
and pelvic abnormalities  (100). Different types have been 
characterized, based mainly on radiological findings: SRPS 
types I (Saldino‑Noonan syndrome) and III (Verma‑Naumoff 
syndrome) (MIM, 613091); SRP type II or Majewski syndrome 
(MIM, 263520); SRPS type IV or Beemer‑Langer syndrome 
(MIM, 269860); and SRPS type V (MIM, 614091) (98). In 
addition to skeletal abnormalities, involvement of the brain, 
heart, kidneys, liver, pancreas and genitalia have often been 
recorded in SRPS. In some cases, facial dysmorphism may 
also be observed (100,165).

Apart from the typical manifestations, some ‘unusual’ 
features may be observed in each group, further expanding 
and complicating the phenotype; these include atlantoaxial 
instability and spinal cord compression (168,169), short irregu‑
larly bent ribs, hypoplastic and bent mesomelic bones, short 
campomelic long bones, undermineralized bones (170,171), 
OE or MTS (172).

OFDS (MIM, 311200) describes a heterogeneous group 
of diseases caused by defects in ~18 genes (173‑175). Clinical 
manifestations include anomalies of the face (micrognathia, 
hypertelorism, telecanthus, cleft lips and low‑set ears), the oral 
cavity (gingival frenulae, lingual hamartomas, cleft/lobulated 
tongue and cleft palate) and the digits (polydactyly, brachy‑
dactyly, oligodactyly and bifid digits), associated with an 
extensive spectrum of additional features affecting the CNS, 
the kidneys, the heart or the eyes, outlining the 13  forms 
described to date (173,176). In addition to renal involvement, 
which is commonly found in OFDS, a series of features 
overlapping with other ciliopathies (JS, SRPS and EVC) 



INTERNATIONAL JOURNAL OF MOlecular medicine  48:  176,  2021 9

have been reported, such as MTS identified in OFD types 4, 
6 and 14, and tibial abnormalities observed in OFD types 4, 
8 and 12 (177,178).

Other unclassified subtypes have also been described, 
which are characterized, in addition to the typical features, by 
fused kidneys (179), tetralogy of Fallot (179,180), coarctation 
of the aorta (181), corpus callosum agenesis (179), cerebellar 
vermis hypoplasia, DW malformation, ID, 12th rib hypo‑
plasia (174) and short mesoaxial phalanges (182).

4. Conclusions

Increasing use of whole exome sequencing has enabled the 
discovery of new causal genes in ciliopathies. Combined 
efforts have been made in the fields of proteomics, cell biology 
and model organisms to link the genes with their phenotypic 
effect. Taken together, all these studies have improved our 
knowledge on recognized ciliopathies, confirmed the proposed 
cilia‑related disorders or identified new ciliary diseases.

Since Baker and Beales (183) proposed 72 conditions as 
candidates for ciliopathic disorders in 2009, several have 
been included in the group of known ciliopathies (Table II), 
increasing their number to 35 (184‑202).

By contrast, other conditions were excluded from the list of 
possible or likely ciliopathies following the determination of 
their genetic background, including Kabuki syndrome (type 1 
MIM, 147920; type 2 MIM, 300867) following identifica‑
tion of its causal genes, MLL2 (MIM, 602113) and KDM6A 
(MIM, 300128) (203,204), or Neu‑Laxova syndrome (type 1: 

MIM, 256520; type 2: MIM, 616038) due to the discovery of 
its causal genes, PHGDG (MIM, 606879) and PSAT1 (MIM, 
610936) (205,206).

The delineation of the ciliary proteome and its interac‑
tion with extraciliary molecules opens new perspectives in 
reclassifying cilia‑related disorders. Thus, the disorders char‑
acterized by ciliopathy‑overlapping phenotypes, the causal 
genes of which are not expressed in the ciliary assembly, 
but interfere with ciliogenesis or the cilia signaling network, 
have been termed ciliopathy‑like disorders. A representative 
example is Cohen syndrome (MIM, 216550), which is defined 
by obesity, developmental delay, retinal degeneration and 
intermittent neutropenia (207), and is caused by mutations in 
VPS13B (MIM, 607817) (208). The expression product, which 
is localized to the Golgi apparatus, may impair processing of 
ciliary components (207). Townes‑Brocks syndrome (MIM, 
107480), which is characterized by hearing impairment, 
PKD, ESRD, imperforate anus and digit malformations (209), 
is caused by mutations in the SALL1 (MIM, 602218) gene, 
which encodes a zinc‑finger transcription factor; its interaction 
with two ciliogenesis suppressors, CEP97 (MIM, 615864) and 
CCP110 (MIM, 609544), leads to cilia formation and func‑
tion impairment (210). For these ciliopathy‑like conditions, 
Reiter  and  Leroux  (110) proposed the term second‑order 
ciliopathies, whereas first‑order ciliopathies are defined as 
disorders in which disease‑associated proteins are expressed 
in the primary ciliary compartment. Although applying 
this classification is seemingly straightforward, unexpected 
evidence has uncovered the possibility of a condition being 

Table II. Newly defined ciliopathies.

MIM ID	D isease name	 Gene name	 Protein localization	 (Refs.)

616287	 Lethal congenital contracturesyndrome; 	 ADCY6	 Axoneme	 (184)
	 hypomyelination neuropathy‑arthrogryposis			 
	 syndrome			 
243605	 Stromme syndrome; lethal fetal brain	C ENPF	 Basal body	 (185,186)
	 malformation‑duodenal atresia‑bilateral			 
	 renal hypoplasia syndrome; microcephaly			 
135150	 Birt‑Hogg‑Dubé syndrome	 FLCN	 Basal body; axoneme	 (187)
201000	C arpenter syndrome	 RAB23	 Axoneme	 (200,201)
616897	C omplex lethal osteochondrodysplasia	 TAPT1	 Basal body	 (189)
NO MIM ID	 A novel syndrome with multiple congenital	 USP9X	 Axoneme	 (190)
	 malformations and developmental delay			 
601707	C urry‑Jones syndrome	 SMO	 Axoneme	 (191)
607131	 Al‑Gazali‑Bakalinova syndrome	 KIF7	 Axoneme	 (192)
236680 614120	 Hydrolethalus	 HYLS1; KIF7;	 Basal body; axoneme; basal body	 (193‑195)
		  KIAA0586		
175700	 Greig cephalopolysyndactyly syndrome	 GLI3	 Axoneme (tip)	 (196)
612651	 Lethal endocrine‑cerebro‑osteodysplasia	 ICK	 IFT	 (197)
	 syndrome			 
NO MIM ID	 Pituitary stalk interruption syndrome	 GPR161	 Axoneme	 (198)
300707	 Syndactyly‑telecanthus‑anogenital and renal	 FAM58A	 Probably cytosolic	 (202)
	 malformations syndrome			 

MIM, Mendelian Inheritance in Man; IFT, intraflagellar transport.
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either first‑ or second‑order, thus complicating the picture. 
One such example is MKS, a well‑known ciliopathy caused 
by mutations in genes encoding proteins that are localized in 
the transition zone (101). A recent study identified a new causal 
gene for MKS, TXNDC15 (MIM, 617778), a non‑ciliary gene, 
the bi‑allelic mutations of which lead to abnormal cilia biogen‑
esis (211).

Numerous conditions remain to be elucidated, either due 
to the fact that the genetic cause has not been uncovered or 
since the pathophysiological mechanism underlying the 
phenotype remains elusive. Predicting organ involvement and, 
consequently, phenotype severity based on genetic defects also 
represents a major challenge.

Future research will hopefully provide new insights that 
may help reorganize and further elucidate the striking field of 
ciliopathies.
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