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Abstract. Dysbiosis, a qualitative and quantitative aberrancy 
of gut microbiota, has attracted marked attention. At present, 
advances in molecular biological techniques have made it 
possible to analyze gut microbiota at the DNA and RNA levels 
without culturing, and methods such as 16S ribosomal RNA 
targeting analysis and metagenomic analysis using next‑gener‑
ation sequencers have been developed. The relationship 
between gut microbiota and various diseases has been exten‑
sively examined. Gut microbiota are essential for the immune 
system, energy intake and fat storage, and humans use them to 
build complex immune regulatory mechanisms and to obtain 
energy from food. The liver is the first organ to be nourished by 
the portal blood flow of intestinal origin, and liver diseases can 
be strongly influenced by various factors of intestinal origin, 
such as intestinal bacteria, bacterial components, and intestinal 
bacterial metabolites. Rigorous research has revealed that the 
composition of the gut microbiota is altered and the diversity 
of bacteria is reduced in liver diseases. Significance of various 
factors transported to the liver by portal vein blood flow from 
the intestine has been extensively investigated. Gut microbiota 

in liver disease can be associated with disease progression 
regardless of disease etiology and even with carcinogenesis. 
The relationship between gut microbiota and liver diseases 
(hepatitis virus‑related diseases, autoimmune liver diseases, 
alcoholic liver disease, non‑alcoholic fatty liver disease, 
non‑alcoholic steatohepatitis, liver cirrhosis and hepatocel‑
lular carcinoma) and the treatments of dysbiosis (antibiotics, 
prebiotics, probiotics and fecal microbiota transplantation) in 
liver disease are outlined based on the current evidence.
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1. Introduction: Gut microbiota and liver

A large number of bacteria live in various parts of the human 
body (skin, oral cavity, pharynx, upper respiratory tract, 
stomach, small intestine, colon). The gastrointestinal tract 
contains ~100 trillion intestinal bacteria of ~1,000 species 
(weighing ~1.5 kg), which live in symbiosis with humans. The 
majority of intestinal bacteria are found in the colon (1‑4). 
Dysbiosis, a qualitative and quantitative aberrancy of gut micro‑
biota, has attracted marked attention. At present, advances in 
molecular biological techniques have rendered it possible to 
analyze gut microbiota at the DNA and RNA levels without 
culturing, and methods such as 16S ribosomal RNA (16S 
rRNA) targeting analysis and metagenomic analysis (analysis 
of the entire genetic information of bacteria that constitute the 
gut microbiota) using next‑generation sequencers have been 
developed (5). The relationship between gut microbiota and 
various diseases has been extensively reported (1‑4).
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Gut microbiota has been revealed to play important roles 
not only in digestion but also in immunity and metabolism. 
Gut microbiota is essential for the immune system, energy 
intake and fat storage, and humans use them to build complex 
immune regulatory mechanisms and to obtain energy from 
food (1‑4). With proper diet, the gut microbiota can trigger 
changes in the balance of short‑chain fatty acids, which are 
used as an energy source  (3). Gut microbiota can be said 
to be an organ in itself. More than 99% of gut microbiota 
belong to four phylums: Firmicutes phylum (gram‑positive 
bacteria), Bacteroidetes phylum (gram‑negative bacteria), 
Proteobacteria phylum (such as Escherichia coli, Salmonella, 
Vibrio and Helicobacter), and Actinobacteria phylum (such 
as Bifidobacteria)  (6). The composition of gut microbiota 
markedly changes with aging (7). There are several patterns 
of aging‑related changes in the gut microbiota, including a 
group that decreases with aging (Actinobacteria), a group 
that increases with aging (Bacteroidetes), a group that is more 
prevalent only in adults (Firmicutes), and a group that is more 
prevalent in infants and the elderly (Proteobacteria) (7). The 
composition of gut microbiota can also change with food 
intake (8). The intestines of people who regularly consume an 
abundance of vegetables, fish, and fiber are likely to be rich 
in bacteria that help reduce inflammation, while the intestines 
of meat‑lovers are likely to be rich in bacteria that promote 
inflammation (8). Long‑term improvement of eating habits can 
improve the balance of intestinal microflora.

Rigorous research in recent years has revealed that the 
composition of the gut microbiota is altered and the diversity of 
bacteria is reduced (dysbiosis) in obesity, inflammatory bowel 
diseases, and liver diseases compared with healthy individ‑
uals (2,4). At present, such changes (i.e., dysbiosis) have been 
noted in colorectal cancer (9), type 2 diabetes (10), irritable 
bowel syndrome (11), atherosclerotic heart diseases (12,13), 
allergic diseases  (14), autism  (15), and even neurological 
diseases (16) (Fig. 1). Thus, aberrancies in the balance of the 
gut microbiota can disrupt host homeostasis and lead to a 
variety of diseases. The liver is the first organ to be nourished 
by the portal blood flow of intestinal origin, and liver diseases 
are considered to be strongly influenced by various factors of 
intestinal origin, such as intestinal bacteria, bacterial compo‑
nents, and intestinal bacterial metabolites (17). Various factors, 
including pathogen‑associated molecular patterns (PAMPs), 
which are transported to the liver by portal vein blood flow, 
have attracted particular attention and their significance has 
been extensively investigated (17).

Hepatic stellate cells (HSCs) and hepatic macrophages 
are important cells that are affected by intestinal bacteria 
and metabolites in the development of chronic liver diseases 
(CLDs). Firstly, HSCs become activated under chronic liver 
injury or in vitro culture conditions, and change to a myofibro‑
blast‑like cell morphology with high expression of α‑smooth 
muscle actin (α‑SMA), and induce liver fibrosis by producing 
high levels of extracellular matrix such as collagen (18). In 
addition, HSCs can be activated by various stimuli such as 
reactive oxygen species (ROS), damage associated molecular 
patterns (DAMPs), cytokines, and chemokines (18). Activated 
HSCs persistently express signals related to cell proliferation, 
fibrosis, and growth factors. Therefore, it is known that they 
play an important role in the formation of the cancer micro‑

environment, which supports the growth and development 
of cancer cells by inducing angiogenesis and fibrosis  (19). 
Secondly, liver macrophages include Kupffer cells and 
monocyte‑derived macrophages: during inflammation, acti‑
vated liver macrophages produce various secretory factors and 
induce influx of bone marrow‑derived monocytes and neutro‑
phils, and also activate HSCs to induce liver fibrosis  (19). 
In addition, activated liver macrophages produce matrix 
metalloprotease, an extracellular matrix‑degrading enzyme, 
and express tumor necrosis factor‑related apoptosis inducing 
ligand (TRAIL), which induces apoptosis in liver parenchymal 
cells. Therefore, it is attracting attention as a therapeutic target 
for liver fibrosis (20).

This review outlined the relationship between gut micro‑
biota and liver diseases: hepatitis virus‑related liver diseases, 
non‑alcoholic fatty liver disease (NAFLD) and non‑alcoholic 
steatohepatitis (NASH), autoimmune liver diseases, alcoholic 
liver disease, liver cirrhosis (LC) and hepatocellular carci‑
noma (HCC), and also outlined the treatments of dysbiosis 
(antibiotics, prebiotics, probiotics and fecal microbiota 
transplantation) in liver disease. The present review included 
mainly original studies and review articles regarding dysbiosis 
and liver disease between 1995‑2021. In total 113 studies were 
included.

2. Hepatitis C virus and gut microbiota

A decrease in the diversity of gut microbiota has been reported in 
the intestinal microflora of patients with chronic hepatitis C virus 
(HCV) infection (21,22). The gut bacteria of patients with HCV 
infection exhibit an increase in harmful bacteria, a decrease in 
beneficial bacteria, and a decrease in bacterial species (21,22). 
Changes in the gut microbiota in patients with HCV are common 
and are caused by antibody‑producing cells derived from B 
lymphocytes (22). According to the analysis of the gut microbiota 
of chronic hepatitis C patients in Egypt, where HCV infec‑
tion is the highest in the world, Prevotella, Faecalibacterium, 
Acinetobacter, Veillonella and Phascolarctobacterium are 
increased in the intestinal microflora  (21). As the disease 
progresses, changes in the gut microbiota become clearer, and 
it has been reported that patients with chronic HCV infection 
along with LC have clearly lower diversity of gut microbiota than 
those without LC (23,24). Furthermore, Inoue et al analyzed the 
gut microbiota of hepatitis C patients by fibrosis progression and 
reported that: i) changes in gut microbiota were already observed 
even in HCV carriers with normal liver function [persistent 
normalized alanine aminotransferase, (PNALT)], ii)  as the 
disease condition worsens from PNALT, chronic hepatitis, LC, 
and HCC, the occupancy rate of indigenous bacteria in the intes‑
tinal flora decreases, the number of bacterial species comprising 
the flora decreases, and the pH of the stool increases, making it 
easier to develop dysbiosis at a high rate with the progression 
of liver fibrosis and iii) as hepatitis C progresses, there is an 
aberrant increase in Streptococcus salivarius in the intestinal 
flora, and these bacteria can degrade urea in the intestinal tract 
to produce ammonia, resulting in a high pH of the stool (24). 
Thus, in patients with HCV, close correlation between the degree 
of liver fibrosis and gut microbiota changes has been identified, 
however, correlation between HCV viral load and gut microbiota 
changes is unknown.
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3. Hepatitis B virus and gut microbiota

Only ~5‑10% of adults develop chronic hepatitis B infec‑
tion from acute hepatitis B virus (HBV) infection, but 90% 
of newborns and 30‑50% of children aged 1‑5 years fail to 
eliminate HBV from their bodies (25,26). In addition to the 
maturation of the immune system, the gut microbiota has also 
been implicated in the age‑related differences in HBV viral 
elimination capacity (27). As aforementioned, the composition 
of gut microbiota markedly changes with aging (7). Adult mice 
with stable gut microbiota can eliminate HBV virus within 
6 weeks after infection, but when dysbiosis is induced by anti‑
biotics, viral elimination becomes impossible, suggesting the 
importance of anti‑HBV activity by regulation of the immune 
system through gut microbiota (28).

The gut microbiota of patients with chronic HBV 
infection and HBV‑related LC have been reported to be 
characterized by a decrease in Bifidobacteria and lactic 
acid‑producing bacteria and an increase in Enterococcus 
and Enterobacteriaceae  (29,30). Wei  et  al reported a 
decrease in Bacteroidetes (4 vs. 53%) and an increase in 
Proteobacteria (43 vs.  4%) in a comparison of the gut 
microbiota of patients with HBV‑related LC and healthy 
subjects  (31). In a recent study, gut microbiota composi‑
tion in the three different stages (i.e., chronic hepatitis B, 
LC and HCC) of HBV‑related CLD patients and healthy 
individuals was compared (32). The β‑diversity (diversity 
differences between the two samples) demonstrated a 
separate clustering of healthy individuals and HBV‑CLD 
patients, and gut microbiota of healthy individuals was 
more consistent, whereas those of chronic hepatitis B, 
LC and HCC varied substantially  (32). The abundance 
of Firmicutes was lower, and that of Bacteroidetes was 
higher in patients with chronic hepatitis B, LC and HCC 
than in healthy individuals. Metagenomic analysis of 
microbial communities demonstrated an increase in glycan 
biosynthesis and metabolism‑related genes in HBV‑CLD 
compared with healthy individuals. Their results denoted 
that HBV‑CLD can be associated with gut dysbiosis, with 
features including an increase in potential harmful bacteria 
(Bacteroidetes) or related genes and a decrease in potential 
beneficial bacteria (Firmicutes) or related genes (32).

4. Autoimmune liver diseases and gut microbiota

Autoimmune hepatitis (AIH) is a typical autoimmune 
disease frequently observed in middle‑aged or older 
women, and its association with gut microbiota has received 
marked attention (33). A recent study in mice revealed that 
Enterococcus  gallinarum, an intestinal bacterium, causes 
AIH when it migrates from the intestine to the liver (34). In 
humans, Enterococcus gallinarum was detected in the liver of 
AIH patients, but not in healthy controls. Manfredo Vieira et al 
used fluorescence to track bacteria in mice and identified that 
Enterococcus gallinarum was present in lymph nodes, liver 
and spleen in AIH patients (35). Interestingly, the secretion 
of immune signals associated with AIH such as the induction 
of TH17 cells was increased by Enterococcus gallinarum in 
these organs, but the presence of other types of bacteria in these 
organs did not cause AIH (34). It has also been reported that the 
diversity of gut microbiota is decreased in AIH patients (36). 
Bifidobacterium, which is associated with disease activity in 
AIH, has been reported to be decreased (37). Gut microbiota 
has also been revealed to be involved in AIH exacerbations. The 
exacerbation of AIH is triggered by interleukin (IL)‑18, which 
is induced by TLR ligands derived from gut microbiota (38,39).

Primary biliary cholangitis (PBC) is an autoimmune liver 
disease characterized by progressive destruction of the intra‑
hepatic bile ducts, leading to bile stasis, LC, and liver failure. 
CD4+ and CD8+ T lymphocytes directly target bile duct epithe‑
lial cells (40‑42). The involvement of microorganisms such as 
Escherichia coli in the etiology or pathogenesis of PBC has been 
known for a long time, and vaginal or urinary tract infections 
in particular have been cited as risk factors for PBC (40‑42). 
The major corresponding antigen of anti‑mitochondrial 
antibodies (AMAs) is pyruvate dehydrogenase complex E2 
component (PDC‑E2), and as AMAs and autoreactive T cells 
of PBC patients cross‑react with PDC‑E2 derived from enteric 
bacteria such as Escherichia coli, autoimmunity by molecular 
homology has been postulated as a mechanism of PBC 
development (40‑42). One of the histological features of PBC 
is granuloma formation, which is a tissue reaction caused by 
immune response to foreign antigens including microorgan‑
isms. Molecular biological identification of microorganisms 
in granulomas by PBC revealed genes derived from enteric 

Figure 1. Dysbiosis can cause allergic, neurological, cardiovascular, metabolic, colorectal, liver disease (hepatitis, liver cirrhosis and hepatocellular carcinoma) 
and cancer. IBS, irritable bowel syndrome; IBD, inflammatory bowel disease; HCC, hepatocellular carcinoma.
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bacteria such as Propionibacterium acnes (43). PBC, as well as 
AIH, has been indicated to be associated with dysbiosis (44), 
and although intestinal bacterial diversity is decreased in 
patients with PBC, it improves with ursodeoxycholic acid 
(UDCA), the standard treatment for PBC (44). Dysbiosis can 
be a poor prognostic factor for PBC (45).

Primary sclerosing cholangitis (PSC), an intractable autoim‑
mune disease for which there are few effective treatments other 
than liver transplantation, is often associated with inflammatory 
bowel disease such as ulcerative colitis, and the post‑transplant 
recurrence rate was lower in patients who underwent total colec‑
tomy before liver transplantation (46). It has also been reported 
that oral administration of vancomycin to PSC patients resulted in 
improvement in hepatobiliary enzyme levels and liver histological 
findings (47). These findings indicated that inflammation of the 
gastrointestinal tract and gut microbiota may be involved in the 
pathogenesis and prognosis of PSC (48,49). Nakamoto et al found 
that three species of enteric bacteria (Klebsiella pneumoniae, 
Proteus mirabilis and Enterococcus gallinarum), which cause 
activation of Th17 cells in the liver, were present in the stool of 
PSC patients with a high probability in the mesenteric lymph 
nodes (50). Th17 cells are closely associated with chronic inflam‑
mation in autoimmune diseases (51). Moreover, it was revealed 
that Klebsiella disrupts the intestinal barrier in mice, migrates to 
lymph nodes outside the intestinal tract, and induces an exces‑
sive immune response in the liver (50). Furthermore, the Th17 
immune response in the mouse liver was attenuated to ~30% by 
the elimination of Klebsiella by antibiotics. These findings may 
lead to the development of new therapeutic and diagnostic agents 
against PSC targeting gut microbiota (50).

5. Alcoholic liver disease and gut microbiota

In alcoholic liver injury, alterations in gut microbiota have been 
recognized as an important risk factor for disease progression, 
along with alcohol consumption and genetic factors (52,53). 
Alcohol has been revealed to induce dysbiosis in animal models 
and humans (54), and alcohol and its degradation products disrupt 
tight junctions in the intestinal epithelium, increasing intestinal 
permeability (i.e., leaky gut) and inflammatory responses (55). 
In humans, a decrease in butyrate‑producing Clostridiales and 
an increase in inflammation‑inducing Enterobacteriaceae have 
been observed with alcohol consumption, and in patients who 
progress to cirrhosis, an increase in oral indigenous bacteria 
and a decrease in numerous bacteria such as Bacteroidales in 
the intestine have been reported (56). It has been reported that 
intestinal bacteria‑derived PAMPs such as lipopolysaccharide 
(LPS) are increased after heavy alcohol intake (57). Chronic 
alcohol intake also alters the production of short‑chain fatty 
acids (SCFAs) as an energy source. A decrease in SCFAs 
has been observed in the intestinal tract of rats after alcohol 
intake (58). In a previous study using a rat model of alcoholic 
liver injury, it was reported that antibiotics suppressed alcoholic 
liver injury by inhibiting LPS (59).

6. Non‑alcoholic fatty liver disease (NAFLD), non‑alcoholic 
steatohepatitis (NASH) and gut microbiota

NAFLD is currently one of the most important issues in 
liver disease, with a prevalence of 25% worldwide. NAFLD 

is recognized as one of the major risk factors for HCC and 
is expected to become the most common indication for liver 
transplantation in the near future (60,61). A total of ~20% of 
patients with NAFLD may progress to NASH with chronic 
inflammation, and then to LC and HCC (61,62). The histo‑
logical picture of NASH is predominantly neutrophilic, and 
the involvement of endotoxins derived from gram‑negative 
bacteria has been considered for its pathological develop‑
ment. Obesity induces dysbiosis of gut microbiota, leading 
to a decrease in diversity and an increase in the Firmicutes 
to Bacteroidetes ratio  (63). The increased Firmicutes to 
Bacteroidetes ratio is also observed in diabetic patients (10). 
Dysbiosis in NAFLD and NASH patients increases intestinal 
permeability and causes stress on the liver by various gut 
microbiota‑derived PAMPs (64).

It has been revealed that LPS in portal blood reaches the 
liver and increases TNF‑α production in Kupffer cells via 
TLR4 signaling enhancement. Using mouse models, it has 
been revealed that Kupffer cell‑derived TNF‑α signaling also 
plays an important role in the pathogenesis of NASH (65,66). 
Furthermore, leptin, is a hormone secreted by adipocytes, 
and its main function is to suppress appetite by acting on 
the appetite center in the hypothalamus of the brain  (67). 
Obesity in NAFLD is often accompanied by hyperleptinemia. 
Leptin‑signal transducer and activator of transcription 3 
(STAT3) signaling enhances CD14 expression in Kupffer cells, 
and the resulting increased sensitivity of Kupffer cells to LPS 
is one of the mechanisms of NAFLD pathogenesis (68). In 
addition, alcohol‑producing bacteria are increased in NASH 
patients, and blood ethanol levels are predominantly elevated, 
causing oxidative stress and inflammation to the liver (69).

Liver fibrosis progression and gut microbiota in NAFLD 
patients have also been studied (aforementioned in the 
Introduction section). Gut microbiota‑derived LPS activates 
TLR4 signaling in HSCs in addition to Kupffer cells, and 
decreases downstream transforming growth factor (TGF)‑β 
pseudo‑receptor Bambi expression, which enhances the 
sensitivity of HSCs to TGF‑β, resulting in their activation and 
development of hepatic fibrosis (70). This hepatic fibrosis was 
inhibited by the suppression of LPS from the intestinal tract 
by intestinal treatment with antibiotics (70). NAFLD patients 
often consume high‑fat and high‑cholesterol diets, which accu‑
mulate free cholesterol in HSCs of NAFLD livers, resulting 
in further enhancement of LPS/TLR4 signaling in HSCs 
and exacerbation of NAFLD fibrosis (70,71). Furthermore, 
inflammation of the intestinal tract causes increased intestinal 
permeability. When NAFLD mice with a high‑fat diet (HFD) 
were treated with dextran sulfate sodium to induce colitis, 
inflammation and fibrosis of the NAFLD liver deteriorated, 
along with an increase in blood endotoxin levels (72).

7. Liver cirrhosis (LC), hepatocellular carcinoma (HCC) 
and gut microbiota

In LC patients, pathogenic Enterobacteriaceae increase 
in proportion to the degree of progression, and there is 
an increase in LPS concentration in the portal vein  (73). 
LPS exacerbates liver fibrosis (74). The formation of HCC 
was accelerated in a carbon tetrachloride (CCL4)‑induced 
cirrhosis mouse model by continuous administration of low 
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concentrations of LPS. Activation of LPS/TLR4 signaling 
also promotes hepatocellular carcinogenesis by inducing cell 
proliferation and anti‑apoptotic signaling in liver parenchymal 
cells through growth factors such as IGF‑1 and epiregulin, 
which exacerbates inflammation  (75,76). These observa‑
tions strongly indicated that the induction of inflammation 
by LPS/TLR4 signaling may promote the formation of HCC 
predisposing to LC. Moreover, it has also been reported that 
the gut microbiota of LC patients has an increased number 
of oral commensals such as Villonella, Streptococcus, and 
Prevotella, in addition to the Proteobacteria phylum, which 
are gram‑negative bacteria that produce LPS (77).

Ammonia is mainly produced in the intestinal tract as a 
byproduct of protein digestion and intestinal bacterial metabo‑
lism, flows into the portal vein, and is metabolized as urea 
in the liver through the urea cycle. In advanced cirrhosis, the 
function of the urea cycle is impaired, and ammonia enters 
the systemic circulation as a result of inadequate metabolism. 
Ammonia removal beyond the metabolic capacity of the 
liver depends on the kidney, brain, and skeletal muscle (78). 
In the brain, astrocytes detoxify ammonia by producing 
glutamine from ammonia and glutamate via the glutamine 
synthesis pathway. The swelling of astrocytes by the glutamine 
produced in this process is one of the causes of brain edema 
and encephalopathy  (79). Gut dysbiosis can be associated 
with the incidence and severity of neuroinflammation and 
encephalopathy (79). LC patients with dysbiosis are prone 
to sarcopenia with high levels of myostatin (a myokine that 
inhibits muscle protein synthesis) in muscle caused by hyper‑
ammonemia due to harmful bacteria in the intestine (80‑82). 
In LC patients, LPS causes swelling and dysfunction of astro‑
cytes from activation of TLR4 in microglia and endothelial 
cells, inducing hepatic encephalopathy (83,84). Dysbiosis may 
also cause neuroinflammation, leading to encephalopathy (85). 
LPS exacerbates portal hypertension from increased NO 
production (increased NO production increases portal pres‑
sure while increasing hepatic portal blood flow) and vascular 
smooth muscle dysfunction (86). LPS also increases intestinal 
permeability, predisposes to bacterial translocation, and causes 
spontaneous bacterial peritonitis (SBP) (87) (Fig. 2).

Similar to hepatitis virus‑related HCC, NASH‑related HCC 
in most cases develops through chronic hepatitis, liver fibrosis, 
and LC. However, some cases have been reported to develop 
HCC without LC  (88). Deoxycholate (DCA), a secondary 
bile acid converted by gut microbiota, was reported to be 
important in the formation of this non‑cirrhotic NASH‑related 
HCC (89,90). In obese mice treated with the carcinogen DMBA 
at birth and with HFD, HCC was revealed to develop in all 
mice. It was revealed that DCA, which increased with obesity, 
created a microenvironment for the development of HCC by 
inducing cellular senescence and senescence‑associated secre‑
tory phenotype (SASP; a phenomenon in which senescent cells 
that accumulate in the body with aging are highly expressed and 
secrete a variety of inflammatory proteins) in HSCs through 
gut‑liver circulation (89,90). It has recently been revealed that 
senescent cells secrete pro‑inflammatory cytokines, and the 
accumulation of senescent cells with aging is considered to 
be a trigger for the functional decline of organs and tissues, 

Figure 2. Cirrhosis‑related complications and LPS caused by cirrhosis‑related dysbiosis. LPS can cause and deteriorate hepatic encephalopathy, portal hyper‑
tension, sarcopenia and spontaneous bacterial peritonitis. LPS, lipopolysaccharide; SBP, spontaneous bacterial peritonitis.

Figure 3. Nonalcoholic steatohepatitis‑related dysbiosis and liver carcino‑
genesis through gut‑liver axis. NASH, non‑alcoholic steatohepatitis; DCA, 
deoxycholate; LTA, lipoteichoic acid; LPS, lipopolysaccharide; SASP, 
senescence‑associated secretory phenotype; HSC, hepatic stellate cell.
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resulting in various aging‑related diseases (91,92). In addition, 
long‑term HFD treatment alters the gut microbiota, induces 
the growth of gram‑positive bacteria such as Clostridium and 
excessive DCA production, and induces the translocation of 
lipoteichoic acid (LTA; a component of gram‑positive bacteria) 
into the liver due to the breakdown of the intestinal barrier, 
thereby promoting the progression of HCC through the activa‑
tion of LTA/TLR2 signaling. LTA, along with DCA, enhances 
SASP production in HSCs and increases COX‑2‑mediated 
production of prostaglandin E2 (PGE2) and expression of 
TLR2 (89,90). It has been reported that DCA levels in the blood 
of NASH patients are elevated (93). Furthermore, high expres‑
sion of COX‑2 and excessive PGE2 production were observed 
in HSCs in patients with non‑cirrhotic NASH‑related HCC, 
indicating that a similar mechanism functions in humans (89). 
Conversely, it has also been suggested that DCA promotes 
the progression of HCC by activating mTOR signaling (94) 
(Fig. 3). DCA was revealed to activate mTOR and act in a 
phosphoinositide 3‑kinase (PI3K)‑dependent manner (94). It 
is well known that alterations in the PI3K/Akt/mTOR pathway 
are an important contributor to tumorigenesis.

8. Targeting gut microbiota for the treatment of liver 
diseases

Antibiotics, prebiotics and probiotics. As an example of anti‑
biotic therapy, antibiotics such as rifaximin have been revealed 
to be effective in the treatment of liver diseases associated 
with the small intestine bacterial overgrowth (SIBO) (95,96). 
Dysbiosis caused by severe alcoholic hepatitis can be reversed 
by rifaximin therapy by reducing Veillonella (97). In addi‑
tion, rifaximin may not affect systemic inflammation (98). 
Rifaximin therapy can ameliorate endotoxemia and encepha‑
lopathy without affecting gut microbiota in decompensated 
LC subjects  (99). Prebiotics contain food components that 
are not easily digested and absorbed in the upper part of 
the gastrointestinal tract, and they promote intestinal peri‑
stalsis and the growth of specific intestinal bacteria  (100). 
Pectin, as one of the prebiotics, has been revealed to prevent 
liver diseases by promoting the growth of Bacteroides and 
inhibiting the decrease of Bacteroides caused by alcohol 
consumption, and is expected to be applied as a therapeutic 

agent  (101). Probiotics refer to living microorganisms that 
provide health benefits to humans, and the anti‑obesity effects 
of Bifidobacterium breve administration have been reported 
in mice and humans (102,103). This mechanism is considered 
to include the possibility that Bifidobacterium breve promotes 
fatty acid degradation by inducing β‑oxidation in the liver 
and inhibiting the reduction of intestinal barrier function 
caused by a HFD (104). Probiotics are expected to be most 
effective against CLDs by strongly affecting the gut‑liver axis. 
A meta‑analysis of the effects of probiotics on NAFLD and 
NASH reported that probiotic therapy lowered alanine amino‑
transferase (ALT), total cholesterol, and TNF‑α and improved 
insulin resistance in patients with NAFLD and NASH (105). 
In addition, when probiotics and prebiotics were combined in 
patients with NAFLD, ALT level and fatty liver were greatly 
improved (106,107). In a study using an aflatoxin‑induced 
HCC rat model, it was reported that probiotic fermented milk 
and chlorophyllin revealed tumor growth by suppressing the 
expression of c‑Myc, Bcl‑2, cyclin D1, and Ras p21  (108). 
Dapito et al also reported that inactivation of TLR4 by anti‑
biotics reduced HCC by 80‑90% (75). Thus, animal models 
indicated that regulation of the gut microbiota may be a 
preventive strategy for HCC.

Fecal microbiota transplantation. Fecal microbiota trans‑
plantation (FMT) is a method of attempting to treat various 
diseases by transplanting normally balanced intestinal bacteria 
from healthy individuals to replace the imbalanced intestinal 
microbiota. In 2013, van Nood et al reported a randomized 
controlled trial (RCT) of FMT for recurrent Clostridium diffi-
cile infection, and since then, the clinical application of FMT 
has been attracting attention. According to RCTs and systematic 
reviews of recurrent Clostridium difficile, 60‑90% of patients 
were cured without recurrence by single FMT (109‑111).

There are several studies on FMT in liver diseases. FMT 
altered the gut microbiota of mice with high sensitivity to 
ethanol and improved alcoholic liver injury (3). FMT can also 
improve cirrhosis‑related neuroinflammation in mice (112). In 
humans, a pilot study was conducted in 8 male patients with 
severe alcoholic hepatitis. The results revealed that FMT was 
effective and safe in treating hepatic damage within 1 week 
after FMT, and eventually exhibited improvement in severe 

Figure 4. Improvement of dysbiosis by pharmacological therapies and fecal microbiota transplantation. FMT, fecal microbiota transplantation.
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hepatic damage and survival even after 1 year (61). In addi‑
tion, in a previous study of FMT vs. standard therapy in 20 
male LC patients associated with recurrent hepatic encepha‑
lopathy, FMT from donors was associated with improvement 
of dysbiosis, improved cognitive function and shorter hospital 
stay in the recipients compared with the standard therapy 
group (113). Further clinical trials are underway to determine 
whether FMT can be safely used to treat CLDs.

9. Final remarks

In recent years, it has become clear that gut microbiota is 
closely related to the pathogenesis of various liver diseases, 
and research on the mechanism of promotion or suppression 
of HCC via the gut‑liver axis has become a fascinating topic. 
The components of gut microbiota such as LPS and LTA are 
associated with liver fibrosis and HCC progression. In addition, 
gut‑microbiota‑derived metabolites such as secondary bile 
acids and fatty acids, cellular senescence and SASP are also 
closely related to liver pathology. Elucidation of the detailed 
molecular mechanisms of the effects of gut microbiota‑derived 
substances via the gut‑liver axis will lead to the development 
of advanced methods for the treatment and prevention of liver 
diseases. FMT is gaining attention as a treatment that can 
improve dysbiosis as well as antibiotics, prebiotics and probi‑
otics (Fig. 4). However, numerous issues remain to be clarified, 
such as the administration method, long‑term benefits, and 
side effects of FMT. It is anticipated that more evidence will 
be generated in the future.
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