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Abstract. The mechanical signals within the extracellular 
matrix (ECM) regulate cell growth, proliferation and differ‑
entiation, and integrins function as the hub between the ECM 
and cellular actin. Focal adhesions (FAs) are multi‑protein, 
integrin‑containing complexes, acting as tension‑sensing 
anchoring points that bond cells to the extracellular microen‑
vironment. Talin‑1 serves as the central protein of FAs that 
participates in the activation of integrins and connects them 
with the actin cytoskeleton. As a cytoplasmic protein, Talin‑1 
consists of a globular head domain and a long rod comprised 
of a series of α‑helical bundles. The unique structure of 
the Talin‑1 rod domain permits folding and unfolding in 
response to the mechanical stress, revealing various binding 
sites. Thus, conformation changes of the Talin‑1 rod domain 
enable the cell to convert mechanical signals into chemical 
through multiple signaling pathways. The present review 
discusses the binding partners of Talin‑1, their interactions, 
effects on the cellular processes, and their possible roles in 
diseases.
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1. Talin‑1 structure overview

Cells can sense the rigidity of the extracellular matrix (ECM) 
through integrin adhesions, which have been reported to be a 
significant factor in various processes, including tissue repair, 
maintenance and formation  (1,2). The mechanical signals 
of the extracellular microenvironment regulate cell growth, 
proliferation, differentiation and integrin activity  (3). The 
physical connection between cells and the ECM is based on 
multi‑component molecular complexes that are controlled 
by integrins, known as the core structure of transmembrane 
proteins  (4). Through integrins, the mechanical signals of 
the extracellular microenvironment can be transmitted intra‑
cellularly  (4). Integrins are transmembrane heterodimeric 
glycoprotein receptors consisting of α‑ and β‑heterodimers, 
providing a connection between the ECM and intracellular 
actin cytoskeleton through their large extracellular domains, 
via adapter proteins, including Talin‑1 and vinculin (5‑7). As 
the main activator of integrin, Talin‑1 has been reported to 
connect the cytoplasmic domain of integrin with the cyto‑
skeleton of actin to form focal adhesions (FAs) (8). FAs are 
the congregates of the intracellular proteins that function 
as tension‑sensing anchoring points, integrating cells with 
the extracellular microenvironment (9,10). In addition, FAs 
have been reported to promote intracellular reorganization, 
leading to dynamic alterations in cell morphology and func‑
tion (9-12). In recent years, researchers have discovered that 
the specific structure of Talin‑1 with mechanical sensitivity 
plays a defining role in mechanical properties and interaction 
networks in cellular mechanotransduction.

Talin‑1 is mainly expressed in the liver, kidneys, stomach, 
spleen, lungs and vascular smooth muscle, and is a large, 
270‑kDa protein with 18 domains, containing a 50‑kDa 
globular head, a long rod comprised of 62 helices forming 
13 helical bundle domains (R1‑R13) (13,14) and a dimerization 
(DD) motif at the C‑terminus (15). A schematic view of Talin‑1 
structure is illustrated in Fig. 1. The head four‑point‑one, ezrin, 
radixin, moesin (FERM) domain consists of four subdomains 
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(F0‑F3), being a common structural feature of several integrin 
tail‑binding proteins, while the rod domain includes 13 helical 
bundles (R1‑R13), forming an extendible and flexible chain 
with a dimer domain (DD) at the end of the structure, through 
the connection with short linkers. The unique conformation 
of Talin‑1 allows it to function as a ‘spring’ and unfold into a 
60‑100 nm linear rod (16‑18). This conformational change is 
responsible for binding to various FA components, including 
actin and vinculin (19).

The rod part of Talin‑1 is the main structure, with the ability 
to sense mechanical forces and regulate the assembly and 
maturation of the FA complexes (FACs). R9 and R12 shield the 
binding sites of integrin and phosphatidylinositol‑4,5‑bispho‑
sphate (PIP2) of the FERM structure (11). R3 is extremely 
sensitive to mechanical forces (20). As the ‘goalkeeper’ of 
FAC, it is the first to release the folded four‑helix bundle 
under the action of relatively low‑intensity mechanical 
force (5 pN), and the compact structure of Talin‑1 begins 
to collapse (19‑21). The second messenger, PIP2, promotes 
Talin‑1 binding to integrin, subsequently stretching Talin‑1 
conformation further and binding to actin, while exposing 
vinculin binding sites (VBS) (22,23). Moreover, R3 can also 
directly bind Rap1‑GTP interacting protein (RIAM), which 
results in VBS exposure (24). Talin‑1 contains up to 11 VBS, 
rendering vinculin a crucial regulator for the performance of 
signal transformation (25). Vinculin has been identified to 
trigger the phosphorylation and nuclear localization of the 
transcription factor, Yes‑associated protein (YAP) (26).

Subdomains F0 and F1 of Talin‑1 have been reported to 
bind to Ras‑associated protein 1 (Rap1) or RIAM and partici‑
pate in integrin activation (27). F3 binds to integrin cytoplasm 
domains and related proteins, including FA kinase (FAK), 
Layilin, T‑cell lymphoma invasion and metastasis 1 (TIAM1), 
phosphatidylinositol phosphokinase Iγ (PIPKIγ) and RIAM, 
as well as F1‑F3 contain actin‑binding site (ABS1), R4‑R8 
(ABS2) and R13‑DD (ABS3) (19,28). Corresponding to F3, 
R8 can also bind to deleted in liver cancer 1 (DLC1), RIAM, 
vinculin and paxillin (19,29), being able to form a competitive 
interaction network. Among these, DLC1 is the Rho GTPase 
activation protein (RhoGAP), being able to inhibit the contrac‑
tion of actin and promotes the refolding of Talin‑1 (30). The 
combination of DLC1 and TIAM1 has been reported to provide 
the capability to balance Rac and Rho when they are involved 
in forming tension fibers (30). Subsequently, this combination 
plays a counter‑regulatory role in the process of FA matura‑
tion driven by actin polymerization (30). Therefore, under the 
promotion of multiple factors, Talin‑1 functions as a ‘spring’ 
at the core of FA transmitting tension between the ECM and 
actin (26,29). Based on its unique structure, Talin‑1 is able to 
sense and respond to mechanical signals from the matrix and 
transmit mechanical forces to the surrounding cells (19). The 
matrix, in turn, can convert forces into intracellular biochem‑
ical signals, thereby regulating nuclear transcription (26,31). 
Furthermore, mechanotransduction is triggered due to Talin‑1 
unfolding above the mechanical threshold (26). Integrins have 
been reported to unbind and release forces before Talin‑1 
unfolding, provided that stiffness remains below the mechan‑
ical threshold; in contrast, when the stiffness supersedes the 
threshold, Talin‑1 unfolds and binds to vinculin, leading to 
adhesion growth and YAP nuclear translocation (26,31). Thus, 

it has been reported that the combination of Talin‑1 unfolding 
dynamics with a theoretical clutch model could quantitatively 
predict cell response (26,31). Overall, the specific structure of 
Talin‑1 including the active and inactive forms provides the 
possibility for proteins to convert mechanical signals into 
chemical signals. In the inhibited state, the rod structure folds 
into a closed spherical conformation with a diameter of 15 nm, 
based on charge interaction (11). The inhibition of Talin‑1 is 
crucial to cell function and development, and its disruption 
has been reported to greatly contribute to the migration of 
metastatic cancer cells (32‑34). The active form of Talin‑1 has 
been well‑characterized; however, its inhibited state has not 
been extensively studied.

2. Role of Talin‑1 in mechanotransduction

Interactions between cells and the ECM are fundamental 
features of multicellular organisms (35). All living cells are 
constantly subjected to various mechanical signals from the 
surrounding cells or from the ECM (36). Mechanotransduction 
is a process that helps cells to adapt to changes in the microen‑
vironment by transforming the physical signals into biological 
ones  (36). In recent years, researchers have demonstrated 
a growing interest in mechanical forces as key regulators 
of cellular behavior. Mechanical forces can be directed on 
the cell externally from the ECM or generated internally 
from the active cytoskeleton (37). A number of intracellular 
molecules defined as mechanosensors have been discovered, 
which can react to mechanical stress, including Talin‑1 and 
vinculin. Conformational changes of mechanosensors in 
response to mechanical stress can alter their binding partners, 
thereby revealing new potential binding sites. This switch of 
binding partners is the key to converting mechanical signals 
into intracellular biochemical signals (38). FAs are the major 
connection between ECM and cytoskeleton, with multiple 
components including scaffolding molecules, GTPases, and 
many enzymes, including kinases, phosphatases, proteases, 
and lipases  (39‑42). In FAs, integrins and proteoglycans 
mediate adherent junctions from the actin cytoskeleton to the 
actin cytoskeleton (43). The integrin family of type I trans‑
membrane adhesion receptors has been reported to mediate 
cell‑matrix attachment, as well as cell‑cell attachment. 
Integrins are involved in cell anchorage to the ECM and its 
binding to the cytoskeleton and cytoplasmatic signaling, thus 
directly affecting tissue architecture (44).

The signals transmitted by integrins are bidirectional. 
Firstly, through ‘inside‑out’ signaling, intracellular signals 
may induce the binding of Talin‑1 and Kindlin to the cyto‑
plasmic domains of integrin β subunits, thereby activating 
integrin ligand binding function (45‑48). Conversely, a second 
type of signaling termed ‘outside‑in’ signaling, is mediated 
by interactions between integrins and their multiple ligands 
across the membrane, enabling cells to sense and respond to 
the extracellular environment (49,50), including cell spreading, 
retraction, migration, proliferation and survival.

Talin‑1 and vinculin are mechanosensitive cellular 
proteins that can be folded and unfolded via mechanical 
forces (51). This unfolding causes the disruption of the tertiary 
structure of the protein, revealing the cryptic sites for various 
ligand binding, molecule activation or domain cleavage by 
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proteases (52). In addition to its role as an integrin activator, 
Talin‑1 also functions as a mechanosensor responsible for the 
transmission of tension between the actomyosin machinery 
and the ECM, within the FA (11). To perform its role as a 
mechanosensor, Talin‑1 requires at least two anchorage points: 
ECM‑anchored integrins and actin (the cytoskeleton). Talin‑1 
head domain binds to the integrin cytosolic tail with its tail 
binding to the actin, thus connecting integrins with the cyto‑
skeleton (53). This bridging position allows Talin‑1 to be folded 
and unfolded either by mechanical forces generated from 
the outside or internally by cytoskeletal contraction. Talin‑1 
participates in both ‘inside‑out’ and ‘outside‑in’ signaling, 
and is capable of transmitting mechanical forces imposed on 
cells externally, or generated internally (45,53‑56). Through its 
binding to the cytoplasmic tail of integrin β subunits, Talin‑1 
controls integrin activation, linking the integrin β subunit to 
the actin bundles rod through by the C‑terminal rod (14). The 
bridging position of the Talin‑1 molecule leads to its unfolding 
and stretching due to the actomyosin contraction, and these 
conformation changes affect the affinity and interaction with 
its binding partners (57). Talin‑1 is required for the initial weak 
connection between small clusters of integrins and the cyto‑
skeleton (58), and for the reinforcement of integrin linkages 
to the cytoskeleton when cells encounter mechanical forces, 
again suggesting the role of Talin‑1 in FA formation (42,59). 

Thus, similar to the activation and inactivation of integrins, 
the activation and inhibition of Talin‑1 has been reported to 
play a crucial role in the regulation of FA dynamics and the 
transduction of mechanical signals. 

3. Talin‑1 interaction network

Interaction with Rap1 and RIAM. Rap is a part of the Ras 
family of small GTPases with five isoforms reported: 
Ras‑associated protein 1A (Rap1A), Rap1B, Rap2A, Rap2B 
and Rap2C, expressed in mammalian cells (60). Rap2A and 
Rap2C are considered as the central membrane‑associated 
small GTPases, which recruit proteins to the plasma membrane 
for the modulation of various cellular responses  (61‑64), 
such as exocytosis  (65), junction formation  (66‑68), cell 
adhesion  (69,70), migration and invasion  (71), cell prolif‑
eration (72), apoptosis (73) and polarity (74,75). Consequently, 
they are also important for cardiovascular function (76), carci‑
nogenesis (77,78) and liver physiopathology regulation (79). 
The mechanisms responsible for the recruitment of Talin‑1 
to the plasma membrane remain to be clearly elucidated. 
As suggested in a previous study, Talin‑1 is recruited to the 
plasma membrane through the Rap1 GTPase and its effector, 
RIAM (80). However, even though RIAM binding to F3 of the 
Talin‑1 head domain helps the process of Talin‑1 activation (81), 

Figure 1. Activation of Talin‑1 through interaction with Rap1 and PIP2. (A) Rap1 phosphorylation results in its activation, promoting the recruitment of Talin‑1 
to the plasma membrane. PIP2 interacts with Talin‑1 F2 and F3 and induces the conformational change that reveals an integrin binding site in its F3 domain. 
(B) PIPKIγ co‑localizes with Talin‑1 F3, enzymatically promoting PIP2 production. (C) Fully activated, PIPKIγ‑free Talin‑1 binds and activates the integrin β 
subunit. Rap1, ras‑proximate‑1; PIP2, phosphatidylinositol‑4,5‑bisphosphate; PIPKIγ, type I phosphatidylinositol phosphate kinase γ. 
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the function of the Rap1‑RIAM‑Talin‑1 pathway appears to 
be leukocyte‑specific (82‑84). Nevertheless, RIAM is still an 
important factor for cell signaling, which also binds to the 
folded R3 of the Talin‑1 rod (13). When exposed to forces, 
R3 structure is disrupted, leading to the exposure of cryptic 
VBS and the disruption of RIAM binding (21). This exchange 
of ligands thus functions as a mechanochemical switch for 
Rap1 signaling, with RIAM binding to Talin‑1 in the absence 
of force and to vinculin in the presence of force (19). Recent 
studies have suggested that membrane recruitment can be 
controlled via the direct binding of Rap1 to the ubiquitin‑like 
F0 and F1 Talin‑1 domains (60,85‑88). Even though Talin‑1 
F0 and F1 both bind to Rap1 very weakly in solution, Talin‑1 
F0 and F1 may bind intracellularly to membrane‑anchored 
Rap1 and lead to strong binding and efficient recruitment 
of Talin‑1 to the membrane  (60,85‑88). The phosphoryla‑
tion of membrane‑bound Rap1 and its activation promotes 
Talin‑1 binding and its recruitment to initiate FA formation 
(Fig. 1A). Mutations interfering with either Rap1/Talin‑1‑F0 or 
Rap1/Talin‑1‑F1 interaction lead to impaired FA assembling, 
decreased integrin activation in CHO cells and malfunctioning 
leukocytes and platelets in mouse models (89). In case both 
interactions are disrupted, more severe defects in FA assembly, 
cell spreading and adhesion may be observed (60,85‑88).

Interaction with PIP2 and type I phosphatidylinositol phos‑
phate kinase γ (PIPKIγ). The amount of PIP2 present in 
membrane phospholipids is very low (0.1 to 5% of inner plasma 
membrane bilayer lipids) (90). However, it has been reported to 
play a crucial role in the regulation of various cellular activi‑
ties, including vesicle trafficking, actin polymerization, and 
integrin signaling complex formation (91‑94). PIP2 can recog‑
nize multiple motifs, including epsin N‑terminal homology 
(ENTH), phosphotyrosine binding (PTB), pleckstrin homology 
(PH), and can assist the recruitment of different proteins to the 
membrane (95). During the cell attachment to the ECM via 
integrins, PIP2 functions as a scaffolding molecule, recruiting 
various molecules to the activated integrin site and as a signaling 
molecule, regulating target molecule activities (96‑100). It has 
been previously revealed that PIPKIγ interacts with Talin‑1 
N‑terminal head PTB domain and is recruited to the FA sites 
(Fig. 1B) (95,101). When PIP2 binds to Talin‑1, it induces a change 
in the conformation of the Talin‑1 head domain, further leading 
to the unmasking of the integrin‑binding site (Fig. 1C) (89). By 
contrast, the F3 domain of Talin‑1 has been reported to directly 
bind to the integrin β cytoplasmic tail through the same PTB 
domain. Even though PIPKIγ may appear to impede Talin‑1 
F3 PTB domain binding to integrin, it has been reported that 
PIPKIγ requires only small quantities of Talin‑1, being abun‑
dant in cells, to be recruited (89). As a kinase, the concentration 
of PIPKIγ has been reported to be usually decreased (102). 
However, it is capable of enzymatically producing PIP2, for the 
activation of the PIPKIγ‑free Talin‑1 (89). Thus, the interac‑
tion between PIPKIγ and Talin‑1 promotes PIP2 production, 
binding and activating in turn Talin‑1, leading to the enhanced 
Talin‑1‑integrin binding (Fig. 1C) (89). It has been reported in 
a previous study that in migrating cells, integrins reassembled 
FAs polarized towards the leading edge, and PIPKIγ, together 
with Talin‑1 and FAK, regulating endocytosed integrin activa‑
tion‑induced FA assembly polarization (103).

Integrin activation by Kindlin and Talin‑1. In recent 
years, there is an increasing interest in Kindlin, a 
FERM‑domain‑containing protein, that may play a crucial role 
in integrin activation (104,105). The Kindlin family consists of 
three members, Kindlin‑1, Kindlin‑2 and Kindlin‑3. Kindlin‑2 
is expressed in the majority of cell types, whereas Kindlin‑1 
and ‑3 are mainly expressed in hematopoietic and epithelial 
cells (89). The loss of Kindlin‑1 may lead to the blistering 
and fragility of the skin in humans and mice, while Kindlin‑2 
plays an essential role in embryonic development. The lack of 
Kindlin‑3 has been suggested to cause various immune prob‑
lems and bleeding disorders (89). The head domain of Kindlin 
consists of four subdomains, ubiquitin‑like F0, F2 subdomain 
with an inserted PH domain and FERM domain comprised 
of three subdomains F1, F2 and F3  (89). β‑integrin tails, 
Kindlin, and Talin‑1 head form a ternary complex in vitro 
(Fig. 2A) (89,106,107). The direct Kindlin‑integrin interaction 
is essential for maximal integrin activation  (108). Kindlin 
is recruited to the cell membrane by binding directly to the 
anionic membrane phospholipids (PIP2) utilizing its positively 
charged residues in F0 domain and the second NPXY motif in 
the β‑integrin tails using F3 head subdomain The inhibition 
of Kindlin binding leads to the disruption of Talin‑1‑mediated 
integrin activation (106,107,109). Nevertheless, a recent study 
revealed that Kindlin binding disruption still allows integrins 
to be activated via Talin‑1; however, the enhancing effect of 
Kindlin is obstructed (110). Thus, the cooperative interaction 
of Talin‑1 and Kindlin leads to the stable active conformation 
of integrin and promotes ligands binding and clustering (89). 
The binding of Kindlin with Paxillin, which, in turn, binds 
to FAK, giving rise to an interesting ‘Kindlin‑Paxillin‑FAK’ 
pathway that can regulate FAK activation, and can participate 
in dynamic cell adhesion and FA assembly (111‑113).

Interaction with FAK and paxillin. Paxillin is a 68‑kDa 
cytoskeletal protein and its main function is the recruitment 
of FAK to the FA site, further promoting in turn the tyrosine 
phosphorylation of paxillin and rendering Paxillin an impor‑
tant docking protein for the integrin signal transduction (114). 
Paxillin is recruited to the FA site mainly through its interac‑
tion with the Kindlin and Talin‑1 R8 domain (Fig. 2A) (89) and 
its head domain, and a recent study suggested that it may bridge 
Kindlin and Talin‑1 (115). There is evidence to suggest that the 
interaction between paxillin and FAK markedly contributes 
to cell motility and FA assembly and disassembly (116,117). 
FAK is 125‑kDa non‑receptor tyrosine kinase that is expressed 
throughout the human body and participates in signal trans‑
duction from the adhesions for the modulation of diverse 
biological cellular functions, including cell migration, survival 
and cancer cell invasion (118‑120). FAK has been also reported 
to be involved in binding various proteins and in their recruit‑
ment into larger protein complexes (121), thus functioning as 
an adaptor protein utilizing its multiple domains, including the 
FERM domain (122). There are multiple pathways associated 
with FAK activation, including bioactive lipids, growth factors 
and mitogenic neuropeptides (118). Following its recruitment 
to the FA site, FAK interacts with the PIP2‑rich membrane to 
relieve the autoinhibitory interaction between its FERM and 
kinase domains (123). This results in the exposure of the auto‑
phosphorylation site, allowing FAK to function as a molecular 
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scaffold and recruit SRC kinases to further phosphorylate its 
main activation loop inside the kinase domain (123). FAK may 
also act as a scaffold for the nuclear transcriptional regulatory 
complexes affecting the expression of target genes, including 
chemokine encoding genes which are responsible for anti‑
tumor immunity and microenvironment (124,125).

Interaction with DLC1. The Talin‑1 rod has been reported 
to respond to mechanical force, as well as adjusting the 
contractility of FAC through the Rho‑GTPase signaling 
pathway (126). This pathway is responsible for the regula‑
tion of FA assembly and contractility, and can be affected 
by the tension on Talin‑1 (127). Originally, the members of 
the Rho branch were considered only as actin cytoskeleton 
regulators. However, a wide range of other functions including 
expression, morphogenesis, motility and proliferation have 

been discovered  (128‑130). In human cancers, the activity 
of Rho‑GTPase is often altered and may have an effect on 
tumor invasiveness and growth (131,132). In an active state, 
it has been suggested that Rho proteins may activate various 
effector molecules, including phospholipases, lipid and protein 
kinases  (128‑130). Additionally, Rho family proteins may 
function as a molecular switch via a nucleotide‑controlled 
conformational change (133,134). There are two classes of 
regulatory proteins that are controlling the GTP‑GDP cycle 
of Rho: Guanine nucleotide exchange factors (GEFs) stimulate 
the binding of GTP to activate the protein, and GTPase acti‑
vating proteins (GAPs), which are responsible for inactivation 
and GTP hydrolysis (135). It has been suggested that, both 
RhoGEFs and RhoGAPs are regulated through interactions 
with different molecules. Some of the RhoGEFs can be acti‑
vated as a response to the stimulation of receptors on the cell 

Figure 2. Talin‑1 interaction network in cellular mechanotransduction. (A) Kindlin is recruited to the plasma membrane via its interaction with membrane 
PIP2, reveals its autoinhibited conformation, binding to the integrin tail and promoting more stable active integrin conformation and enhanced ligand binding. 
The tail of the Kindlin recruits FAK via paxillin binding to its tail domain. Completely unfolded Talin‑1 tail begins to interact with its various binding partners, 
R3 binds to the RIAM, and R8 interacts with DLC1, subsequently regulating the RhoA and paxillin activity. DLC1 and paxillin form a competitive interaction 
network, since both bind to the R8 domain. Talin‑1 R13 binds to the actin. (B) With the exertion of medium intensity force, Talin‑1 R3 unfolds, causing the 
dissociation of RIAM and exposure of the cryptic VBS, culminating in vinculin binding to unfolded R3, and actin binding to the vinculin tail. Increased protein 
levels of cytoskeleton‑associated vinculin result in an increase in nuclear‑localized YAP/TAZ levels. (C) In the presence of higher intensity force, unfolding of 
Talin‑1 R8 causes the dissociation of DLC1 and promotes RhoA activity, consequently affecting the MLC‑2 signaling pathway and YAP nuclear translocation. 
R3 domain unfolds completely at high intensity force and becomes a polypeptide chain that cannot bind vinculin. PIP2, phosphatidylinositol‑4,5‑bisphosphate; 
FAK, focal‑adhesion kinase; RIAM, rap1‑GTP interacting protein; DLC‑1, deleted in liver cancer 1; RhoA, ras homolog family member A; VBS, vinculin 
binding site; YAP, yes‑associated protein; TAZ, transcriptional coactivator with PDZ‑binding motif; MLC‑2, myosin light chain‑2.
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surface, while other GEFs form various complexes with scaf‑
folding proteins and Rho effectors, elevating specificity and 
efficiency of Rho signaling (136,137). Although the RhoGAP 
signaling pathways have not been studied in detail, it has been 
suggested that they are linked to normal cell function altera‑
tions in diverse human diseases (138). One of the RhoGAP 
family members is DLC1, which has been of increased interest 
as a potential tumor suppressor and cytoskeletal organization 
and cell proliferation (138). It has been reported that DLC1 
mRNA is expressed in the majority of tissues in adults; 
however, it is completely absent or downregulated in various 
human cancers, including gastric  (140), ovarian  (141,142), 
lung  (135,141,143,144), pancreatic  (145), renal  (141), pros‑
tate  (146), colon  (141), breast tumors  (141,147,148) and 
hepatocellular carcinoma (HCC) (149‑151). DLC1 is a negative 
regulator of Ras homolog family member A (RhoA) signaling, 
binding the unstretched form of Talin‑1 and decreasing the 
contractility of myosin‑driven machinery (Fig. 2A) (29,30,152), 
and released in response to tension (29). Provided that DLC1 
is localized to the FA site through interaction with Talin‑1‑R8, 
it may function as a RhoGTPase regulator and affect cellular 
function (152). Since the tension on large adhesions is often 
much weaker than tension on smaller adhesions (54,153), FAs 
growth promoted by contractility and tension on Talin‑1 results 
in the redistribution of force between increased numbers of 
FA components, consequently decreasing the level of tension 
experienced by single Talin‑1 molecule. The reduction of 
mechanical stress may facilitate the refolding of the Talin‑1 
domain bound by DLC1, thus decreasing the contractility 
by inhibiting RhoA (29). Subsequently, the second impor‑
tant molecular switch is revealed, thus being able to convert 
mechanical signals to the chemical with subsequent effect 
on downstream signaling, including myosin light chain  2 
(MLC‑2), with its activation being directly proportional to the 
quantities of active RhoA (29).

Interaction with vinculin. Adherent cells are anchored to the 
ECM via FA proteins, whereas cell‑cell contacts connect 
via FA junction proteins. A previous study revealed that 
myosin‑driven cell contractility or externally applied stresses 
greatly contribute to the strengthening of these connec‑
tions  (154). The mechanisms through which the proteins 
involved in these connections sense, transmit and respond to 
mechanical signals have not yet been fully elucidated. Vinculin 
is one of the potential candidate molecules for the role of key 
cell‑matrix and cell‑cell adhesion protein, establishing a strong 
physical connection for force transmission between ECM and 
cytoskeleton (154). 

Vinculin and Talin‑1 play crucial roles in cell‑matrix 
mechanosensing (155). Both proteins exist an autoinhibited 
form, and in order for it to be activated, it has been suggested 
that vinculin should bind to a mechanically activated 
Talin‑1 (156). Vinculin is a 116‑kDa protein, consisting of 
head domains D1, D2, D3, D4, and a tail domain linked to 
the head domain through the proline‑rich linker (7,156). The 
head of vinculin forms a pincer‑like structure via inter‑domain 
interactions (157,158). Vinculin D1 binds to the eleven VBS 
on the Talin‑1 rod and other signaling proteins, as well as 
the F‑actin through its tail domain  (159,160). In order to 
bind Talin‑1, vinculin requires the exposure of the cryptic 
VBS buried inside α‑helical bundles of Talin‑1 rod domains, 
subsequently unfolding when exposed to a mechanical force, 
and the forces within the biological range are adequate for 
the exposure of the VBS  (13,21,51,161). In the absence of 
force, Talin‑1 R3 is folded and binds to RIAM. However, 
when a medium‑intensity force is exerted, it easily unfolds, 
revealing cryptic VBS promoting the dissociation of RIAM 
and vinculin binding (Fig.  2B)  (19). The Talin‑1‑vinculin 
interaction is of low affinity (162). However, with the pres‑
ence of phosphatidylinositol 4,5‑bisphosphate [PtdIns(4,5)
P2] affinity has been reported to increase significantly (163). 

Table I. Binding partners of Talin-1 and the functions.

Binding partners	 Function	 (Refs.)

Rap1	 Recruits Talin-1 to the cell membrane.	 (55,81-84)
PIPKI γ	 Enzymatically produces PIP2 at the cell membrane	 (21)
PIP2	 Acts as a scaffolding molecule, interacts with Talin-1	 (21,91-95,101,102,104,158)
	 head domain and induces the conformation change that	
	 reveals an integrin binding site. In addition, it recruits	
	 kindlin to the cell membrane and promotes vinculin	
	 activation	
Kindlin	 Enhances the stable active conformation of integrin	 (21,103)
Paxillin	 Recruits FAK to the focal adhesion site	 (109,111,112)
DLC1	 When DLC1 binds to Talin-1, regulates RhoA signaling	 (27,28,146)
	 and decreases the contractility of myosin-driven machinery	
RIAM	 Regulates Rap1 signaling	 (11,17,80)
Vinculin	 Links integrin-Talin-1 complexes to the actin cytoskeleton	 (159)
	 and participates in the nucleation and polymerization of actin	

Rap1, Ras-associated protein; PIPKIγ, type I phosphatidylinositol phosphate kinase γ; PIP2, phosphatidylinositol-4,5-bisphosphate; DLC1, 
deleted in liver cancer 1; RIAM, Rap1-interacting adapter molecule.
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Thus, the binding of PIP2 decreases the interaction intensity 
between vinculin head and tail domains and secures an open 
conformation of vinculin, allowing the binding of additional 
proteins, including F‑actin (164). Thus, it was deduced that 
vinculin plays a crucial role in the regulation of integrin adhe‑
sions. Additionally, FA dynamics are likely to be regulated by 
vinculin‑Talin‑1‑integrin‑ECM interactions (154). Vinculin 
has been suggested to link integrin‑Talin‑1 complexes to the 
actin cytoskeleton and to also participate in the nucleation 
and polymerization of actin (165). Vinculin and Talin‑1 can 
also bind paxillin even with both proteins inactive. Adhesions 
containing paxillin and vinculin can be formed without the 
interaction of Talin‑1 and integrins (166). Talin‑1 binding to 
the integrins has been suggested to result in the engagement 
of mechanical forces and adhesion maturation (34). Hence, 
vinculin is a crucial protein for the formation of cell adhesion, 
turnover and maturation (167). 

Inf luence on YAP/transcriptional co‑activator with 
PDZ‑binding motif (TAZ) through vinculin. Hippo effec‑
tors YAP and TAZ are proteins with a molecular weight of 
65 and 43 kDa, respectively, and have been reported to act 
as transcription factors responsive to the changes in ECM 
mechanics and composition  (168,169). YAP contains a 
coiled‑coil domain, an Src homology domain‑3 binding motif 
(SH3‑BM), an WW domain and a tea domain transcription 
factor (TEAD). In its C‑terminus, YAP has a PDZ‑binding 
motif (PDZ‑BM) and, in contrast to TAZ, YAP contains a 
proline rich region in the N‑terminus (170). Since YAP lacks 
a DNA‑binding site, it has been reported to bind to the TEAD 
DNA‑binding transcription factors in order to take effect in 
antiapoptotic, cell fate, and growth promoting genes (171). 
Moreover, YAP/TAZ plays a vital role in cell shape, polarity 
and cytoskeletal organization (171), YAP nuclear expression 
is connected to Rho signaling (Fig. 2C) and the presence of 
vinculin spikes in the FA (169). FAs act as a bridge between 
ECM‑integrin connection and cytoskeleton and may be 
crucial for cellular mechanosensing (172). FA formation is 
controlled by cell spreading and RhoA GTPase activity, in 
order to stabilize the anchorage of the actin cytoskeleton to the 
cell membrane, requiring also YAP co‑transcriptional func‑
tion (169). Therefore, YAP mechanosensing activity may be 
the key determinant of cell mechanics in response to ECM 
stimuli. 

According to previous reports, the nuclear localization 
of Yap is significantly increased in cells on rigid substrates 
compared with cells on soft substrates  (173). On the rigid 
ECM, YAP/TAZ accumulation within the nucleus becomes 
transcriptionally active, while on the soft ECM, the accu‑
mulation occurs within the cytosol (173). An increased ECM 
stiffness positively affects the amount of cytoskeleton‑asso‑
ciated vinculin and elevates the levels of nuclear‑localized 
transcriptional coactivator paralogs, YAP and TAZ, and their 
activity. On the rigid ECM, vinculin participates in nuclear 
translocation and the activity regulation of YAP/TAZ. The 
process of YAP/TAZ nuclear translocation has been reported 
to be partly regulated by vinculin, through the organization of 
the actin cytoskeleton. Talin‑1 molecule only unfolds when a 
certain stiffness threshold is surpassed. Above this threshold, 
Talin‑1 molecule unfolds and binds to various binding partners, 

including vinculin, leading to YAP nuclear translocation and 
adhesion growth (169). Even though the actin organization and 
intracellular tension appears to take part in the regulation of 
this process, the mechanisms through which ECM stiffness 
regulates YAP/TAZ remain to be elucidated. The explana‑
tion of the interaction between Talin‑1 and Yap will further 
broaden the understanding of the cellular mechanotransduc‑
tion role of Talin‑1.

4. Conclusions and future perspectives

As the main integrin‑activating and mechanosensing protein, 
Talin‑1 is important for FA assembly, as well as for various 
cellular events. Although Talin‑1 itself is a protein with a vast 
interaction network, its interactions with vinculin, DLC1, Rap1 
and RIAM, paxillin, and FAK subsequently affect multiple 
signaling pathways inside the cell. Through interactions with 
its binding targets (Table  I), Talin‑1 converts mechanical 
signals into chemical, consequently affecting a plethora of 
cellular responses. 

Recent discoveries in the field of mechanobiology have 
a marked effect on other disciplines. It has previously been 
revealed that even the alterations in the physical environ‑
ment of the cell, ECM in particular, can cause a malignant 
phenotype in the cancer cells (174). The presence of Talin‑1 
is insufficient for proper cell function. It must be subjected to 
force, either through cell contraction or through the applica‑
tion of shear stress (34). The function of Talin‑1 in cancerous 
phenotypes is not limited on the influence on adhesion and 
motility. In contrast, it also depends on downstream signaling, 
as emphasized by Talin‑1 overexpression in nonadherent cells. 
Until recently, the role of Talin‑1 has been studied in oral 
squamous cell (175), colon (176) and prostate carcinoma (177). 
Studies have revealed that Talin‑1 could be used as a biomarker 
for HCC infiltration and metastasis (178,179). Moreover, the 
co‑localization of Talin‑1 and Vinculin has been determined 
to be in the liver infected by Ebola virus (180). In the process 
of HBV‑induced liver fibrosis, the increase in PIP2 levels 
increases the risk for liver fibrosis  (181), and additionally, 
HBV X protein (HBx) can mediate the decrease of Talin‑1 
protein monomer levels (182). However, no evidence has yet 
been reported in relation to the regulatory role of Talin‑1 in 
liver pathophysiological processes, at least to the best of our 
knowledge. Although Talin‑1 has been found to promote 
tumor formation, migration and metastasis in liver cancer and 
colon cancer (33,183,184), the role of Talin‑1 remains contro‑
versial, particularly in HCC (185). Even though, to the best of 
our knowledge, there is no evidence available to date of the 
direct regulatory role of Talin‑1in pathogenesis, understanding 
its interaction network in cellular mechanotransduction is of 
utmost significance for disease diagnosis and prevention.
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