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Abstract. Post‑ischemic neuroinflammation induced by the 
innate local immune response is a major pathophysiological 
feature of cerebral ischemic stroke, which remains the 
leading cause of mortality and disability worldwide. NLR 
family pyrin domain containing (NLRP)3 inflammasome 
crucially mediates post‑ischemic inflammatory responses 
via its priming, activation and interleukin‑1β release during 
hypoxic‑ischemic brain damage. Mitochondrial dysfunctions 
are among the main hallmarks of several brain diseases, 
including ischemic stroke. In the present review, focus was 

addressed on the role of mitochondria in cerebral ischemic 
stroke while keeping NLRP3 inflammasome as a link. Under 
ischemia and hypoxia, mitochondria are capable of control‑
ling NLRP3 inflammasome‑mediated neuroinflammation 
through mitochondrial released contents, mitochondrial 
localization and mitochondrial related proteins. Thus, inflam‑
masome and mitochondria may be attractive targets to treat 
ischemic stroke as well as the several drugs that target the 
process of mitochondrial function to treat cerebral ischemic 
stroke. At present, certain drugs have already been studied in 
clinical trials.
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1. Introduction

Ischemic stroke is a common cause of disability, normally 
manifested as long‑term neurological impairment, and even 
death (1,2). The pathogenesis of ischemic stroke is mainly 
caused by atherothrombosis at large cervical or intracranial 
arteries or by occlusion of cardio‑embolus (3), which results 
in insufficient oxygen and glucose delivery to meet the 
requirement of cellular respiration (4). To date, the approved 
therapies of ischemic stroke are intravenous thrombolysis 
or thrombectomy (5), which can only be applied to a very 
small fraction of patients due to the narrow time window and 
strict indication criteria (6). As such, there is an urgent need 
to develop novel and alternative treatment strategies to treat 
ischemic stroke.
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Post‑ischemic neuroinf lammation is an important 
pathological hallmark that affects both the development and 
prognosis of ischemic stroke (7,8). Once the inflammatory 
cascade is turned on, it aggravates neuron dysfunction and 
induces breakdown of blood brain barrier, brain edema and 
ultimately neuron death (9). Inflammasomes are intracellular 
multiprotein complexes that drive the activation of inflamma‑
tory responses. Among all types of inflammasomes, such as 
NLR family pyrin domain containing 1 (NLRP1), NLRP3, 
NLR family CARD domain‑containing protein 4 (NLRC4), 
and absent in melanoma 2 (AIM2), NLRP3 is the most studied 
one, particularly in the central neural system (10). It was shown 
that NLRP3 inflammasome activation regulates inflammatory 
response and accelerates neuron damage (11), and it acts as 
a key intermediate of neuroinflammation during the progress 
of ischemic stroke (12). Thus, inhibition of NLRP3 inflamma‑
some activation may be applied as a novel treatment strategy 
for ischemic stroke (13).

Alternatively, mitochondrion is an organelle that plays 
roles in energy conversion and metabolism, and its dysfunction 
is the crucial pathophysiological change in ischemic stroke 
due to oxygen‑glucose deprivation (14). It was found that a 
few studies have confirmed that NLRC4 (15), NLRP1 (16) and 
AIM2 (17) can promote cerebral ischemic injury, but there 
is no evidence that mitochondria can affect the pathological 
process of cerebral ischemia through them. Previous studies 
revealed that mitochondrial dysfunction is a vital event during 
the NLPR3 inflammasome activation (18‑20). However, the 
role of NLRP3 inflammasome in sensing mitochondrial 
damage and how mitochondria trigger NLRP3 activation in 
ischemic stroke is to be elucidated (21). The present review 
focused on the role of mitochondria in NLRP3 inflammasome 
activation under ischemic stroke and described the currently 
used drugs and potential treatment targets for ischemic stroke.

2. Pathophysiological changes of mitochondria in ischemic 
stroke

The most sensitive organ suffering from ischemia and hypoxia 
is the brain (22), which depends on continuous delivery of 
oxygen and nutrients to maintain its function (23). Adult 
brain accounts for 20% of all the oxygen consumed by the 
whole body, with merely 2% of the total body weight (24). 
Given the high‑energy demanding nature of neurons in the 
brain, it is essential that the mitochondrial pool remains 
healthy and provides a continuous and efficient supply of 
energy (25). Mitochondria produce most ATP production 
through mitochondrial respiratory chain (MRC) and oxidative 
phosphorylation (OXPHOS). However, mitochondria are very 
sensitive to ischemia and hypoxia (26); under these circum‑
stances, they undergo significant alterations, including Ca2+ 
influx, mitochondrial permeability transition pore (mPTP) 
opening, reactive oxygen species (ROS) generation, DNA 
damage and mutation, unbalanced mitochondrial dynamics, 
and aberrant mitochondrial position (27‑29). These changes in 
mitochondria are termed as mitochondrial dysfunction, which 
is strongly implicated in patients and multiple animal models 
with ischemic stroke (30‑34). 

During ischemic stroke, ischemia and hypoxia reduce ATP 
production and lead to dysfunction of the Na+/K+ ATPase 

pump (35). Within min following the onset of cerebral isch‑
emia, ATP depletion deactivates the sodium‑potassium pump 
and then excessive glutamate is released into extracellular 
fluid (36). Glutamate, as the main excitatory neurotransmitter 
in the central nervous system, is essential to multiple func‑
tions of neurons by binding to different types of receptors 
including N‑methyl‑d‑aspartate receptor and alpha‑amino‑3‑
hydroxy‑5‑methyl‑4‑isoxazole propionate receptor (37). Under 
ischemia‑hypoxia condition, the high level of extracellular 
glutamate induces massive calcium influx, which further 
aggravates mitochondrial calcium overload (38). Elevated 
mitochondrial calcium launches a series of events ranging 
from mPTP opening and dissipation of ΔΨm to excessive 
ROS production, leading to neuroinflammation and eventually 
neuronal death (Fig. 1) (28). While Inhibition of the heat shock 
75‑kDa glucose‑regulated protein was able to effectively 
ameliorate mitochondrial calcium overload and alleviate the 
ischemic stroke (39).

Meanwhile, the decreased ATP depletes nicotinamide 
adenine dinucleotide (NAD+), whose bioenergy state is a 
critical determinant for neuronal survival under excitotoxicity 
and ischemia (40). The reduced NAD+ motivates mitochon‑
dria to the vicinity of endoplasmic reticulum (ER) to form 
mitochondria‑associated ER membranes (MAMs) (41). The 
diverse drugs or compounds with clear anti‑stroke effects 
were revealed to reduce or partially reverse neuronal damage 
through inhibition of MAM‑related proteins following isch‑
emic stroke (42,43). Moreover, certain MAM‑related proteins 
join mPTP to regulate its opening (44), which is an important 
marker of cerebral cell death during ischemia/reperfusion. 
Once ischemia/reperfusion injury promotes mPTP opening, 
mitochondrial ROS (mtROS), mitochondrial DNA (mtDNA) 
and cardiolipin inside the mitochondria are released into the 
cytoplasm, where they act as danger signals when recog‑
nized by innate immune receptors to exacerbate ischemia 
damage (45).

Besides energy production, mitochondria also generate a 
small amount of ROS, which induces oxidative damage (46). 
Increased ROS was generated during cerebral ischemia, 
particularly during reperfusion by disrupting mitochondrial 
electron transport (47,48). The broken mitochondria produce 
large amounts of ROS, which in turn affect the function of adja‑
cent mitochondria. Since mitochondria are both the sources 
of ROS production and the targets of ROS, oxidant‑induced 
mitochondrial dysfunction forms a ‘vicious cycle’ in patients 
with ischemic stroke (49,50). Furthermore, the ROS release 
results in oxidation and mutation of mtDNA, release of mito‑
chondrial proteins and impaired mitophagy as shown in rat 
model of middle cerebral artery occlusion (MCAO). Moreover, 
the accumulation of ROS promotes neuroinflammation and 
neuron apoptosis after oxygen‑glucose deprivation/reoxygen‑
ation (OGD/R) (51).

In addition to mitochondrial function, changes in mito‑
chondrial structure play an important role in the progress of 
ischemic stroke. Mitochondria are highly dynamic organelles 
to regulate their size, form and mtDNA integrity via continuous 
fission, fusion and mitophagy (52). When neurons undergo 
ischemia, mitochondrial fission and fusion are transitory to 
maintain its structure integrity and function. However, under 
the circumstance of large amount of ROS production (53) and 
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mtDNA damage (54), mitochondria are divided excessively, 
resulting in mitochondrial dysfunction (55). Thus, mitochon‑
drial fission occurs as an upstream and early event in brain cell 
death following ischemia (56,57).

Furthermore, mutation mtDNA genes is correlated mito‑
chondrial dysfunction with genomic instability. mtDNA is 
markedly more prone to mutations than nuclear DNA (58). 
Particularly, the frequency of mtDNA mutations was found to 
be significantly higher in the brain of patients with ischemic 
stroke, and numerous of these mutations resulted in an altera‑
tion of amino acid therefore structure of protein (34). The 
vulnerability of mtDNA to mutation is due to its lacking of 
high‑fidelity repair processes, the high‑copy‑number of mtDNA 
within each cell, and the close proximity to ROS‑generating 
machinery (59). In a word, mutation of gene‑encoded subunits 
in mtDNA results in more ROS generation, which turns 
mtDNA more susceptible to mutation.

3. NLRP3 inflammasome‑mediated neuroinflammation in 
ischemic stroke

Neuroinflammation in ischemic stroke. Upon stroke attack, the 
interruption and reperfusion of blood flow in the brain tissue 
trigger the infiltration of inflammatory cells to induce neuronal 
death (60). Neuroinflammation is a primary pathological event 

involved in the process of ischemic injury and repair (61). In 
response to injury in the brain, neuroinflammation occurs in 
various cells, including neurons, microglia and astrocytes (62). 
In the acute phase, the damaged neurons and resident immune 
cells secrete inflammatory mediators and activate microglia, 
which are the first line of defense in the nervous system (63) 
that produce more inflammatory factors (62,64). Additionally, 
astrocytes that are activated by ischemia mediate inflamma‑
tory response to aggravate ischemic injury. However, they also 
limit the spread of inflammation by inhibiting excitotoxicity 
and secreting neurotrophic factors (65,66). Interestingly, 
NLRP3 inflammasome was found to play a key role in driving 
neuroinflammation in these cells during acute ischemic 
stroke, and early blockade of NLRP3 protects neurons from 
ischemia‑reperfusion injury by mitigating inflammation (67).

The composition and activation of the NLRP3 inflammasome. 
NLRP3 inflammasome is the most widely described inflam‑
matory complex, which is composed of NLRP3 as its receptor, 
apoptosis‑associated speck‑like protein containing a CARD 
(ASC) as its adaptor, and caspase‑1 as its effector. Activation 
of NLRP3 inflammasome includes two steps, namely, priming 
and activation (68). The priming step is the recognition of 
pathogen‑associated molecular pattern (PAMP) or damage‑ 
associated molecular pattern (DAMP) via pattern recognition 

Figure 1. Mitochondria play a pivotal role in the pathological process upon ischemic insult. ATP depletion due to OGD leads to Na+/K+ ATPase pump dysfunc‑
tion. This causes the depolarization of neuronal membrane to release excessive glutamate. In turn, glutamate receptors, such as NMDA and AMPA, are over 
activated, resulting in calcium influx into neurons. TRPM2 channel, which is a glutamate‑independent ion channel, also leads to intracellular Ca2+ calcium 
overload which induces mtROS release. Finally, ROS release and mitochondrial dysfunction ensures to initiate inflammation. The production of ROS leads 
to the dissociation of TXNIP from TRX to active NLRP3 inflammation. RIPK1 interacts with MCU to upregulate mitochondrial Ca2+ uptake and disrupts 
the mitochondrial membrane integrity. Furthermore, ischemia triggers the depolarization of ∆Ψm and induction of mPTP, which leads to the production of 
mitochondrial DAMPs (such as cardiolipin and mtDNA). Under the stimulation of risk factors, such as lipopolysaccharide and nigericin, SHP2 enters cells 
and binds to ANT1, thus stabilizing mPTPs and inhibiting the release of mtROS and mtDNA. The dissociation of Nrf2 from Keap1 can inhibit mtROS release. 
These can cause the activation of NLRP3 inflammasome and contribute to tissue damage following ischemic stroke injury. OGD, oxygen‑glucose deprivation; 
NMDA, alpha‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazole propionate; AMPA, alpha‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazole propionate; mtROS, mitochondrial 
ROS; ROS, reactive oxygen species; TXNIP, thioredoxin interacting protein; TRX, thioredoxin; NLRP3, NLR family pyrin domain containing 3; RIPK1, 
necrosome‑containing receptor‑interacting protein kinase 1; MCU, mitochondrial Ca2+ uniporter; mPTP, mitochondrial permeability transition pore; DAMP, 
damage‑associated molecular pattern; SHP2, Src homology 2 domain‑containing tyrosine phosphatase‑2; ANT1, adenine nucleotide transferase 1; mtDNA 
mitochondrial DNA.
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receptors (PRRs). Transcription and post‑translational modifica‑
tion (PTM) of NLRP3 inflammasome promote the transcription 
of NLRP3 and the precursor of caspase‑1, interleukin (IL)‑1β 
and IL‑18 (69). The priming of NLRP3 inflammasome not 
only provides material for NLRP3 inflammasome activation, 
but also allows NLRP3 and ASC to form the inflammasome 
assembly (70) or to protect them from degradation (71) through 
various PTM including ubiquitylation, deubiquitylation and 
phosphorylation. Then, the activation step is required to initiate 
the NLRP3 inflammasome assembly and subsequent activation. 
Generally, NLRP3 is oligomerized via its NACHT domains once 
activated (72). NLRP3 trimerization rather than dimerization is 
necessary for the inflammasome activation (73). Subsequently, 
activated NLRP3 interacts and recruits the adaptor molecule 
ASC via PYD‑PYD interaction (74). The polymerized ASC 
further recruits the enzyme caspase‑1 through CARD‑CARD 
interactions to initiate autocatalytic cleavage of caspase‑1 (75). 
Notably, ASC oligomerization is a key step in caspase‑1 acti‑
vation and caspase‑1‑dependent pyrophosphorylation upon 
NLRP3 stimulation (76). Once activated, caspase‑1 cleaves the 
inactive pro‑IL‑1β and pro‑IL‑18 to release their active form of 
cytokines IL‑1β and IL‑18 to induce neuroinflammation and 
pyroptosis (77).

NLRP3 inflammasome in ischemic stroke. NLRP3 inflam‑
masome is generally expressed in immune organs and cells, 
and is also expressed in the central nervous system (78,79). 
Liu et al (80) found that NLRP3 was activated in the microglia 
of ischemia‑reperfusion injury rat model (81). Moreover, recent 
study suggested that NLRP3 was also expressed in the endo‑
thelial cells, neurons, and astrocytes of ischemic brain (82). 
It was demonstrated that NLRP3 inflammasome was firstly 
activated in microglia and then expressed in microvascular 
endothelial cells and neurons of transient MCAO (tMCAO) rat 
model (83). 

Elevated levels of enlarged infarct size, neurological func‑
tion and brain infarct volume were observed in MCAO rats 
with activation of NLRP3 inflammasome compared with 
sham rats (84). Furthermore, IL‑1β and IL‑18 levels were 
increased in the ipsilateral brain of ischemia‑reperfusion mice 
model as well as in the postmortem ipsilateral brain of patients 
with stroke (79). The NLRP3 inhibitor MCC95 significantly 
reduced the infarct volume in a dose‑dependent manner, 
the expression of different pro‑inflammatory cytokines and 
NLRP3 inflammasome components, indicating its neuropro‑
tective effect in the MCAO mice (85). Furthermore, elevated 
expression of NLRP3, caspase‑1, ASC and IL‑1β were present 
in a murine model of cerebral ischemia, while caspase‑1 inhi‑
bition by VX765 prevented these changes and neuronal death. 
In summary, NLRP3 inflammasome exerts essential functions 
in the pathogenesis of ischemic stroke.

4. Mitochondria regulate NLRP3 inflammasome activation 
during ischemic stroke

Mitochondria regulate NLRP3 inflammasome activation 
under cerebral ischemia in bidirectional mode. Mitochondria 
are involved in the initiation and activation of NLRP3 inflam‑
masome, leading to neuroinflammation and pyroptotic cell 
death (86). On one hand, the opening of mPTPs in damaged 

mitochondria release DAMPs, such as ATP, mtROS, cardio‑
lipin and mtDNA, which are common causes for NLRP3 
inflammasome activation (87). The localization of mito‑
chondrial and its membrane‑associated proteins also takes 
positive participation in activation of NLRP3 inflammasome 
during cerebral ischemic damage. On the other hand, active 
mitophagy and fractional mitochondrial‑related proteins such 
as Src homology 2 domain‑containing tyrosine phosphatase 2 
(SHP2), mitofusin 2 (Mfn2) and nuclear factor E2‑related 
factor‑2 (Nrf2) negatively regulate the NLRP3 inflammasome 
expression to protect brain from ischemic injury (88) (Fig. 1).

The positive role of mitochondria in NLRP3 inflamma-
some activation. Mitochondrial‑released contents. mtROS. 
Dysfunctional mitochondria produce large amounts of 
mtROS by transferring electrons from the MRC to molecular 
oxygen to form mtROS (77). MtROS are important in NLRP3 
priming and activation. It was revealed that mtROS regulates 
NLRP3 initiation earlier than activation by upregulating its 
transcription (89). As a non‑transcriptional priming signal, 
deubiquitination of NLRP3 depends on mtROS generation (90). 
Elimination of mtROS inhibits NLRP3 deubiquitination, in 
response to lipopolysaccharide stimulation (91,92). By contrast, 
mtROS induces NLRP3‑dependent lysosomal damage and 
inflammasome activation, and promotes macrophages pyrop‑
tosis by inducing Gasdermin D oxidation (93), which can be 
reversed by scavenging mtROS (94).

Next, high concentrations of mtROS results in NLRP3 
activation and IL‑1β production (92). Furthermore, increased 
mtROS induced by ischemia‑reperfusion injury leads to release 
IL‑1β, IL‑18 and caspase‑1 by cleaving their precursors (95). 
Conversely, inhibiting mtROS formation or eliminating mtROS 
by antioxidants strongly impairs the activation of NLRP3 
inflammasome and IL‑1β release (96,97). It was reported 
that mtROS‑NLRP3 signaling is activated in BV2 cells after 
OGD/R for 24 h. Inhibition of mtROS release suppresses 
NLRP3 activation and alleviates NLRP3‑mediating damage 
in microglia of ischemia‑reperfusion rats (33). 

Cardiolipin. Apart from mtROS, the opening of mPTPs 
releases other mitochondria‑related DAMPs like mtDNA 
and mitochondrial lipids during ischemic stroke (98). Among 
the different mitochondrial lipids, cardiolipin is an anionic 
phospholipid that localizes at the inner mitochondrial 
membrane and facilitates OXPHOS in mitochondria (99). 
Cardiolipin oxidation and hydrolysis are a key mechanism of 
ischemia‑reperfusion‑induced brain injury (100). Nowadays, 
cardiolipin is reported to be effective for triggering the 
activation of NLRP3 inflammasome (101) after acute isch‑
emia (102). On one hand, cardiolipin directly interacts with 
both the N‑terminal leucine‑rich repeat (LRR) of NLRP3 and 
full‑length of caspase‑1 of NLRP3 inflammasome (86,103). 
On the other hand, NLRP3 is tethered to mitochondria by 
cardiolipin in an mTROs‑dependent manner and is thereby 
activated (104). Either interference with cardiolipin synthesis 
or knockdown of cardiolipin specifically inhibits NLRP3 
inflammasome activation (78).

mtDNA. mtDNA was recognized as one of the endogenous 
DAMPs, which is released from damaged mitochondria into 
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the cytoplasm to activate NLRP3 inflammasome and induce 
pyroptosis. It was shown that mtDNA was indispensable 
for NLRP3 activation by mtROS after ischemia‑reperfu‑
sion (105,106). In response to various NLRP3 activators, 
mtDNA is rapidly released into cytoplasm to be oxidized to 
oxidized mtDNA (ox‑mtDNA). Then, ox‑mtDNA specifically 
localizes to NLRP3 (106), and directly binds to NLRP3 to 
trigger NLRP3 inflammasome activation (107). It was iden‑
tified that NLRP3 inflammasome is over‑activated in aged 
individuals, due to increased production of mtROS and/or 
mtDNA (108). High level of mtDNA induces the interaction of 
ASC with NLRP3 and pro‑caspase‑1 and promotes neuronal 
pyroptosis in the hippocampus of rats with incomplete 
ischemia‑reperfusion injury (109). Correspondingly, repairing 
mtDNA oxidative damage inhibits NLRP3 activation and 
reduces reperfusion‑associated ischemic brain injury (110). 
These results imply that mtDNA interacts with NLRP3 inflam‑
masome to form positive feedback during the development of 
ischemic stroke.

Mitochondrial localization. MAMs. ER‑mitochondrial 
contact is mediated by a specific membrane structure, known 
as MAM, which plays key roles in material transfer and signal 
transduction, including Ca2+ signaling (111,112). Notably, 
increased MAM aggravates mitochondrial dysfunction 
and enhances ROS production (113). In addition, MAM has 
overarching roles in innate immune system. When NLRP3 
localizes at ER membrane, it is in the resting state. By contrast, 
when it relocates to MAM, it switches to activated state 
and functions in detecting ROS production from damaged 
mitochondria (114). Recruitment of NLRP3 to mitochondria 
enhances the ability of mtROS to activate NLRP3 inflamma‑
some. ASC predominantly localized to the mitochondria, is 
transferred to MAM under the stimulation of NLRP3 activa‑
tors. Furthermore, colocalization of ASC with MAM requires 
the presence of NLRP3 and is Ca2+ dependent (115). Notably, 
mitochondrial damage by NLRP3 inflammasome activators 
leads to the accumulation of NLRP3 and ASC in MAM (116). 
Ischemia‑reperfusion injury increases the expression of 
MAM‑related proteins, which accelerated signal communica‑
tion with mitochondria through MAM in the male C57BL/6 
mice (117). Silencing MAM‑related protein p66Shc protects 
the integrity of blood‑brain barrier, reduces infarct area, 
relieves the neurological deficit, and improves the survival 
rate of mice after MCAO (118). In a word, MAM is an ideal 
site for NLRP3 inflammasome activation and assembly which 
accelerates the development of ischemic stroke (119). 

Microtubules. Generally, the movement of mitochondria 
in neurons is considered to be mediated by microtubules or 
microfilaments. Microtubules, which are formed by polymer‑
ization of α and β tubulins, are cell cytoskeleton to support 
intracellular transport between various organelles, particularly 
those involved in mitochondrial transport (120). Microtubules 
undergo various PTMs to take part in the transportation 
between mitochondria and ER, as well as in the subcellular 
localization of NLRP3 and ASC. Correspondingly, NLRP3 
inflammasome activators induce mitochondrial transport to 
ER through the microtubule system, thereby facilitating the 
transfer of ASC from mitochondria to ER to combine with 

NLRP3 (121). A previous study found that the acetylation 
of microtubule α‑tubulin is a necessary step for NLRP3 
inflammasome activation (41) (Fig. 2). Moreover, NAD+ is 
an endogenous small molecule that regulates the microtu‑
bules (122). NAD+ caused by reduced ATP production moves 
mitochondria through microtubules, therefore promotes 
the assembly of NLRP3 inflammasome (41). Nicotinamide 
partially increases cellular NAD+ levels and effectively 
protects neurons from ischemic damage (40).

Mitochondrial‑related proteins
Thioredoxin interacting protein (TXNIP). TXNIP is an 
endogenous inhibitor of the thioredoxin (TRX) system and 
is expressed in nearly all cytoplasm and mitochondria (123). 
MtROS was revealed to promote the combination of NLRP3 
with TXNIP which is a critical step that links oxidative 
stress to neuroinflammation (124,125). In response to mtROS 
release, TXNIP dissociates from TRX and translocates to 
MAM, to bind with NLRP3 and induces NLRP3 inflamma‑
some activation (126). Inhibition of TRX expression interrupts 
the interaction between TRX and TXNIP, thus promoting 
the binding of TXNIP to NLRP3 and triggers the assembly 
and oligomerization of the NLRP3 inflammasome (127). In 
addition, TXNIP expression is upregulated in patients with 
stroke and rat model of cerebral ischemia (123,128). The 
inactivation of TXNIP relieves neurological deficits, cerebral 
infarction and edema from ischemic damage (123). Finally, 
TRX inhibitor downregulates the expression of TXNIP and 
suppresses NLRP3 inflammasome activation in astrocytes 
with OGD/R (80).

Ca2+ and its receptors. Ca2+ concentration increases either by 
Ca2+ influx from the extracellular space as triggered by neuronal 
activity or by Ca2+ outflux from the ER (129). Ca2+ accumula‑
tion is the determining factor of mPTP opening, which is an 
important marker of nerve cell death during ischemia, ensues 
by release of mitochondrial components that activate NLRP3 
inflammasome (130). It has been revealed that NLRP3 recep‑
tors are activated by increased intracellular Ca2+ concentration 
in vitro and in vivo (131). Furthermore, when Ca2+ concentra‑
tion in the cytoplasm increases, mitochondria uptake a large 
amount of Ca2+ through calcium‑sensitive receptor (CASR) to 
activate the NLRP3 inflammasome. Consistently, knockdown 
of CASR reduces inflammasome activation. Moreover, a 
CASR agonist upregulates the expression of NLRP3, cleaved 
caspase‑1, and IL‑1β in the ipsilateral cortex of mice after 
stroke (132). Intriguingly, high intracellular Ca2+ concentration 
can also lead to Ca2+ influx to mitochondria through mitochon‑
drial calcium uniporter (MCU), then loss of ΔΨm, resulting in 
NLRP3 inflammasome activation and IL‑1β secretion (133). 
Murakami et al (134) proposed that Ca2+ signaling is an inter‑
mediate step of NLRP3 inflammasome activation. Similarly, 
transient receptor potential melastain‑2 (TRPM2) channel is 
a glutamate‑independent ion channel. Under the condition of 
ischemia injury, TRPM2 channel can be activated and mediate 
the transport of Ca2+, leading to intracellular calcium overload. 
Notably, intracellular calcium level further drives TRPM2 
activity. In addition, TRPM2 promotes NLRP3 activation 
in OGD‑induced neuronal injury, which was abolished by 
TRPM2 knockdown (135).
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Necrosome‑containing receptor‑interacting protein kinase 1 
(RIPK1). RIPK1 is considered an essential regulator of apop‑
tosis, necroptosis and inflammatory response. Under cerebral 
ischemia‑hypoxia condition, RIPK1 induces necrotic apop‑
tosis and neuroinflammation by destroying plasma membrane 
of endotheliocyte and microglia (136). Subsequently, released 
DAMPs from brain cells cause secondary inflammatory 
response, which aggravates ischemic damage (137,138). 
Upon being transported to out membrane of mitochondria, 
RIPK1 interacts with MCU to upregulate mitochondrial 
Ca2+ uptake, which leads to mtROS generation and NLRP3 
activation (139). RIPK1 is upregulated in rat brain upon 
MCAO and localized to the microglia. Furthermore, RIPK1 
triggers activation of NLRP3 inflammasome by disrupting 
the mitochondrial membrane integrity and by promoting 
mtROS release in ischemic microglia (140). As the first selec‑
tive inhibitor, necrostatin‑1 (Nec‑1) significantly decreased 
RIPK1 phosphorylation in rat brain following ischemic stroke. 
Consistently, Nec‑1 hindered IL‑1β maturation in ischemic 
brains of rats (141).

Dynamin‑related protein 1 (Drp1). Mitochondrial dynamics 
are regulated by specific proteins through mitochondrial 
fission and fusion (142) which play an important role in NLRP3 
inflammasome assembly and activation (143). Mitochondrial 
fission is primarily contributed to Drp1 activation (144), 
which promotes mitochondrial Ca2+ uptake (145) to trigger 

NLRP3 inflammasome activation. Consistently, inhibition 
of Drp1‑dependent mitochondrial fission protects neurons 
from ischemic stroke by preserving the activity of respira‑
tory chain, reducing superoxide production and delaying Ca2+ 
dysregulation (146). Moreover, inhibition of Drp1 withholds 
NLRP3 inflammasome activation and protects mitochondrial 
integrity to exert its neuroprotective effects (147). A recent 
study showed that neuronal death was prevented in MCAO 
rat model by lowering Drp1 expression and NLRP3 signal 
transduction (148).

The negative role of mitochondria in NLRP3 inflammasome 
activation 
Mitophagy. Following ischemia‑reperfusion injury, the 
damaged mitochondria are removed by autophagy‑related 
mechanism, which is known as mitophagy (149). Mitophagy 
is an important mechanism of mitochondrial renewal and 
metabolism which downregulates the number and controls 
quality of mitochondria, induces mitochondria to main‑
tain dynamic homeostasis (150) and consequently reduces 
mitochondria‑dependent neuronal cell death (151). In previous 
studies, it was identified that induction of mitophagy protects 
against cerebral ischemia‑reperfusion injury by inhibiting 
NLRP3 inflammasome activation (149,152). Following 
ischemia‑reperfusion, mitophagy increased locally reduces 
the neuroinflammatory response induced by NLRP3 inflam‑
masome to relieve neurological deficits (153). Blockage of 

Figure 2. Mitochondrial transport promotes NLRP3 activation. Under physiological conditions, most NLRP3 localizes to the cytoplasm and ER, whereas 
ASC is localized to mitochondria. Once the mitochondria are damaged by NLRP3 inflammasome activator, the intracellular NAD+ level is reduced. This is 
followed by the inactivation of the NAD+‑dependent deacetylase Sirt2, which ultimately leads to the accumulation of acetylated alpha‑tubulin. It results in 
the redistribution of ASC from mitochondria and NLRP3 from ER to MAM. Moreover, MAM‑mediated tight binding of ER to mitochondria depends on 
mitochondrial Ca2+ uptake which increases mtROS. Both Ca2+ and mtROS can open the mPTP. Thus, Ca2+ overload and production of mtROS contributes 
to the release of mitochondria‑related factors such as mtDNA and cardiolipin, which ultimately activates the NLRP3 inflammasome. NLRP3, NLR family 
pyrin domain containing 3; ER, endoplasmic reticulum; ASC, apoptosis‑associated speck‑like protein containing a CARD; NAD, nicotinamide adenine 
dinucleotide; MAM, mitochondria‑associated ER membrane; mtROS, mtROS, mitochondrial ROS.
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mitophagy enhances the activation of the NLRP3 inflamma‑
some (154). The damaged and dysfunctional mitochondria 
enhance NLRP3 inflammasome activation upon treatment 
with mitophagy inhibitors (116). 

Mitochondrial transfer. Astrocytes (AS) are the most abundant 
glial cells in the central nervous system (155). When ischemic 
stroke occurs, AS provide energy support for injured neurons 
through the changes of its own bioenergy and mitochondrial 
dynamics (156). In addition, AS sense stress, transfer mito‑
chondria as a ‘help me’ signal to adjacent injured neurons (157) 
and rescue damaged neurons from mitochondrial dysfunction 
to deal with stress (158). Concurrently, neurons also release 
damaged mitochondria and transfer them to as for endocytosis 
and degradation (159), so as to realize the recycling of mito‑
chondria, making mitochondria crosstalk between healthy 
cells and damaged cells.

SHP2. SHP2 is a negative regulator of NLRP3 inflamma‑
some activation (160). In response to NLRP3 inflammasome 
stimuli, SHP2 translocates to mitochondria and binds to 
adenine nucleotide transferase 1 (ANT1), which prevents the 
opening of mPTPs and the subsequent release of mtDNA 
and mtROS, thereby inhibiting NLRP3 inflammasome 
over‑activation (160). In a focal cerebral ischemia model, 
ischemia‑induced neuronal damage and death were signifi‑
cantly increased in nestin‑SHP2‑CS mice (SHP2 function was 
selectively removed from central nervous system) compared 
with wild‑type mice. Additionally, transgenic mice that over‑
express SHP2 are more sensitive to ischemia‑induced brain 
damage (161).

Mfn2. Mfn2, a mitochondrial outer membrane protein, plays 
a pivotal part in mitochondrial fusion. It was reported that 
Mfn2 is downregulated while NLRP3 inflammasome and 
pyroptosis are activated in microglia and astrocytes of rats 
upon ischemia‑reperfusion injury (162). Mfn2 overexpression 
attenuates free fatty acids induced mitochondrial damage, 
decreases mtROS production and inhibits NLRP3 inflamma‑
some activation (163). Additionally, Mfn2 improves hypoxia 
induced neuronal apoptosis and prolongs the treatment time 
window of ischemic stroke by mitochondrial pathway (164).

Nrf2. Nrf2 is a well‑known transcription factor that dissoci‑
ates from Keap1 then translocates into the nucleus to initiate 
gene transcription via binding to antioxidant response element 
(ARE) during cellular stress conditions (165,166). The 
knockout of Nrf2 aggravates oxidative stress and inflamma‑
tion (167). Nrf2 abates NLRP3 inflammasome activation by 
inhibiting the priming step to limit the assembly of NLRP3 
inflammasome (96,168). Following cerebral ischemia‑reperfu‑
sion, the activated Nrf2/ARE pathway inhibits ROS‑induced 
NLRP3 inflammasome activation in BV2 microglia (169). 
Nrf2 knockout mice showed larger infarct size following 
ischemia‑reperfusion, compared with that of control coun‑
terparts (170). Moreover, Nrf2 siRNA increased expressions 
of TXNIP, NLRP3, caspase‑1 and IL‑1β in brain of MCAO 
rats (171). Consequently, Nrf2 protects against NLRP3 inflam‑
masome activation by regulating the TRX/TXNIP complex 
during cerebral ischemia‑reperfusion injury (172).

5. Drugs that target mitochondria

Tissue plasminogen activator (tPA) and tPA recombinant 
protein were both used to treat ischemic stroke. However, 
these treatments have dangerous complications regarding 
reperfusion‑injury (173). Reperfusion‑injury generally causes 
oxidative stress, calcium overload and excitatory toxicity (174). 
At present, edaravone, butylphenol and other drugs are often 
used in the clinical treatment of stroke to alleviate the brain 
injury caused by calcium overload and excess ROS. In addition, 
mitochondrial dysfunction is deemed as a marker of ischemic 
stroke (175). Therefore, drugs that target mitochondria and 
directly or indirectly affect NLRP3 inflammasome to alleviate 
brain injury from the aspects of ROS and calcium overload are 
summarized in the present review (Table I).

MCC950. As a sulfonylurea‑containing compound, MCC950 
was first identified as an IL‑1β inhibitor (198). Then, MCC950 
was also used as a specific inhibitor of NLRP3 inflamma‑
some (199,200). The OGD/R‑induced BV‑2 cells and MCAO 
rats showed high expression of Drp1 and mitochondrial 
fission, as well as NLRP3 inflammasome activation, which 
were abolished by MCC950 treatments (191). Oxidative stress, 
mainly caused by mitochondria, was reported to be a crucial 
mechanism for brain damage following ischemic stroke. And 
NLRP3 inflammasome perpetuates oxidative stress. MCC950 
application inhibits the effect of NLRP3 on brain oxidative 
stress in the animal model of transient global cerebral isch‑
emia (201). In addition, MCC950 administration attenuated 
brain edema, reduced NADPH oxidase and infarct area and 
improved the nervous system in a MCAO rat model with 
reperfusion induced by hyperglycemia (202). Moreover, glib‑
enclamide is a potent NLRP3 inflammasome inhibitor (203) 
that belongs to a class of medications known as sulfonylureas. 
Its neuroprotective role is due to its effect in reducing inflam‑
matory response and endothelial cell death (204).

Idebenone. Idebenone was originally used as a drug to treat 
dementia. It was regarded as a potent antioxidant (205) which 
is used as a protective agent for mitochondria (206). Upon 
OGd/R, mtDNA and mtROS were released, resulting in accu‑
mulation of oxidized mtDNA in the cytoplasm which binds to 
and activates NLRP3 to initiate inflammation. Furthermore, 
idebenone treatment inhibited this process. NLRP3 was 
activated in microglia of ischemia‑reperfusion rats in vivo. 
Inhibition of NLRP3 was observed in idebenone treatment 
which attenuated neurological deficit and reduced infarct 
volume (33).

Diazoxide. Diazoxide, an activator of mitochondrial 
K‑ATP (207), prevents cytochrome c release and stabilizes 
mitochondrial function (208). Furthermore, diazoxide protects 
neurons during ischemia‑reperfusion injury (209). Thus, 
diazoxide plays a crucial role in stabilizing mitochondrial 
function and in protecting neuronal survival. Indeed, mito‑
chondrial dysfunction plays a pivotal role in the initiation 
and activation of the NLRP3 inflammasome (210). Diazoxide 
prohibits NLRP3 inflammasome activation to prevent inflam‑
mation (211). In addition, diazoxide improves mitochondrial 
dysfunction following ORG/R in primary microglia BV2 cell 
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by preventing mitochondrial depolarization and the opening 
of MPTP to inhibit NLRP3 inflammasome activation (212). 
Therefore, maintaining mitochondrial stability and reducing 
NLRP3 inflammasome activation could both be potential 
targets of diazoxide to treat ischemic stroke.

Melatonin. Melatonin, an endogenous regulator, is a metabo‑
lite of tryptophan released from the pineal gland (213). It is 
involved in numerous physiological and pathophysiological 
processes including antioxidant (214), anti‑apoptotic, and 
anti‑inflammatory effects (215). Melatonin is of neuro‑
protective effect, which reduces infarct volume, lowers 
brain edema, and increases neurological scores. In addi‑
tion, melatonin preserves mitochondrial membrane 

potential and mitochondrial complex I activity (216), 
and inhibits the opening of MPTPs and the abnormal 
release of cytochrome c (217), which is critical in reducing 
ischemia‑reperfusion injury. Furthermore, melatonin is a 
relatively nontoxic molecule, which is safe to use in clinical 
trials. Previously, melatonin prevented IL‑1β overexpression 
in the MCAO rat model (218). Additionally, Wang et al (219) 
showed that melatonin inhibited cell death, loss of mPTP, 
the release of mitochondrial factors, pro‑IL‑1β processing, 
and activation of caspase‑1 induced by OGD. Furthermore, it 
decreased infarct size and improved neurological scores after 
MCAO in mice (219,220). Consequently, melatonin exerts 
neuroprotective and anti‑inflammatory effects by modulating 
multiple targets in the NLRP3 inflammation (220).

Table I. Drugs that target mitochondria and NLRP3 inflammasome.

 Mitochondrial
 associated
Drug protein targets NLRP3 inflammasome targets Model (Refs.)

Umbelliferone ROS/TXNIP NLRP3/IL‑1β/Caspase‑1/IL‑18 MCAO/R (176)
Curcumin ROS/TXNIP NLRP3/IL‑1β/Caspase‑1 MCAO (177)
Ruscogenin ROS/TXNIP NLRP3/IL‑1β/Caspase‑1 MCAO/R OGD/R (178)
resveratrol TXNIP NLRP3/IL‑1β/Caspase‑1  eMCAO (179)
tPA TXNIP NLRP3/IL‑1β/ASC/Caspase‑1 t‑MCAO (180)
Z‑Guggulsterone TXNIP NLRP3/IL‑1β/IL‑18 MCAO/OGD (181)
Malibatol A ROS IL‑1β MCAO (182)
Sesamol ROS IL‑1β MCAO/R (183)
Minocycline ROS NLRP3/IL‑1β/IL‑18 tMCAO/R OGD/R (184)
Sinomenine ROS NLRP3/ASC/IL‑1β/Caspase‑1/IL‑18 MCAO/OGD (185)
Irisin ROS NLRP3/IL‑1β/Caspase‑1 OGD (186)
apocynin ROS NLRP3/IL‑18/IL‑1β/ASC/Caspase‑1 MCAO/R (187)
Rosuvastatin ROS NLRP3 MCAO (188)
arginase ROS IL‑1β MCAO (189)
Medioresinol mtROS IL‑1β/NLRP3/Caspase‑1/ASC/ tMCAO (190)
miR‑668 Drp‑1/ROS NLRP3/IL‑1β tMCAO/R OGD/R (148)
3‑n‑butylphthalide Drp‑1/ROS  IL‑1β OGD (32)
Ketogenic Diet Drp‑1/ROS TXNIP/ATP NLRP3/IL‑1β/Caspase‑1 MCAO/R OGD/R (147)
Panax ginseng and Drp‑1 IL‑1β/NLRP3/Caspase‑1 MCAO/R OGD/R (191)
Angelica sinensis
FK866 Mfn2/Drp1 NLRP3/IL‑1β CA/CPR (162)
isoflurane mPTP/ROS IL‑1β MCAO/OGD (192)
Ezetimibe Nrf2/TXNIP NLRP3/IL‑1β/Caspase‑1  MCAO (171)
melatonin mtDNA IL‑1β MCAO (193)
Necrostatin‑1 RIPK NLRP3/ASC/Caspase‑1/IL‑1β MCAO (140,141)
β‑caryophyllene RIPK IL‑1β OGD/R MCAO/R (194)
Isosteviol Sodium Ca2+/mtROS IL‑1β hypoxia (195)
Taxifolin Ca2+ IL‑1β OGD (196)
Oxysophocarpine Ca2+ IL‑1β OGD/R (197)

Focal cerebral ischemia was simulated through the MCAO in vivo and OGD/R in vitro. In MCAO and OGD/R models, drugs targeting 
specific targets of mitochondria and NLRP3 inflammasome for the treatment of ischemic stroke are listed. NLRP3, NLR family pyrin domain 
containing 3; ROS, reactive oxygen species; TXNIP, thioredoxin interacting protein; ASC, apoptosis‑associated speck‑like protein containing 
a CARD; MCAO, middle cerebral artery occlusion; OGD/R, oxygen‑glucose deprivation/reoxygenation; tMCAO, transient MCAO; mtROS 
mitochondrial ROS; Drp1, dynamin‑related protein 1; Mfn, mitofusin; RIPK, receptor‑interacting protein kinase 1.
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Anthocyanins. Anthocyanins, which are effective flavonoid 
antioxidants (220) are natural plant pigments with a wide 
range of biological activities (221,222). Anthocyanins 
are f lavylium‑based multistates (223) and can reduce 
the damage to neurovascular unit in MCAO rats (224). 
Furthermore, anthocyanins inhibit NLRP3 expression 
in the brains of MCAO/R rats (225) and reduce cytosolic 
cytochrome c release to prevent apoptosis (226). Moreover, 
anthocyanins are neuroprotective in mouse model of 
pMCAO, decrease cerebral superoxide levels and inhibit 
AIF release from mitochondria (227). Cui et al (228) showed 
that purified anthocyanin extracts significantly reduce the 
expression of caspase‑1 and NLRP3 and activate Nrf2 in 
the ischemia‑reperfusion mice brain, thereby inhibiting 
inflammation and protecting the brain. Thus, anthocyanins 
may be a potential candidate for the prevention and treat‑
ment of stroke.

6. Clinical perspectives

At present, thrombolytic therapy is the only approved treat‑
ment for acute ischemic stroke (229), but only a minority 
of all patients with stroke are eligible for this treatment. At 
present, some drugs that target mitochondria and NLRP3 
inflammasome are being tested in preclinical research. 
Idebenone, melatonin, minocycline and 3‑n‑butylphthalide 
were examined in clinical trials (Table II). It was demon‑
strated that no adverse events were reported as to the clinic 
usage of 3‑n‑butylphthalide (230). 3‑n‑butylphthalide showed 
favorable results and safety in the treatment of patients 
with moderate acute ischemic stroke (ClinicalTrials.gov 
Identifier: NCT02149875). Minocycline was reported to be 
safe and well tolerated with half‑life of ~24 h. It may be an 
ideal drug to treat ischemic stroke when used together with 
tPA (ClinicalTrials.gov Identifier: NCT00630396) (231). In 
addition, the North Shore University Hospital is recruiting 
patients to study the effect of intra‑arterial neuroprotective 
agents (minocycline) for recanalization of ischemic stroke 
(ClinicalTrials.gov Identifier: NCT05032781). Furthermore, a 
clinical trial is comparing the efficacy and safety of low‑dose 
rivastigmine with ezetimibe and high‑dose rivastigmine 
in the treatment of ischemic stroke (ClinicalTrials.gov 
Identifier: NCT03993236). In conclusion, drugs targeting 
mitochondria and NLRP3 inflammasome show promising 
therapeutic effects.

7. Conclusion

Mitochondria are involved in various processes essential for 
cell survival, including energy production and physiological 
cell death mechanisms. Emerging knowledge about this 
organelle has shed light on its implication in inflammation. It 
is well accepted that post‑ischemic neuroinflammation is one 
of the important mechanisms of ischemic brain injury. NLRP3 
inflammasome has been found to play a key role in driving 
neuroinflammation in brain cells, such as cerebral microvas‑
cular endothelial cells, neurons and microglia during acute 
ischemic stroke. NLRP3 inflammasome was firstly activated 
in microglia and then expressed in microvascular endothelial 
cells and neurons of rat brains after ischemia‑reperfusion 

injury. NLRP3 inflammasome can be activated by several 
factors, including the release of mitochondrial components, 
such as mtROS, cardiolipin, and mtDNA and mitochondrial 
related proteins, such as TXNIP and RIPK1 and some proteins 
that regulate the location of mitochondria. Through the 
present review, the close relationship between mitochondria 
and NLRP3 inflammasome and how mitochondrial damage 
contributes to ischemic damage by targeting neuroinflam‑
mation were discussed. Thus, maintaining mitochondrial 
homeostasis is important to ischemic stroke. Although the 
efficacy of tPA for acute ischemic stroke is well established, 
there are still serious side effects and limits. New therapeutic 
targets focusing on mitochondria, such as potential antioxidant 
or anti‑inflammatory medicines, are promising therapeutic 
approaches in ischemic stroke. In addition, for ischemic stroke, 
some aforementioned drugs shall be administered in clinical 
trials currently recruiting patients, or are used in ongoing 
clinical trials or have been used in completed clinical trials. 
Thus, understanding the biology and regulation of inflamma‑
some‑mitochondria connections is required to treat ischemic 
stroke.
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