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Abstract. Post-ischemic neuroinflammation induced by the
innate local immune response is a major pathophysiological
feature of cerebral ischemic stroke, which remains the
leading cause of mortality and disability worldwide. NLR
family pyrin domain containing (NLRP)3 inflammasome
crucially mediates post-ischemic inflammatory responses
via its priming, activation and interleukin-1f release during
hypoxic-ischemic brain damage. Mitochondrial dysfunctions
are among the main hallmarks of several brain diseases,
including ischemic stroke. In the present review, focus was
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addressed on the role of mitochondria in cerebral ischemic
stroke while keeping NLRP3 inflammasome as a link. Under
ischemia and hypoxia, mitochondria are capable of control-
ling NLRP3 inflammasome-mediated neuroinflammation
through mitochondrial released contents, mitochondrial
localization and mitochondrial related proteins. Thus, inflam-
masome and mitochondria may be attractive targets to treat
ischemic stroke as well as the several drugs that target the
process of mitochondrial function to treat cerebral ischemic
stroke. At present, certain drugs have already been studied in
clinical trials.
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1. Introduction

Ischemic stroke is a common cause of disability, normally
manifested as long-term neurological impairment, and even
death (1,2). The pathogenesis of ischemic stroke is mainly
caused by atherothrombosis at large cervical or intracranial
arteries or by occlusion of cardio-embolus (3), which results
in insufficient oxygen and glucose delivery to meet the
requirement of cellular respiration (4). To date, the approved
therapies of ischemic stroke are intravenous thrombolysis
or thrombectomy (5), which can only be applied to a very
small fraction of patients due to the narrow time window and
strict indication criteria (6). As such, there is an urgent need
to develop novel and alternative treatment strategies to treat
ischemic stroke.
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Post-ischemic neuroinflammation is an important
pathological hallmark that affects both the development and
prognosis of ischemic stroke (7,8). Once the inflammatory
cascade is turned on, it aggravates neuron dysfunction and
induces breakdown of blood brain barrier, brain edema and
ultimately neuron death (9). Inflammasomes are intracellular
multiprotein complexes that drive the activation of inflamma-
tory responses. Among all types of inflammasomes, such as
NLR family pyrin domain containing 1 (NLRP1), NLRP3,
NLR family CARD domain-containing protein 4 (NLRC4),
and absent in melanoma 2 (AIM?2), NLRP3 is the most studied
one, particularly in the central neural system (10). It was shown
that NLRP3 inflammasome activation regulates inflammatory
response and accelerates neuron damage (11), and it acts as
a key intermediate of neuroinflammation during the progress
of ischemic stroke (12). Thus, inhibition of NLRP3 inflamma-
some activation may be applied as a novel treatment strategy
for ischemic stroke (13).

Alternatively, mitochondrion is an organelle that plays
roles in energy conversion and metabolism, and its dysfunction
is the crucial pathophysiological change in ischemic stroke
due to oxygen-glucose deprivation (14). It was found that a
few studies have confirmed that NLRC4 (15), NLRP1 (16) and
AIM?2 (17) can promote cerebral ischemic injury, but there
is no evidence that mitochondria can affect the pathological
process of cerebral ischemia through them. Previous studies
revealed that mitochondrial dysfunction is a vital event during
the NLPR3 inflammasome activation (18-20). However, the
role of NLRP3 inflammasome in sensing mitochondrial
damage and how mitochondria trigger NLRP3 activation in
ischemic stroke is to be elucidated (21). The present review
focused on the role of mitochondria in NLRP3 inflammasome
activation under ischemic stroke and described the currently
used drugs and potential treatment targets for ischemic stroke.

2. Pathophysiological changes of mitochondria in ischemic
stroke

The most sensitive organ suffering from ischemia and hypoxia
is the brain (22), which depends on continuous delivery of
oxygen and nutrients to maintain its function (23). Adult
brain accounts for 20% of all the oxygen consumed by the
whole body, with merely 2% of the total body weight (24).
Given the high-energy demanding nature of neurons in the
brain, it is essential that the mitochondrial pool remains
healthy and provides a continuous and efficient supply of
energy (25). Mitochondria produce most ATP production
through mitochondrial respiratory chain (MRC) and oxidative
phosphorylation (OXPHOS). However, mitochondria are very
sensitive to ischemia and hypoxia (26); under these circum-
stances, they undergo significant alterations, including Ca*
influx, mitochondrial permeability transition pore (mPTP)
opening, reactive oxygen species (ROS) generation, DNA
damage and mutation, unbalanced mitochondrial dynamics,
and aberrant mitochondrial position (27-29). These changes in
mitochondria are termed as mitochondrial dysfunction, which
is strongly implicated in patients and multiple animal models
with ischemic stroke (30-34).

During ischemic stroke, ischemia and hypoxia reduce ATP
production and lead to dysfunction of the Na*/K* ATPase

pump (35). Within min following the onset of cerebral isch-
emia, ATP depletion deactivates the sodium-potassium pump
and then excessive glutamate is released into extracellular
fluid (36). Glutamate, as the main excitatory neurotransmitter
in the central nervous system, is essential to multiple func-
tions of neurons by binding to different types of receptors
including N-methyl-d-aspartate receptor and alpha-amino-3-
hydroxy-5-methyl-4-isoxazole propionate receptor (37). Under
ischemia-hypoxia condition, the high level of extracellular
glutamate induces massive calcium influx, which further
aggravates mitochondrial calcium overload (38). Elevated
mitochondrial calcium launches a series of events ranging
from mPTP opening and dissipation of AWm to excessive
ROS production, leading to neuroinflammation and eventually
neuronal death (Fig. 1) (28). While Inhibition of the heat shock
75-kDa glucose-regulated protein was able to effectively
ameliorate mitochondrial calcium overload and alleviate the
ischemic stroke (39).

Meanwhile, the decreased ATP depletes nicotinamide
adenine dinucleotide (NAD™), whose bioenergy state is a
critical determinant for neuronal survival under excitotoxicity
and ischemia (40). The reduced NAD* motivates mitochon-
dria to the vicinity of endoplasmic reticulum (ER) to form
mitochondria-associated ER membranes (MAMSs) (41). The
diverse drugs or compounds with clear anti-stroke effects
were revealed to reduce or partially reverse neuronal damage
through inhibition of MAM-related proteins following isch-
emic stroke (42,43). Moreover, certain MAM-related proteins
join mPTP to regulate its opening (44), which is an important
marker of cerebral cell death during ischemia/reperfusion.
Once ischemia/reperfusion injury promotes mPTP opening,
mitochondrial ROS (mtROS), mitochondrial DNA (mtDNA)
and cardiolipin inside the mitochondria are released into the
cytoplasm, where they act as danger signals when recog-
nized by innate immune receptors to exacerbate ischemia
damage (45).

Besides energy production, mitochondria also generate a
small amount of ROS, which induces oxidative damage (46).
Increased ROS was generated during cerebral ischemia,
particularly during reperfusion by disrupting mitochondrial
electron transport (47,48). The broken mitochondria produce
large amounts of ROS, which in turn affect the function of adja-
cent mitochondria. Since mitochondria are both the sources
of ROS production and the targets of ROS, oxidant-induced
mitochondrial dysfunction forms a ‘vicious cycle’ in patients
with ischemic stroke (49,50). Furthermore, the ROS release
results in oxidation and mutation of mtDNA, release of mito-
chondrial proteins and impaired mitophagy as shown in rat
model of middle cerebral artery occlusion (MCAOQO). Moreover,
the accumulation of ROS promotes neuroinflammation and
neuron apoptosis after oxygen-glucose deprivation/reoxygen-
ation (OGD/R) (51).

In addition to mitochondrial function, changes in mito-
chondrial structure play an important role in the progress of
ischemic stroke. Mitochondria are highly dynamic organelles
to regulate their size, form and mtDNA integrity via continuous
fission, fusion and mitophagy (52). When neurons undergo
ischemia, mitochondrial fission and fusion are transitory to
maintain its structure integrity and function. However, under
the circumstance of large amount of ROS production (53) and
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Figure 1. Mitochondria play a pivotal role in the pathological process upon ischemic insult. ATP depletion due to OGD leads to Na*/K* ATPase pump dysfunc-
tion. This causes the depolarization of neuronal membrane to release excessive glutamate. In turn, glutamate receptors, such as NMDA and AMPA, are over
activated, resulting in calcium influx into neurons. TRPM2 channel, which is a glutamate-independent ion channel, also leads to intracellular Ca?* calcium
overload which induces mtROS release. Finally, ROS release and mitochondrial dysfunction ensures to initiate inflammation. The production of ROS leads
to the dissociation of TXNIP from TRX to active NLRP3 inflammation. RIPK1 interacts with MCU to upregulate mitochondrial Ca’* uptake and disrupts
the mitochondrial membrane integrity. Furthermore, ischemia triggers the depolarization of A¥m and induction of mPTP, which leads to the production of
mitochondrial DAMPs (such as cardiolipin and mtDNA). Under the stimulation of risk factors, such as lipopolysaccharide and nigericin, SHP2 enters cells
and binds to ANT1, thus stabilizing mPTPs and inhibiting the release of mtROS and mtDNA. The dissociation of Nrf2 from Keapl can inhibit mtROS release.
These can cause the activation of NLRP3 inflammasome and contribute to tissue damage following ischemic stroke injury. OGD, oxygen-glucose deprivation;
NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate; AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate; mtROS, mitochondrial
ROS; ROS, reactive oxygen species; TXNIP, thioredoxin interacting protein; TRX, thioredoxin; NLRP3, NLR family pyrin domain containing 3; RIPK1,
necrosome-containing receptor-interacting protein kinase 1; MCU, mitochondrial Ca2* uniporter; mPTP, mitochondrial permeability transition pore; DAMP,
damage-associated molecular pattern; SHP2, Src homology 2 domain-containing tyrosine phosphatase-2; ANT1, adenine nucleotide transferase 1; mtDNA

mitochondrial DNA.

mtDNA damage (54), mitochondria are divided excessively,
resulting in mitochondrial dysfunction (55). Thus, mitochon-
drial fission occurs as an upstream and early event in brain cell
death following ischemia (56,57).

Furthermore, mutation mtDNA genes is correlated mito-
chondrial dysfunction with genomic instability. mtDNA is
markedly more prone to mutations than nuclear DNA (58).
Particularly, the frequency of mtDNA mutations was found to
be significantly higher in the brain of patients with ischemic
stroke, and numerous of these mutations resulted in an altera-
tion of amino acid therefore structure of protein (34). The
vulnerability of mtDNA to mutation is due to its lacking of
high-fidelity repair processes, the high-copy-number of mtDNA
within each cell, and the close proximity to ROS-generating
machinery (59). In a word, mutation of gene-encoded subunits
in mtDNA results in more ROS generation, which turns
mtDNA more susceptible to mutation.

3. NLRP3 inflammasome-mediated neuroinflammation in
ischemic stroke

Neuroinflammation in ischemic stroke. Upon stroke attack, the
interruption and reperfusion of blood flow in the brain tissue
trigger the infiltration of inflammatory cells to induce neuronal
death (60). Neuroinflammation is a primary pathological event

involved in the process of ischemic injury and repair (61). In
response to injury in the brain, neuroinflammation occurs in
various cells, including neurons, microglia and astrocytes (62).
In the acute phase, the damaged neurons and resident immune
cells secrete inflammatory mediators and activate microglia,
which are the first line of defense in the nervous system (63)
that produce more inflammatory factors (62,64). Additionally,
astrocytes that are activated by ischemia mediate inflamma-
tory response to aggravate ischemic injury. However, they also
limit the spread of inflammation by inhibiting excitotoxicity
and secreting neurotrophic factors (65,66). Interestingly,
NLRP3 inflammasome was found to play a key role in driving
neuroinflammation in these cells during acute ischemic
stroke, and early blockade of NLRP3 protects neurons from
ischemia-reperfusion injury by mitigating inflammation (67).

The composition and activation of the NLRP3 inflammasome.
NLRP3 inflammasome is the most widely described inflam-
matory complex, which is composed of NLRP3 as its receptor,
apoptosis-associated speck-like protein containing a CARD
(ASC) as its adaptor, and caspase-1 as its effector. Activation
of NLRP3 inflammasome includes two steps, namely, priming
and activation (68). The priming step is the recognition of
pathogen-associated molecular pattern (PAMP) or damage-
associated molecular pattern (DAMP) via pattern recognition
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receptors (PRRs). Transcription and post-translational modifica-
tion (PTM) of NLRP3 inflammasome promote the transcription
of NLRP3 and the precursor of caspase-1, interleukin (IL)-1p
and IL-18 (69). The priming of NLRP3 inflammasome not
only provides material for NLRP3 inflammasome activation,
but also allows NLRP3 and ASC to form the inflammasome
assembly (70) or to protect them from degradation (71) through
various PTM including ubiquitylation, deubiquitylation and
phosphorylation. Then, the activation step is required to initiate
the NLRP3 inflammasome assembly and subsequent activation.
Generally, NLRP3 is oligomerized via its NACHT domains once
activated (72). NLRP3 trimerization rather than dimerization is
necessary for the inflammasome activation (73). Subsequently,
activated NLRP3 interacts and recruits the adaptor molecule
ASC via PYD-PYD interaction (74). The polymerized ASC
further recruits the enzyme caspase-1 through CARD-CARD
interactions to initiate autocatalytic cleavage of caspase-1 (75).
Notably, ASC oligomerization is a key step in caspase-1 acti-
vation and caspase-1-dependent pyrophosphorylation upon
NLRP3 stimulation (76). Once activated, caspase-1 cleaves the
inactive pro-IL-1f and pro-IL-18 to release their active form of
cytokines IL-1p and IL-18 to induce neuroinflammation and
pyroptosis (77).

NLRP3 inflammasome in ischemic stroke. NLRP3 inflam-
masome is generally expressed in immune organs and cells,
and is also expressed in the central nervous system (78,79).
Liu et al (80) found that NLRP3 was activated in the microglia
of ischemia-reperfusion injury rat model (81). Moreover, recent
study suggested that NLRP3 was also expressed in the endo-
thelial cells, neurons, and astrocytes of ischemic brain (82).
It was demonstrated that NLRP3 inflammasome was firstly
activated in microglia and then expressed in microvascular
endothelial cells and neurons of transient MCAO (tMCAO) rat
model (83).

Elevated levels of enlarged infarct size, neurological func-
tion and brain infarct volume were observed in MCAO rats
with activation of NLRP3 inflammasome compared with
sham rats (84). Furthermore, IL-1p and IL-18 levels were
increased in the ipsilateral brain of ischemia-reperfusion mice
model as well as in the postmortem ipsilateral brain of patients
with stroke (79). The NLRP3 inhibitor MCC95 significantly
reduced the infarct volume in a dose-dependent manner,
the expression of different pro-inflammatory cytokines and
NLRP3 inflammasome components, indicating its neuropro-
tective effect in the MCAO mice (85). Furthermore, elevated
expression of NLRP3, caspase-1, ASC and IL-1f were present
in a murine model of cerebral ischemia, while caspase-1 inhi-
bition by VX765 prevented these changes and neuronal death.
In summary, NLRP3 inflammasome exerts essential functions
in the pathogenesis of ischemic stroke.

4.Mitochondria regulate NLRP3 inflammasome activation
during ischemic stroke

Mitochondria regulate NLRP3 inflammasome activation
under cerebral ischemia in bidirectional mode. Mitochondria
are involved in the initiation and activation of NLRP3 inflam-
masome, leading to neuroinflammation and pyroptotic cell
death (86). On one hand, the opening of mPTPs in damaged

mitochondria release DAMPs, such as ATP, mtROS, cardio-
lipin and mtDNA, which are common causes for NLRP3
inflammasome activation (87). The localization of mito-
chondrial and its membrane-associated proteins also takes
positive participation in activation of NLRP3 inflammasome
during cerebral ischemic damage. On the other hand, active
mitophagy and fractional mitochondrial-related proteins such
as Src homology 2 domain-containing tyrosine phosphatase 2
(SHP2), mitofusin 2 (Mfn2) and nuclear factor E2-related
factor-2 (Nrf2) negatively regulate the NLRP3 inflammasome
expression to protect brain from ischemic injury (88) (Fig. 1).

The positive role of mitochondria in NLRP3 inflamma-
some activation. Mitochondrial-released contents. mtROS.
Dysfunctional mitochondria produce large amounts of
mtROS by transferring electrons from the MRC to molecular
oxygen to form mtROS (77). MtROS are important in NLRP3
priming and activation. It was revealed that mtROS regulates
NLRP3 initiation earlier than activation by upregulating its
transcription (89). As a non-transcriptional priming signal,
deubiquitination of NLRP3 depends on mtROS generation (90).
Elimination of mtROS inhibits NLRP3 deubiquitination, in
response to lipopolysaccharide stimulation (91,92). By contrast,
mtROS induces NLRP3-dependent lysosomal damage and
inflammasome activation, and promotes macrophages pyrop-
tosis by inducing Gasdermin D oxidation (93), which can be
reversed by scavenging mtROS (94).

Next, high concentrations of mtROS results in NLRP3
activation and IL-1f production (92). Furthermore, increased
mtROS induced by ischemia-reperfusion injury leads to release
IL-1p, IL-18 and caspase-1 by cleaving their precursors (95).
Conversely, inhibiting mtROS formation or eliminating mtROS
by antioxidants strongly impairs the activation of NLRP3
inflammasome and IL-1f release (96,97). It was reported
that mtROS-NLRP3 signaling is activated in BV2 cells after
OGDI/R for 24 h. Inhibition of mtROS release suppresses
NLRP3 activation and alleviates NLRP3-mediating damage
in microglia of ischemia-reperfusion rats (33).

Cardiolipin. Apart from mtROS, the opening of mPTPs
releases other mitochondria-related DAMPs like mtDNA
and mitochondrial lipids during ischemic stroke (98). Among
the different mitochondrial lipids, cardiolipin is an anionic
phospholipid that localizes at the inner mitochondrial
membrane and facilitates OXPHOS in mitochondria (99).
Cardiolipin oxidation and hydrolysis are a key mechanism of
ischemia-reperfusion-induced brain injury (100). Nowadays,
cardiolipin is reported to be effective for triggering the
activation of NLRP3 inflammasome (101) after acute isch-
emia (102). On one hand, cardiolipin directly interacts with
both the N-terminal leucine-rich repeat (LRR) of NLRP3 and
full-length of caspase-1 of NLRP3 inflammasome (86,103).
On the other hand, NLRP3 is tethered to mitochondria by
cardiolipin in an mTROs-dependent manner and is thereby
activated (104). Either interference with cardiolipin synthesis
or knockdown of cardiolipin specifically inhibits NLRP3
inflammasome activation (78).

mtDNA. mtDNA was recognized as one of the endogenous
DAMPs, which is released from damaged mitochondria into
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the cytoplasm to activate NLRP3 inflammasome and induce
pyroptosis. It was shown that mtDNA was indispensable
for NLRP3 activation by mtROS after ischemia-reperfu-
sion (105,106). In response to various NLRP3 activators,
mtDNA is rapidly released into cytoplasm to be oxidized to
oxidized mtDNA (ox-mtDNA). Then, ox-mtDNA specifically
localizes to NLRP3 (106), and directly binds to NLRP3 to
trigger NLRP3 inflammasome activation (107). It was iden-
tified that NLRP3 inflammasome is over-activated in aged
individuals, due to increased production of mtROS and/or
mtDNA (108). High level of mtDNA induces the interaction of
ASC with NLRP3 and pro-caspase-1 and promotes neuronal
pyroptosis in the hippocampus of rats with incomplete
ischemia-reperfusion injury (109). Correspondingly, repairing
mtDNA oxidative damage inhibits NLRP3 activation and
reduces reperfusion-associated ischemic brain injury (110).
These results imply that mtDNA interacts with NLRP3 inflam-
masome to form positive feedback during the development of
ischemic stroke.

Mitochondrial localization. MAMs. ER-mitochondrial
contact is mediated by a specific membrane structure, known
as MAM, which plays key roles in material transfer and signal
transduction, including Ca* signaling (111,112). Notably,
increased MAM aggravates mitochondrial dysfunction
and enhances ROS production (113). In addition, MAM has
overarching roles in innate immune system. When NLRP3
localizes at ER membrane, it is in the resting state. By contrast,
when it relocates to MAM, it switches to activated state
and functions in detecting ROS production from damaged
mitochondria (114). Recruitment of NLRP3 to mitochondria
enhances the ability of mtROS to activate NLRP3 inflamma-
some. ASC predominantly localized to the mitochondria, is
transferred to MAM under the stimulation of NLRP3 activa-
tors. Furthermore, colocalization of ASC with MAM requires
the presence of NLRP3 and is Ca** dependent (115). Notably,
mitochondrial damage by NLRP3 inflammasome activators
leads to the accumulation of NLRP3 and ASC in MAM (116).
Ischemia-reperfusion injury increases the expression of
MAM-related proteins, which accelerated signal communica-
tion with mitochondria through MAM in the male C57BL/6
mice (117). Silencing MAM-related protein p66Shc protects
the integrity of blood-brain barrier, reduces infarct area,
relieves the neurological deficit, and improves the survival
rate of mice after MCAO (118). In a word, MAM is an ideal
site for NLRP3 inflammasome activation and assembly which
accelerates the development of ischemic stroke (119).

Microtubules. Generally, the movement of mitochondria
in neurons is considered to be mediated by microtubules or
microfilaments. Microtubules, which are formed by polymer-
ization of a and [} tubulins, are cell cytoskeleton to support
intracellular transport between various organelles, particularly
those involved in mitochondrial transport (120). Microtubules
undergo various PTMs to take part in the transportation
between mitochondria and ER, as well as in the subcellular
localization of NLRP3 and ASC. Correspondingly, NLRP3
inflammasome activators induce mitochondrial transport to
ER through the microtubule system, thereby facilitating the
transfer of ASC from mitochondria to ER to combine with

NLRP3 (121). A previous study found that the acetylation
of microtubule a-tubulin is a necessary step for NLRP3
inflammasome activation (41) (Fig. 2). Moreover, NAD* is
an endogenous small molecule that regulates the microtu-
bules (122). NAD* caused by reduced ATP production moves
mitochondria through microtubules, therefore promotes
the assembly of NLRP3 inflammasome (41). Nicotinamide
partially increases cellular NAD™ levels and effectively
protects neurons from ischemic damage (40).

Mitochondrial-related proteins

Thioredoxin interacting protein (TXNIP). TXNIP is an
endogenous inhibitor of the thioredoxin (TRX) system and
is expressed in nearly all cytoplasm and mitochondria (123).
MtROS was revealed to promote the combination of NLRP3
with TXNIP which is a critical step that links oxidative
stress to neuroinflammation (124,125). In response to mtROS
release, TXNIP dissociates from TRX and translocates to
MAM, to bind with NLRP3 and induces NLRP3 inflamma-
some activation (126). Inhibition of TRX expression interrupts
the interaction between TRX and TXNIP, thus promoting
the binding of TXNIP to NLRP3 and triggers the assembly
and oligomerization of the NLRP3 inflammasome (127). In
addition, TXNIP expression is upregulated in patients with
stroke and rat model of cerebral ischemia (123,128). The
inactivation of TXNIP relieves neurological deficits, cerebral
infarction and edema from ischemic damage (123). Finally,
TRX inhibitor downregulates the expression of TXNIP and
suppresses NLRP3 inflammasome activation in astrocytes
with OGD/R (80).

Ca** and its receptors. Ca>* concentration increases either by
Ca?*influx from the extracellular space as triggered by neuronal
activity or by Ca* outflux from the ER (129). Ca** accumula-
tion is the determining factor of mPTP opening, which is an
important marker of nerve cell death during ischemia, ensues
by release of mitochondrial components that activate NLRP3
inflammasome (130). It has been revealed that NLRP3 recep-
tors are activated by increased intracellular Ca** concentration
in vitro and in vivo (131). Furthermore, when Ca>* concentra-
tion in the cytoplasm increases, mitochondria uptake a large
amount of Ca®* through calcium-sensitive receptor (CASR) to
activate the NLRP3 inflammasome. Consistently, knockdown
of CASR reduces inflammasome activation. Moreover, a
CASR agonist upregulates the expression of NLRP3, cleaved
caspase-1, and IL-1f in the ipsilateral cortex of mice after
stroke (132). Intriguingly, high intracellular Ca®* concentration
can also lead to Ca?* influx to mitochondria through mitochon-
drial calcium uniporter (MCU), then loss of AWm, resulting in
NLRP3 inflammasome activation and IL-1f secretion (133).
Murakami er al (134) proposed that Ca** signaling is an inter-
mediate step of NLRP3 inflammasome activation. Similarly,
transient receptor potential melastain-2 (TRPM2) channel is
a glutamate-independent ion channel. Under the condition of
ischemia injury, TRPM2 channel can be activated and mediate
the transport of Ca**, leading to intracellular calcium overload.
Notably, intracellular calcium level further drives TRPM?2
activity. In addition, TRPM2 promotes NLRP3 activation
in OGD-induced neuronal injury, which was abolished by
TRPM2 knockdown (135).
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Necrosome-containing receptor-interacting protein kinase 1
(RIPKI). RIPK1 is considered an essential regulator of apop-
tosis, necroptosis and inflammatory response. Under cerebral
ischemia-hypoxia condition, RIPK1 induces necrotic apop-
tosis and neuroinflammation by destroying plasma membrane
of endotheliocyte and microglia (136). Subsequently, released
DAMPs from brain cells cause secondary inflammatory
response, which aggravates ischemic damage (137,138).
Upon being transported to out membrane of mitochondria,
RIPK1 interacts with MCU to upregulate mitochondrial
Ca? uptake, which leads to mtROS generation and NLRP3
activation (139). RIPK1 is upregulated in rat brain upon
MCAO and localized to the microglia. Furthermore, RIPK1
triggers activation of NLRP3 inflammasome by disrupting
the mitochondrial membrane integrity and by promoting
mtROS release in ischemic microglia (140). As the first selec-
tive inhibitor, necrostatin-1 (Nec-1) significantly decreased
RIPK1 phosphorylation in rat brain following ischemic stroke.
Consistently, Nec-1 hindered IL-1 maturation in ischemic
brains of rats (141).

Dynamin-related protein 1 (Drpl). Mitochondrial dynamics
are regulated by specific proteins through mitochondrial
fission and fusion (142) which play an important role in NLRP3
inflammasome assembly and activation (143). Mitochondrial
fission is primarily contributed to Drpl activation (144),
which promotes mitochondrial Ca** uptake (145) to trigger

NLRP3 inflammasome activation. Consistently, inhibition
of Drpl-dependent mitochondrial fission protects neurons
from ischemic stroke by preserving the activity of respira-
tory chain, reducing superoxide production and delaying Ca*
dysregulation (146). Moreover, inhibition of Drpl withholds
NLRP3 inflammasome activation and protects mitochondrial
integrity to exert its neuroprotective effects (147). A recent
study showed that neuronal death was prevented in MCAO
rat model by lowering Drpl expression and NLRP3 signal
transduction (148).

The negative role of mitochondria in NLRP3 inflammasome
activation

Mitophagy. Following ischemia-reperfusion injury, the
damaged mitochondria are removed by autophagy-related
mechanism, which is known as mitophagy (149). Mitophagy
is an important mechanism of mitochondrial renewal and
metabolism which downregulates the number and controls
quality of mitochondria, induces mitochondria to main-
tain dynamic homeostasis (150) and consequently reduces
mitochondria-dependent neuronal cell death (151). In previous
studies, it was identified that induction of mitophagy protects
against cerebral ischemia-reperfusion injury by inhibiting
NLRP3 inflammasome activation (149,152). Following
ischemia-reperfusion, mitophagy increased locally reduces
the neuroinflammatory response induced by NLRP3 inflam-
masome to relieve neurological deficits (153). Blockage of
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mitophagy enhances the activation of the NLRP3 inflamma-
some (154). The damaged and dysfunctional mitochondria
enhance NLRP3 inflammasome activation upon treatment
with mitophagy inhibitors (116).

Mitochondrial transfer. Astrocytes (AS) are the most abundant
glial cells in the central nervous system (155). When ischemic
stroke occurs, AS provide energy support for injured neurons
through the changes of its own bioenergy and mitochondrial
dynamics (156). In addition, AS sense stress, transfer mito-
chondria as a ‘help me’ signal to adjacent injured neurons (157)
and rescue damaged neurons from mitochondrial dysfunction
to deal with stress (158). Concurrently, neurons also release
damaged mitochondria and transfer them to as for endocytosis
and degradation (159), so as to realize the recycling of mito-
chondria, making mitochondria crosstalk between healthy
cells and damaged cells.

SHP2. SHP2 is a negative regulator of NLRP3 inflamma-
some activation (160). In response to NLRP3 inflammasome
stimuli, SHP2 translocates to mitochondria and binds to
adenine nucleotide transferase 1 (ANT1), which prevents the
opening of mPTPs and the subsequent release of mtDNA
and mtROS, thereby inhibiting NLRP3 inflammasome
over-activation (160). In a focal cerebral ischemia model,
ischemia-induced neuronal damage and death were signifi-
cantly increased in nestin-SHP2-CS mice (SHP2 function was
selectively removed from central nervous system) compared
with wild-type mice. Additionally, transgenic mice that over-
express SHP2 are more sensitive to ischemia-induced brain
damage (161).

Mfn2. Mfn2, a mitochondrial outer membrane protein, plays
a pivotal part in mitochondrial fusion. It was reported that
Mfn2 is downregulated while NLRP3 inflammasome and
pyroptosis are activated in microglia and astrocytes of rats
upon ischemia-reperfusion injury (162). Mfn2 overexpression
attenuates free fatty acids induced mitochondrial damage,
decreases mtROS production and inhibits NLRP3 inflamma-
some activation (163). Additionally, Mfn2 improves hypoxia
induced neuronal apoptosis and prolongs the treatment time
window of ischemic stroke by mitochondrial pathway (164).

Nrf2. Nrf2 is a well-known transcription factor that dissoci-
ates from Keapl then translocates into the nucleus to initiate
gene transcription via binding to antioxidant response element
(ARE) during cellular stress conditions (165,166). The
knockout of Nrf2 aggravates oxidative stress and inflamma-
tion (167). Nrf2 abates NLRP3 inflammasome activation by
inhibiting the priming step to limit the assembly of NLRP3
inflammasome (96,168). Following cerebral ischemia-reperfu-
sion, the activated Nrf2/ARE pathway inhibits ROS-induced
NLRP3 inflammasome activation in BV2 microglia (169).
Nrf2 knockout mice showed larger infarct size following
ischemia-reperfusion, compared with that of control coun-
terparts (170). Moreover, Nrf2 siRNA increased expressions
of TXNIP, NLRP3, caspase-1 and IL-1f in brain of MCAO
rats (171). Consequently, Nrf2 protects against NLRP3 inflam-
masome activation by regulating the TRX/TXNIP complex
during cerebral ischemia-reperfusion injury (172).

5. Drugs that target mitochondria

Tissue plasminogen activator (tPA) and tPA recombinant
protein were both used to treat ischemic stroke. However,
these treatments have dangerous complications regarding
reperfusion-injury (173). Reperfusion-injury generally causes
oxidative stress, calcium overload and excitatory toxicity (174).
At present, edaravone, butylphenol and other drugs are often
used in the clinical treatment of stroke to alleviate the brain
injury caused by calcium overload and excess ROS. In addition,
mitochondrial dysfunction is deemed as a marker of ischemic
stroke (175). Therefore, drugs that target mitochondria and
directly or indirectly affect NLRP3 inflammasome to alleviate
brain injury from the aspects of ROS and calcium overload are
summarized in the present review (Table I).

MCC950. As a sulfonylurea-containing compound, MCC950
was first identified as an IL-1f inhibitor (198). Then, MCC950
was also used as a specific inhibitor of NLRP3 inflamma-
some (199,200). The OGD/R-induced BV-2 cells and MCAO
rats showed high expression of Drpl and mitochondrial
fission, as well as NLRP3 inflammasome activation, which
were abolished by MCC950 treatments (191). Oxidative stress,
mainly caused by mitochondria, was reported to be a crucial
mechanism for brain damage following ischemic stroke. And
NLRP3 inflammasome perpetuates oxidative stress. MCC950
application inhibits the effect of NLRP3 on brain oxidative
stress in the animal model of transient global cerebral isch-
emia (201). In addition, MCC950 administration attenuated
brain edema, reduced NADPH oxidase and infarct area and
improved the nervous system in a MCAO rat model with
reperfusion induced by hyperglycemia (202). Moreover, glib-
enclamide is a potent NLRP3 inflammasome inhibitor (203)
that belongs to a class of medications known as sulfonylureas.
Its neuroprotective role is due to its effect in reducing inflam-
matory response and endothelial cell death (204).

Idebenone. Idebenone was originally used as a drug to treat
dementia. It was regarded as a potent antioxidant (205) which
is used as a protective agent for mitochondria (206). Upon
OGD/R, mtDNA and mtROS were released, resulting in accu-
mulation of oxidized mtDNA in the cytoplasm which binds to
and activates NLRP3 to initiate inflammation. Furthermore,
idebenone treatment inhibited this process. NLRP3 was
activated in microglia of ischemia-reperfusion rats in vivo.
Inhibition of NLRP3 was observed in idebenone treatment
which attenuated neurological deficit and reduced infarct
volume (33).

Diazoxide. Diazoxide, an activator of mitochondrial
K-ATP (207), prevents cytochrome c release and stabilizes
mitochondrial function (208). Furthermore, diazoxide protects
neurons during ischemia-reperfusion injury (209). Thus,
diazoxide plays a crucial role in stabilizing mitochondrial
function and in protecting neuronal survival. Indeed, mito-
chondrial dysfunction plays a pivotal role in the initiation
and activation of the NLRP3 inflammasome (210). Diazoxide
prohibits NLRP3 inflammasome activation to prevent inflam-
mation (211). In addition, diazoxide improves mitochondrial
dysfunction following ORG/R in primary microglia BV2 cell
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Table I. Drugs that target mitochondria and NLRP3 inflammasome.

Mitochondrial
associated

Drug protein targets NLRP3 inflammasome targets Model (Refs.)
Umbelliferone ROS/TXNIP NLRP3/IL-1p/Caspase-1/IL-18 MCAO/R (176)
Curcumin ROS/TXNIP NLRP3/IL-1p/Caspase-1 MCAO (177)
Ruscogenin ROS/TXNIP NLRP3/IL-1p/Caspase-1 MCAO/R OGD/R (178)
resveratrol TXNIP NLRP3/IL-1p/Caspase-1 eMCAO (179)
tPA TXNIP NLRP3/IL-1p/ASC/Caspase-1 t-MCAO (180)
Z-Guggulsterone TXNIP NLRP3/IL-1p/IL-18 MCAO/OGD (181)
Malibatol A ROS IL-1B MCAO (182)
Sesamol ROS IL-1pB MCAO/R (183)
Minocycline ROS NLRP3/IL-1p/IL-18 tMCAO/R OGD/R (184)
Sinomenine ROS NLRP3/ASC/IL-1p/Caspase-1/IL-18 MCAO/OGD (185)
Irisin ROS NLRP3/IL-1p/Caspase-1 OGD (186)
apocynin ROS NLRP3/IL-18/IL-1p/ASC/Caspase-1 MCAO/R (187)
Rosuvastatin ROS NLRP3 MCAO (188)
arginase ROS IL-1B MCAO (189)
Medioresinol mtROS IL-1B/NLRP3/Caspase-1/ASC/ tMCAO (190)
miR-668 Drp-1/ROS NLRP3/IL-1B tMCAO/R OGD/R (148)
3-n-butylphthalide Drp-1/ROS IL-1B OGD (32)
Ketogenic Diet Drp-1/ROS TXNIP/ATP NLRP3/IL-1p/Caspase-1 MCAO/R OGD/R (147)
Panax ginseng and Drp-1 IL-13/NLRP3/Caspase-1 MCAO/R OGD/R (191)
Angelica sinensis
FK866 Mifn2/Drpl NLRP3/IL-1B CA/CPR (162)
isoflurane mPTP/ROS IL-1p MCAO/OGD (192)
Ezetimibe Nrf2/TXNIP NLRP3/IL-1p/Caspase-1 MCAO (171)
melatonin mtDNA IL-1B MCAO (193)
Necrostatin-1 RIPK NLRP3/ASC/Caspase-1/IL-1f MCAO (140,141)
[-caryophyllene RIPK IL-1PB OGD/R MCAO/R (194)
Isosteviol Sodium Ca2*/mtROS IL-1pB hypoxia (195)
Taxifolin Ca2* IL-1p OGD (196)
Oxysophocarpine Ca2* IL-1PB OGD/R (197)

Focal cerebral ischemia was simulated through the MCAO in vivo and OGD/R in vitro. In MCAO and OGD/R models, drugs targeting
specific targets of mitochondria and NLRP3 inflammasome for the treatment of ischemic stroke are listed. NLRP3, NLR family pyrin domain
containing 3; ROS, reactive oxygen species; TXNIP, thioredoxin interacting protein; ASC, apoptosis-associated speck-like protein containing
a CARD; MCAO, middle cerebral artery occlusion; OGD/R, oxygen-glucose deprivation/reoxygenation; tMCAO, transient MCAO; mtROS

mitochondrial ROS; Drpl, dynamin-related protein 1; Mfn, mitofusin; RIPK, receptor-interacting protein kinase 1.

by preventing mitochondrial depolarization and the opening
of MPTP to inhibit NLRP3 inflammasome activation (212).
Therefore, maintaining mitochondrial stability and reducing
NLRP3 inflammasome activation could both be potential
targets of diazoxide to treat ischemic stroke.

Melatonin. Melatonin, an endogenous regulator, is a metabo-
lite of tryptophan released from the pineal gland (213). It is
involved in numerous physiological and pathophysiological
processes including antioxidant (214), anti-apoptotic, and
anti-inflammatory effects (215). Melatonin is of neuro-
protective effect, which reduces infarct volume, lowers
brain edema, and increases neurological scores. In addi-
tion, melatonin preserves mitochondrial membrane

potential and mitochondrial complex I activity (216),
and inhibits the opening of MPTPs and the abnormal
release of cytochrome c¢ (217), which is critical in reducing
ischemia-reperfusion injury. Furthermore, melatonin is a
relatively nontoxic molecule, which is safe to use in clinical
trials. Previously, melatonin prevented IL-1f3 overexpression
in the MCAO rat model (218). Additionally, Wang ez al (219)
showed that melatonin inhibited cell death, loss of mPTP,
the release of mitochondrial factors, pro-IL-1f processing,
and activation of caspase-1 induced by OGD. Furthermore, it
decreased infarct size and improved neurological scores after
MCAO in mice (219,220). Consequently, melatonin exerts
neuroprotective and anti-inflammatory effects by modulating
multiple targets in the NLRP3 inflammation (220).
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Anthocyanins. Anthocyanins, which are effective flavonoid
antioxidants (220) are natural plant pigments with a wide
range of biological activities (221,222). Anthocyanins
are flavylium-based multistates (223) and can reduce
the damage to neurovascular unit in MCAO rats (224).
Furthermore, anthocyanins inhibit NLRP3 expression
in the brains of MCAO/R rats (225) and reduce cytosolic
cytochrome c release to prevent apoptosis (226). Moreover,
anthocyanins are neuroprotective in mouse model of
pMCAO, decrease cerebral superoxide levels and inhibit
AIF release from mitochondria (227). Cui et al (228) showed
that purified anthocyanin extracts significantly reduce the
expression of caspase-1 and NLRP3 and activate Nrf2 in
the ischemia-reperfusion mice brain, thereby inhibiting
inflammation and protecting the brain. Thus, anthocyanins
may be a potential candidate for the prevention and treat-
ment of stroke.

6. Clinical perspectives

At present, thrombolytic therapy is the only approved treat-
ment for acute ischemic stroke (229), but only a minority
of all patients with stroke are eligible for this treatment. At
present, some drugs that target mitochondria and NLRP3
inflammasome are being tested in preclinical research.
Idebenone, melatonin, minocycline and 3-n-butylphthalide
were examined in clinical trials (Table II). It was demon-
strated that no adverse events were reported as to the clinic
usage of 3-n-butylphthalide (230). 3-n-butylphthalide showed
favorable results and safety in the treatment of patients
with moderate acute ischemic stroke (ClinicalTrials.gov
Identifier: NCT02149875). Minocycline was reported to be
safe and well tolerated with half-life of ~24 h. It may be an
ideal drug to treat ischemic stroke when used together with
tPA (ClinicalTrials.gov Identifier: NCT00630396) (231). In
addition, the North Shore University Hospital is recruiting
patients to study the effect of intra-arterial neuroprotective
agents (minocycline) for recanalization of ischemic stroke
(ClinicalTrials.gov Identifier: NCT05032781). Furthermore, a
clinical trial is comparing the efficacy and safety of low-dose
rivastigmine with ezetimibe and high-dose rivastigmine
in the treatment of ischemic stroke (ClinicalTrials.gov
Identifier: NCT03993236). In conclusion, drugs targeting
mitochondria and NLRP3 inflammasome show promising
therapeutic effects.

7. Conclusion

Mitochondria are involved in various processes essential for
cell survival, including energy production and physiological
cell death mechanisms. Emerging knowledge about this
organelle has shed light on its implication in inflammation. It
is well accepted that post-ischemic neuroinflammation is one
of the important mechanisms of ischemic brain injury. NLRP3
inflammasome has been found to play a key role in driving
neuroinflammation in brain cells, such as cerebral microvas-
cular endothelial cells, neurons and microglia during acute
ischemic stroke. NLRP3 inflammasome was firstly activated
in microglia and then expressed in microvascular endothelial
cells and neurons of rat brains after ischemia-reperfusion

injury. NLRP3 inflammasome can be activated by several
factors, including the release of mitochondrial components,
such as mtROS, cardiolipin, and mtDNA and mitochondrial
related proteins, such as TXNIP and RIPK1 and some proteins
that regulate the location of mitochondria. Through the
present review, the close relationship between mitochondria
and NLRP3 inflammasome and how mitochondrial damage
contributes to ischemic damage by targeting neuroinflam-
mation were discussed. Thus, maintaining mitochondrial
homeostasis is important to ischemic stroke. Although the
efficacy of tPA for acute ischemic stroke is well established,
there are still serious side effects and limits. New therapeutic
targets focusing on mitochondria, such as potential antioxidant
or anti-inflammatory medicines, are promising therapeutic
approaches in ischemic stroke. In addition, for ischemic stroke,
some aforementioned drugs shall be administered in clinical
trials currently recruiting patients, or are used in ongoing
clinical trials or have been used in completed clinical trials.
Thus, understanding the biology and regulation of inflamma-
some-mitochondria connections is required to treat ischemic
stroke.
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