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Abstract. Immunoglobulin E (IgE)‑mediated allergy or 
hypersensitivity reactions are generally defined as an unwanted 
severe symptomatic immunological reaction that occurs due 
to shattered or untrained peripheral tolerance of the immune 
system. Allergen‑specific immunotherapy (AIT) is the only 
therapeutic strategy that can provide a longer‑lasting symp‑
tomatic and clinical break from medications in IgE‑mediated 
allergy. Immunotherapies against allergic diseases comprise 
a successive increasing dose of allergen, which helps in 
developing the immune tolerance against the allergen. AITs 
exerttheirspecial effectiveness directly or indirectly by modu‑
lating the regulator and effector components of the immune 
system. The number of success stories of AIT is still limited 
and it canoccasionallyhave a severe treatment‑associated 
adverse effect on patients. Therefore, the formulation used for 
AIT should be appropriate and effective. The present review 
describes the chronological evolution of AIT, and provides a 
comparative account of the merits and demerits of different 
AITs by keeping in focus the critical guiding factors, such as 
sustained allergen tolerance, duration of AIT, probability of 
mild to severe allergic reactions and dose of allergen required 
to effectuate an effective AIT. The mechanisms by which 
regulatory T cells suppress allergen‑specific effector T cells 
and how loss of natural tolerance against innocuous proteins 
induces allergy are reviewed. The present review highlights the 
major AIT bottlenecks and the importantregulatory require‑
ments for standardized AIT formulations. Furthermore, the 
present reviewcalls attention to the problem of ‘polyallergy’, 
which is still a major challenge for AIT and the emerging 
concept of ‘component‑resolved diagnosis’ (CRD) to address 

the issue. Finally, a prospective strategy for upgrading cRd 
to the next dimension is provided, and a potential technology 
for delivering thoroughly standardized AIT with minimal risk 
is discussed.
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1. Introduction

There is a delicate balance between immune tolerance and 
responsiveness against foreign assault. If the balanceis shifted 
towardstolerance it may underpin the development of patho‑
logical conditions, such as cancer. However,if the immune 
system is overly responsive, this may induce autoimmune 
diseases and allergic disorders (1,2). Hyper responsiveness of 
the immune system is responsible for different allergic condi‑
tions in atopic individuals (3). Studies have estimated that 
>25% of the population in developed countries suffers from 
immunoglobulin (IgE)‑mediated allergies or ‘type I hypersen‑
sitivity’ (4‑6). Allergen‑specific immunotherapy (AIT), also 
known as ‘allergy vaccination’ or ‘desensitization’, is a treat‑
ment that fine‑tunes the defense system of the body to become 
tolerant to a specific allergen over a period of time (7,8). AIT is 
accompanied by several potential drawbacks, such as local and 
systemic immune reactions during AIT administration, and 
variable patient outcome (9,10). despite the risk and differen‑
tial response among individuals, AIT is still the most effective 
approach and the only therapeutic approach that is specific for 
the treatment of allergy. AIT reduces the activation and prolif‑
eration of lymphocytes in response to allergenic stimulus and 
further enhances the immune tolerance mechanisms towards 
specific allergens (11). Principally, during AIT, the allergen 
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is administered to the host via different routes at increasing 
concentrations to achieve an effective immunotherapy (12). 
Theprocessis divided into twophases: The ‘build up phase’and 
the ‘maintenance phase’ (13).

During the first phase, or ‘build up phase’ of immuno‑
therapy, an increasing dose of the therapeutic formulation is 
administered to the host 2 or 3 times in a week, which enhances 
the allergen tolerance over time (14). The length of this phase 
varies based on the frequency of injections and effectiveness 
of the therapeutic formulation but generally ranges between 
3 and 6 months (14,15). After achieving an effective dose in 
the ‘buildup phase’, the second phase of AIT is started as a 
‘maintenance phase’ (15). The gap between therapeutic injec‑
tions throughout the maintenance phase varies and may range 
from 2‑4 weeks to 2‑5 years (15,16). This desensitization 
process increases the threshold dose of the allergen to cause 
allergic reactivity (13). Several studies have provided evidence 
that administration of a suitable allergen for immunotherapy 
not only provides protection against its own allergenicity but 
also reduces the probability of developing sensitization against 
other allergens (17,18). The first specific immunotherapy for 
grass pollen‑induced hay fever was introduced in 1903 (19). 
However, over time, the treatment options with different 
routes for AIT expanded the scope of immunotherapy to 
other allergic diseases (20‑24). The identification of IgE and 
a blocking antibody of IgE, IgG4, provided a leap forward in 
the field of AIT (25,26). With further advances in technologies 
in later years, such as the synthesis of chemically modified 
and genetically engineered allergens with low allergenic 
activity and their use for AIT, the scope of modifying the 
allergens for an improved clinical outcome broadened (27,28). 
In addition, novel biomarkers have been identified that could 
be useful for monitoring the effectiveness and predicting 
the safety of immunotherapy (29). The practices of allergen 
immunotherapy have been knowingly or unknowingly used 
for several decades. Fig. 1 provides a roadmap of findings 
associated with AIT (19‑30). The present review attempts to 
provide a comprehensive overview of the history and diverse 
clinical applications of AIT, and to explore developments 
in the scientific understanding of therapy along with future 
perspectives.

2. Allergen extracts for immunotherapy

Allergens are a complex mixture of allergenic and 
non‑allergenic ingredients comprising single or multitudinous 
combinations of proteins, carbohydrates, lipids and glycopro‑
teins (31). The allergenic ingredients that are responsible for 
induction of allergy could potentially also be used for the diag‑
nosis and specific immunotherapy of the same allergy (32). 
Usually, the therapeutic formulations are directly prepared 
from a natural source of allergen, which contains allergenic 
as well as non‑allergenic components (31,32). The concen‑
tration of an allergen for inducing effective immunotherapy 
depends on several bio‑variable factors, such as the ratio of 
allergic and non‑allergic ingredients, their quantity, processes 
used for their isolation and purification, and genetic makeup 
of the affected atopic individual (33). crude allergenic extract 
is extensively used for immunotherapy; however, four major 
problems are often witnessed during the course of this method: 

i) Allergen extracts comprise a variety of allergenic as well 
as non‑allergenic proteins, other macromolecules and toxic 
ingredients, which is often difficult to standardize involving 
high batch‑to‑batch variability; ii) development of specificities 
against newer proteins; iii) unpredictable clinical response due 
to systemic administration of intact allergens through extracts; 
and iv) effective therapeutic doses are often difficult to achieve 
due to a lack of standardized extracts (33‑35). Therefore, the 
standardization of allergen extracts from their natural source is 
necessary to diminish their allergenic potential and to ensure 
their consistent composition and potency for AIT (36). At 
present, various injectable and non‑injectable, Food and drug 
Administration (FdA)‑approved allergen extract‑based thera‑
peutic formulations are used for the diagnosis and treatment 
of different allergic diseases (37‑39). However, the majority of 
the FdA‑approved allergen extract‑based therapeutic formula‑
tions are non‑injectable. For example, to treat allergic rhinitis 
and conjunctivitis, the FdA‑approved GRASTEK (timothy 
grass pollen allergen extract), OdAcTRA (house dust mites 
allergen extract), RAGWITEK (short ragweed pollen allergen 
extract) and ORALAIR (sweet vernal, orchard, perennial 
rye, Timothy and Kentucky bluegrass mixed pollens allergen 
extract) are available as tablets for sublingual AIT (37,40‑42). 
Similarly, PALFORZIA (peanut allergen powder) is also an 
FdA‑approved allergen extract‑based therapeutic formulation 
that is used for the treatment of peanut allergy through oral 
immunotherapy (OIT) (38,43). In addition, numerous other 
injectable and non‑injectable allergen extract‑based thera‑
peutic formulations are being investigated in different phases 
of clinical trials (39,44,45). Table I provides an overview of 
allergen extracts approved by the FdA or undergoing clinical 
trials.

At present, novel ways are being developed to introduce 
chemical modifications in the allergenic extracts intending 
to lower their allergenic potential without affecting the 
immunogenicity, and such modified extracts are termed 
as ‘allergoids’ (27,46,47). To enhance the efficacy of the 
immunotherapeutic approaches and decrease the allergenic 
properties of a given protein, different chemical, structural 
and recombinational modifications can be introduced in the 
allergen (34). The generation of hypoallergenic hybrid mole‑
cules through conjugation of allergens to adjuvant substances 
activating innate immune cells, such as cpG oligonucleotides, 
carbohydrate‑based particles, or nanosized therapeutic formu‑
lations are examples of these modifications (48‑50). These 
alterations are primarily intended to modify the IgE‑specific 
epitopes present on allergens, while keeping the T cell epit‑
opes intact (51). Methods of chemical modifications to prepare 
hypo allergens are advantageous over others as they can be 
applied on different homogenous as well as heterogeneous 
types of allergens. For example, coupling of allergens with 
polyethylene glycol, glutaraldehyde and formaldehyde has 
been illustrated to modify the IgE epitopes of allergens (34,51). 
Similarly, treatment of allergens with maleic acid anhydride 
generates recognition sites for different scavenger receptors 
in allergens, thereby facilitating their intake by phagocytic 
cells, and immunotherapy with these hypo allergens has 
been observed to induce the type 1 helper cell (Th1) domi‑
nated immune response (52,53). Similarly, conjugation of 
allergens with synthetic oligo‑deoxy nucleotides carrying 
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immune‑stimulatory cpG sequences from bacterial dNA can 
mask IgE‑specific epitopes on allergens and could potentially 
block the cross‑linking between allergens and IgE bound to 
high affinity IgE receptor (FcεRI) present on the surface of 
mast cells and basophils (54). In order to further refine this 
strategy, further investigations that compare the relative 
efficiency of the chemical modifications and determine their 
potential synergistic or additive effects are required.

Recombinant dNA technology has also been used for targeted 
alteration in allergenic proteins by means of mutations, dele‑
tions, fusion, site‑directed mutagenesis and hybridization (32). 
Recombination of the genes of allergens requires knowledge of 
their sequences and positions of amino acids, as well as their 
three‑dimensional conformation, which is helpful for targeted 
modification (34,55). Using this approach, hypo allergens for 
the timothy grass Phil p 5b and American cockroach Per a 
1 allergen have been successfully prepared by deleting the IgE 
epitopes present in the corresponding gene segments, and the 
consequent hypo allergens were observed to have reduced IgE 
binding properties, reduced histamine‑releasing activity and 
reduced skin reactivity (56,57). After modification, allergens 
may exhibit low allergenicity but also carry the risk of gener‑
ating new epitopes that may induce allergic reactions (48). 
Therefore, it is important to subject the newly synthesized hypo 
allergens to pertinent in vitro and in vivo evaluation tests before 
approving them for therapeutic applications.

3. Mechanisms of AIT

Allergy is fundamentally an undesirable hyperactive immune 
response to allergens, which occurs due to a breach of 
peripheral tolerance and dysregulation of immune homeo‑
stasis mediated by cellular and molecular factors, such as 
TLR4 or TLR8, regulatory T cells (Tregs), T cell, immu‑
noglobulin and mucin and allergen‑specific MHc class II 
tetramer+ cells (58,59). Forkhead box P3 (FoxP3)‑positive 
Tregs are pivotal for generating tolerance against self‑antigens 
and harmless non‑self‑antigens (60,61). Usually, Tregs 
present at the mucosal surfaces suppress the immune cells 
involved in the mediation of allergic responses, such as type 2 
cd4+ helper cells, mast cells and eosinophils (62,63). distinct 

approaches have been used in various AIT studies; however, 
there is a profound overlap in the mechanism underlying these 
AITs and their allergen‑specific tolerogenic features (64,65). 
The major differences among various approaches primarily 
involve the role of antigen presenting cells (APcs) associ‑
ated with differentroutes of immunotherapy, memory cell or 
Treg responses, characteristic immunoglobulins produced, 
and interaction with other immune cell types present at the 
interface niche, where the primary encounter of the tolero‑
genic protein occurs with the host (12,66,67). Notably, the 
APc phenotype present at the host‑environment interface 
servesan important role in peripheral insensitivity or immuno‑
genicity to innocuous antigens (68,69). For example, dendritic 
cells (DCs) are specialized antigen‑presenting cells, which 
initiate and sustain allergic inflammation, or support toler‑
ance induction (70,71). After being triggered by an antigen, 
immature dcs polarize into either dendritic cells‑1, dendritic 
cells‑2 (dc2s), dendritic cells‑17 or regulatory dendritic cells 
(DCregs), which induce the differentiation of naïve T cells 
into Th1, type 2 helper (Th2) or T helper 17 cell (Th17), or 
Tregs, respectively (29,71,72). Compared with immature 
dcs, dcregs or tolerogenic dcs represent an intermediate 
stage of dc maturation characterized by higher expression 
levels of class II major histocompatibility complex (MHc) 
and co‑stimulatory molecules, but often lack the capacity of 
proinflammatory cytokine secretion (73,74). The DCs involved 
in AIT are primarily myeloid dcs (mdcs) and Langerhans 
cells (LCs), which are also characterized by expression of 
FcεRI on their surface (75,76). mDCs secrete IL‑12, which 
tilts the Th1/Th2 balance towards Th1 responses, whereas LCs 
promote the development of T helper 3 regulatory cells via 
production of IL‑10 and TGF‑β, thereby attenuating the Th2 
immune responses (71,75). The induction of allergen‑specific 
Tregs is the central factor in all types of AITs; however, how the 
allergen‑specific effector T cells or naïve T cells transform into 
allergen‑specific Tregs is not well understood. It would appear 
that the myriad of signals present in the microenvironment 
of immature dcs after the phagocytosis of allergens orches‑
trates the development of the Th2‑mediated allergic response 
or tolerogenic response against allergens spearheaded by 
Tregs (76,77). It has been demonstrated in several models that 

Figure 1. Timeline of major scientific advances during the history of AIT. Injection of crude pollen extract to ameliorate the allergenic response of pollen was 
first described in 1903, representing the initial breakthrough in AIT. Since then, numerous advances in experimental methods and innovations have fueled the 
transition of AITs from fundamental research to clinical trials and have contributed to the identification of AIT‑associated biomarkers. AIT, allergen‑specific 
immunotherapy.
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coincident exposure of pathogens or endotoxin with allergen 
may lead to onset of IgE‑mediated allergic responses (78,79). 
However, in the absence of pathogenic signals during AIT, the 
immature DC sunder go tolerogenic interaction with T cells 
of the lymph node (80). This promotes the development of 
IL‑10, TGF‑β and IL‑35‑secreting Tregs, thereby inducing 
allergen‑specific peripheral tolerance (81‑83).

These suppressive cytokines (IL‑10 and TGF‑β) are known 
to inhibit the differentiation, proliferation and activation of 
effector T cells, and further bring about desensitization of 
mast cells and basophils (84). IL‑10 acts by decreasing the 
production of allergen‑specific IgE, while increasing the levels 
of immunoglobulin G4 (IgG4) and immunoglobulin G2a 
(IgG2a) secretion from B cells (85). In addition, TGF‑β is also 
involved in the induction of allergen‑specific tolerance during 
AIT (86). Tregs are the major source of TGF‑β, which affects 
T cell proliferation and differentiation, and inhibits Th2 differ‑
entiation by suppressing GATA binding protein 3 (GATA‑3) 
expression and IL‑4‑mediatedSTAT6 activity (87‑89).

Apart from the suppressive Tregs and dcregs, a population 
of IL‑10‑secreting suppressor B cells has also been identified, 
and this is known as regulatory B cells (Bregs) (90,91). The 
primary function of Bregs is to support immunological toler‑
ance and inhibit unwanted inflammation (92). IL‑10‑secreting 
Bregs serve an important role in the tolerance induction 
during AITs (93). IL‑10 is a key suppressive cytokine associ‑
ated with Bregs; however, TGF‑β and IL‑35 have also been 
identified as Breg‑associated suppressor molecules (94,95). 
different subsets of Bregs have been described in humans 
and a defective development and function of Bregs may 

result in various chronic inflammatory diseases, such as 
collagen‑induced arthritis and chronic hepatitis B virus 
infection (96,97). Although IL‑10 secretion is common to all 
Bregs, they are further grouped into different subsets based 
on their differential functions (98). The immature/transitional 
Bregs (cd19+cd24hicd38hi) suppress effector T cells but 
enhance Treg function (99). Similarly, another sub‑popu‑
lation of Bregs, known as memory B Cells/B10 Bregs 
(cd19+cd24hicd27+), enhance and stabilize the expres‑
sion of FoxP3 in Tregs (100,101). Another subset of Bregs 
(cd25highcd71highcd73low) prevents peripheral tolerance 
by producing IL‑10 and blocking antibody IgG4 (93,102). 
Notably, it has been reported that the relative percentage of 
cd19+ cd24hicd27+ Bregs was decreased in patients with 
allergic rhinitis, whereas an increase in the percentage of 
cd19+cd24hicd38hi Bregs was observed in comparison with 
healthy individuals; however, the significance of this finding 
is unclear (103). It has been noted that Bregs serve a critical 
role in effective AIT. After AIT, the percentage of IL‑10 
and IgG4‑secreting Bregs increases, which suppresses the 
allergen‑specific CD4+ T‑cell proliferation and further amelio‑
rates the allergic airway inflammation via FoxP3‑positive 
T regulatory cells (93,104). In another study conducted on bee 
venom antigen allergic patients subjected to AIT, an enhanced 
percentage of IL‑10 and IgG4‑secreting cd25hicd71hicd73low 
Bregs, which potently suppress allergen‑specific CD4+ 
T‑cell proliferation and produce increased amounts of 
IgG4, was found (93). Notably, a 10‑100‑fold increase in 
serum allergen‑specific IgG4 isotype has been observed for 
AITs (85). IgG4 functions as a blocking antibody for IgE and 

Table I. Allergen‑specific immunotherapies approved by the FDA or undergoing clinical trials.

First author/s, year Allergic diseases Immunotherapy Proper name Tradename FdA approval (Refs.)

Köberlein and Allergic rhinitis Sublingual  Timothy grass pollen GRASTEK Approved (37,40‑42)
Mösges, 2013; Rizvi and conjunctivitis immunotherapy allergen extract   
and Panchal, 2015;   House dust mites OdAcTRA  
cho et al, 2018;   allergen extract   
Nelson, 2018   Short ragweed pollen RAGWITEK  
   allergen extract   
   Sweet vernal, orchard, ORALAIR  
   perennial rye, timothy,   
   and Kentucky blue   
   grass mixed pollens
   allergen extract   
Thompson et al, 2020 Allergic rhinitis Intralymphatic conifer mountain TX‑SMILE Undergoing (44)
 and conjunctivitis immunotherapy cedar pollen extract  clinical trial
dougherty et al, 2021; Food allergy Oral  Peanut allergen PALFORZIA Approved (38,43)
Erlich, 2022 (peanut allergy) Immunotherapy extract   
Senti et al, 2012 Food allergy Epicutaneous  Peanut allergen Viaskin® Undergoing  (45)
 (peanut allergy) immunotherapy extract EDS with clinical trial 
    peanut allergen
Zuidmeer‑  Food allergy Subcutaneous  Recombinant fish FAST‑Fish Undergoing  (39)
Jongejan et al, 2015 (fish allergy) immunotherapy parvalbumin  clinical trial 

FdA, Food and drug Administration.
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considerably reduces the binding of IgE to its receptor present 
on the surface of mast cells and basophils (105). This process 
prevents mast cell degranulation, which in turn downregulates 
the activity of eosinophils and neutrophils (106). IgG4 anti‑
bodies also inhibit the proliferative response of T‑cell clones 
by blocking IgE‑facilitated allergen binding to B cells and 
thereby inhibiting the presentation of allergenic peptides by 
B‑cells to allergen‑specific T‑cell clones (93). Additionally, an 
increase in IgG2 a in the serum shifts the Th1/Th2 immune 
response towards a Th1‑dominated immune response (107). 
Despite early generation of Tregs following AIT, it may still 
take years to effectuate a marked reduction in IgE levels in 
the allergic individuals (108). An analysis of the mechanisms 
of AIT has been summarized in Fig. 2, and a comparison of 
various AITs is presented in Table II.

4. Routes of administration in AIT

The most important factor, which contributes to the duration 
of AIT, is the route of administration and this has a marked 
influence on the clinical outcome of immunotherapy (12). 
There a large variations in the immune niche present at various 
external tissue interfaces associated with different AITS, 

which serve a major role in fine orchestration of immune 
responses (12,109,110). The routes of administration of AIT 
can be categorized into subcutaneous immunotherapy (ScIT), 
sublingual immunotherapy (SLIT), OIT, intralymphatic immu‑
notherapy (ILIT) and epicutaneous immunotherapy (EPIT).

SCIT. Historically, SCIT has been the first form of immu‑
notherapy, where in a small amount of allergen extract is 
administered by injectioninto the subcutaneous layer of 
skin and this is commonly called an‘allergy shot’ (111). It 
was used for the first time approximately a century ago by 
Noon (20,112) in 1911 as a useful measure to tackle hay fever 
symptoms (20,112). Until the discovery of IgE in 1965, ScIT 
was used without having a proper understanding of the primary 
allergic mediators and the regulatory mechanisms targeted by 
immunotherapy (20,113). However, in a number of cases, the 
therapy proved effective in reducing the symptoms of allergic 
diseases for a prolonged period (114). Previous studies have 
demonstrated that improvements can be observed within 
3 months after initiation of therapy, and those benefits may be 
long lasting with decreases in seasonal symptoms and use of 
anti‑allergic medications, which further persisted for at least 
2 years even after discontinuation of immunotherapy (115,116). 

Figure 2. Mechanism underlying allergen‑specific immunotherapy. Following immunization, the allergen is captured by local antigen presenting cells, processed 
as small peptides and presented in association with the MHC and iTregs. The iTregs secrete suppressive cytokines, including IL‑10, TGF‑β and IL‑35, which 
further suppress different allergic components in either a contact‑dependent or independent manner. Allergen‑specific iTregs can shift the Th1/Th2 balance 
towards the Th1 (IFN‑γ and TNF‑α secreting T cells) type from the predominant Th2 (IL‑4, IL‑5 and IL‑13‑producing T cells) type. Furthermore, iTregs can 
also inhibit tissue homing of Th2s, mucus secretion and sensitization of mast cells. In addition, IL‑10 and TGF‑β secretion by iTregs inhibits the inflammatory 
dendritic cells and IgE production from B cells, and induces IgG4 (IgE blocking antibodies) secretion from Bregs. These modulations by iTregs result in the 
development of tolerance against the allergen. Breg, regulatory B cell; IgE, immunoglobulin E; IgG4, immunoglobulin G4; iTreg, inducible regulatory T cell; 
MHc, major histocompatibility complex; Th1, type 1 helper cell; Th2, type 2 helper cell.
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Table II. Comparative analysis of different allergen‑specific immunotherapies.

  Targeted   
First author/s, year Immunotherapy APcs Mechanism disadvantages (Refs.)

Lawrence et al, Subcutaneous  DCs of non‑ Decrease in inflammatory Redness at the (71,111,114,115,117,118)
2016; immunotherapy vasculature mediators (i.e., histamine site of injection,  
cox et al, 2012;  part of and PGD2); migration of swelling and  
Hesse et al, 2018;   subcutaneous mast cells, eosinophils and itchiness (local  
Jacobsen et al,  layer  basophils within target reactions);   
2012;   organs (skin, nose and shortness of breath; 
Jongkhajornpong   lung); induction of Th1s occasionally severe 
and Laisuan, 2017;   and Tregs; duration, >100 anaphylactic 
Aasbjerg et al, 2014   injections in 3‑5 years reactions, which 
    may cause death 
Okamoto et al, Sublingual  Oral LCs Decrease in the Only a few local (127‑129,131,213)
2017; immunotherapy  recruitment of mast cells, reactions but no
Lim et al, 2017;   eosinophils and basophils; mortality has been 
Frati et al, 2010;    progressive decline of reported so far 
Allam et al, 2008;   serum IgE; increase in  
di Bona et al, 2010   allergen‑specific serum  
   IgG4 and mucosal IgA;  
   decrease in Th2  
   responses, while promoting  
   Th1 and Treg responses;  
   duration, 1 drop  
   daily/5 drops three times
   per week for 1‑3 years
Smaldini et al, Oral  Macrophages  Induction of various Local and (146,149,150,214)
2015; immunotherapy and dcs of FoxP3highcd4+cd25+  systemic 
Vickery et al,  GI lumen Tregs (e.g., TGF‑β+, reactions along 
2014;   IL‑10+ and IL‑35+  with risk 
Sampson, 2013;   Tregs); increased of anaphylaxis 
Harrison and   IgG4 with decline in   
Powrie, 2013   serum IgE; duration,
   daily for 2‑5 years
dioszeghy et al, Epicutaneous Lcs of the Induction of FoxP3+/ Few local (153,161,215,216)
2018;  immunotherapy superficial IL‑10+‑producing reactions 
dupont et al, 2010;  skin layer Tregs; decreased
de chaisemartin,   eosinophils in BAL;   
2015;   reduced Th2 responses;  
de calisto et al,   duration, 3‑4 months
2012
Hylander et al, Intralymphatic  dcs of Shifting of Th2 responses Mild local adverse (163,166,167,169)
2013; Martínez‑ immunotherapy lymph node towards Th1 type; reactions, such as 
Gómez et al,   generation of allergen‑ throat irritation, 
2009;   specific Tregs; increase in and oral and ear 
Freiberger et al,    the serum titers of allergen‑ pruritus, are 
2016;   specific IgG antibodies, common; rarely 
Rajakulendran et al,   particularly IgG4; duration,  severe adverse 
2018   only 4 injections within reactions 
   12 weeks 

AHR, airway hyperresponsiveness; APCs, antigen presenting cells; BAL, broncho alveolar lavage; DCs, dendritic cells; FoxP3, forkhead 
box P3; GI, gastrointestinal; IgA, immunoglobulin A; IgE, immunoglobulin E; IgG4, immunoglobulin G4; Lcs, Langerhans cells; PGd2, pros‑
taglandin d2; Th1, type 1 helper cell; Th2, type 2 helper cell; Treg, regulatory T cell.
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A case study of apatient with atopic keratoconjunctivitis 
revealed that SCIT was fairly successful in controlling 
the allergic symptoms and disease exacerbation (117). The 
therapeutic benefits of SCIT are attributed to different types of 
regulatory mechanisms. In a study comparing the efficacy of 
SLIT vs. SCIT against grass allergy, it was demonstrated that 
ScIT could induce comparatively high levels of IgE blocking 
antibody IgG4, by suppressing Th2 cytokine production more 
efficiently (114,118). The subcutaneous administration of aller‑
gens activates IL‑10‑secreting DCs, which further induces 
IL‑10 or TGF‑β secretion from Tregs, thereby establishing the 
homeostatic balance between Th1 and Th2 cytokines. IL‑10 
secreted by Tregs induces B cells to secrete allergen‑specific 
IgE‑blocking antibodies, such as IgG4 andimmunoglob‑
ulin A, which further trap allergens before their binding to 
receptor‑bound IgE (119‑121). The enhanced IL‑10 also leads 
to induction of specific non‑reactivity of allergen‑specific 
T cells during the later phase of therapy either by inducing 
clonal anergy in allergen‑specific effector T cells or by gener‑
ating immunosuppressive Tregs (114,122). Principally, in ScIT, 
the target APcs are dcs of the non‑vasculature part of the 
skin, i.e., subcutaneous administration of allergens modulates 
the distribution of various subpopulations of dcs and their 
ability to produce different proinflammatory cytokines, such 
as IFN‑α and IL‑6 (71,123). In addition, ScIT alters the distri‑
bution of type 2 innate lymphoide cells (ILC2s), which have 
been recognized to servean important role in the initiation 
and establishment of allergic responses through production of 
thetype 2 cytokines IL‑5 and IL‑13 (124). ILC2s also empower 
dcs to potentiate memory T helper 2 cells, and thus may 
enforce the recall immune response against allergens (125).

Despite its potential efficacy, SCIT has been found to trigger 
adverse allergic reactions, including rashes at the site of injec‑
tion, swelling, itchiness, breathlessness and even anaphylaxis 
leading to death, numerous times (126). Furthermore, it takes a 
long time (>50 injections in 3‑5 years) to achieve the effective 
therapeutic dose for sustained allergen tolerance (114).

SLIT. Unlike during SCIT, where allergy shots are admin‑
istered through injection, during SLIT, a minute amount of 
allergen extract is kept under the tongue of the patient, held for 
2 min and then swallowed, thus avoiding the irritation of injec‑
tion (127‑129). However, the doses administered during SLIT 
are restricted by the available concentration of the allergen 
extract and the volume of liquid that can be held under the 
tongue (129,130). during the initial 4‑6 months of SLIT, the 
allergen extract with a low allergenic potential is adminis‑
tered to the patients at gradually increasing doses, followed 
by a constant maintenance dose administered daily for up to 
3 years (115). Compared with SCIT, where subcutaneous DCs 
are important, Lcs are central to tolerance development during 
SLIT (71,131). The Lcs prominently express high affinity 
IgE receptor (FcεR1), MHc class I and II, and other co‑stim‑
ulatory and co‑inhibitory receptors on their surface, which 
makes them suitable for receptor‑mediated IgE‑dependent 
allergen uptake and subsequent presentation to T cells (132). 
This triggers the transformation of naive T‑cells into Tregs 
implicated in allergen‑specific immune tolerance (133,134). In 
addition, cross‑linking of allergen‑bound IgE with FcεRI on 
oral LCs results in the production of IL‑10, which facilitates 

inflammation resolution (135). Notably, during the early 
phase of SLIT, IL‑10 is also contributed by allergen‑specific 
IL‑10‑producing Tregs, thus establishing a concordance 
between the innate and adaptive arms of immunity for induc‑
tion of a tolerogenic microenvironment (136,137). In a clinical 
study, it was observed that 12 months of SLIT against house 
dust mite allergy was advantageous in inducing allergen 
tolerance (127). Several clinical trials have also illustrated the 
clinical efficacy of single allergen tablets (grass and ragweed) 
and extract solution (ragweed) at the primary level (37,42). 
After getting clinical approval from the FdA, SLIT has been 
commercialized in several parts of the world (127,128,131).

Compared with SCIT, SLIT delivers a more satisfactory 
clinical outcome in children and adults as demonstrated by its 
efficacy to prevent reoccurrence of allergic symptoms for a 
longer period (118). According to World Allergy Organization, 
SLIT is the most innocuous immunotherapy that is used as 
an alternative to injection‑based immunotherapy (46,138). 
Importantly, considering the relative safety of SLIT in clinical 
trials over the years and standardization of modalities with 
several allergen extracts, such as ragweed and grass pollen, 
certain SLIT tablets have also been permitted to be taken at 
home without medical supervision (138). At present, this is 
the only form of immunotherapy that provides this flexibility 
to allergic patients. The local reactions during SLIT are 
mild and resolve themselves without requiring any allergen 
dose adjustment or adjunct medication (129). In an obser‑
vational safety study evaluating the safety of SLIT, only 11 
out of 65 children subjected to SLIT were reported to exhibit 
adverse reactions, and even the observed reactions were not 
severe enough to necessitate modification or discontinuation 
of therapy (129,139). At present, there has been no report of 
mortality associated with SLIT (140).

OIT. OIT was reported for the first time in 1928 (141). 
Primarily, OIT was conceived to attain immune tolerance 
against food allergens; however, later it was observed that the 
potential scope of immunotherapy might also cover allergic 
asthma (142). OIT is easily administrable and requires less 
time to achieve tolerance against an allergen compared with 
other immunotherapies (143). This advantage may be attrib‑
uted to the presence of the microbial flora in the intestine, 
which are responsible for facilitating allergen‑specific oral 
tolerance (144). It is known that secretion of certain microbial 
metabolites, such as short chain fatty acids, acetate, propionate 
and butyrate, facilitates the differentiation and expansion of 
Tregs in the gut mucosa (144).

In OIT, an allergen extract is taken either in encapsulated 
form or administrated with an aqueous solution (145). The 
swallowed allergen extract is adsorbed by the gut mucosal 
membrane and phagocytosed by APcs in the gastrointestinal 
tract, which further stimulates gut mucosal Tregs (146,147). 
OIT has been observed to provide symptomatic relief in 
allergic asthma through induction of blocking antibody (IgG4) 
with concurrent reduction in serum IgE levels (148). In a study 
monitoring the sustained clinical efficacy of OIT, wherein 
24 volunteers were subjected to 5 years of peanut OIT, half 
of the volunteers developed the capability to tolerate 5 g in 
a double‑blind, placebo‑controlled food challenge and could 
successfully incorporate peanut into their diet (149). In spite of 
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several reports demonstrating the therapeutic efficacy of OIT, 
there is also a considerable risk of serious allergic reactions 
and anaphylaxis involved with OIT, which has restricted the 
over‑the‑counter sale of OIT allergy shots (150‑152).

EPIT. EPIT for the treatment of allergies was first introduced 
in early 1917. The procedure of EPIT requires administration 
of an allergen to the epicutaneous layer of the skin, where large 
numbers of professional antigen presenting Lcs facilitate the 
trafficking of allergens into the lymph nodes (153). EPIT is 
a strategy gradually evolving for the treatment of different 
allergic conditions and particularly food allergy, considering 
the potential risk associated with OIT (154). In the context of 
food allergy, another important phenomenon which requires 
particular mention is ‘gut homing’, which is migration of 
T and B cells from primary lymphoid organs to the inflamed 
and non‑inflamed regions of the intestine (155). Food allergy 
is characterized by a disturbed gastrointestinal immune envi‑
ronment and gut homing, which hampers the movement of 
tolerogenic Tregs into gastrointestinal immunological tissues. 
This compromises the body's ability to cope with local and 
systemic immune responses induced by the oral administra‑
tion of harmless antigens, such as food proteins (156). EPIT 
can regenerate gut‑homing via selective expansion of unique 
TGF‑β+ Tregs, which impart protection against anaphylactic 
reactions (157,158). Furthermore, EPIT provides a naturally 
safer alternative to other AITs, because the allergen deliv‑
ered through the epicutaneous layer of the skin reaches the 
systemic circulation in minute amounts compared with other 
routes of administration (159). The epicutaneous Viaskin® 
Patch‑ (EV patch) system has been developed for EPIT, 
which enhances the allergen delivery across intact skin (160). 
Therapeutic formulation or allergen extract can be directly 
applied on the groove of the EV patch, which facilitates 
allergen exposure to APcs in the superficial layers of the 
skin (161). Repeated application of the EV patch in mice for 
8 weeks resulted in desensitization with no significant increase 
in histamine after oral challenge with allergen (160). The 
advancements indicate that the epidermal layer of the skin with 
a non‑vasculature system could be exploited as amoresuitable 
route for immunotherapy with fewer side effects.

ILIT. ILIT is characterized by the delivery of allergen directly 
into lymph nodes, which generates immune tolerance earlier 
compared with other AITs (162). ILIT came into consideration 
when it was observed that only a minute amount of allergen was 
channelized into the lymph node when administered through 
other routes (163). In this regard, intralymphatic administra‑
tion of allergens is associated with a marked enhancement in 
the effectiveness of allergy vaccination, even with a low dose 
of allergen (164,165). In a murine model, it has been demon‑
strated that ILIT induces higher levels of serum cytokines, such 
as IL‑10, IL‑4 and IL‑2, compared with SCIT (166). In congru‑
ence, ILIT also encourages the switching of Th2‑dependent 
hyperactive allergic responses to Th1 phenotype, which 
boosts the production of IgG2a and IgG4, albeit with a mark‑
edly lower dose of allergen compared with SCIT (167). In an 
open trial study to determine the safety and efficacy of ILIT, 
6 patients were subjected to intralymphatic inguinal injec‑
tions of either birch or grass‑pollen extract, and all patients 

stayed healthy and reported symptomatic relief from allergy 
alongside decreased medicinal requirement (24). In another 
study comparing the therapeutic outcome of ScIT vs. ILIT 
in patients with pollen allergy, ILIT was observed to be more 
efficacious in reducing the frequency of rescue medication and 
provided improved symptomatic relief with reduced skin‑prick 
sensitivity in patients (168). Furthermore, allergen tolerance is 
induced markedly faster in the ILIT, as early as by 4 months, 
compared with other AITs, which take 2‑5 years (169,170).

5. Disadvantage of AITs

Since the fundamental process of immunotherapy involves 
challenging the sensitized patients with increasing doses of 
allergen, there is always an acute possibility of undesirable 
minor to severe allergic reactions. Furthermore, during the 
‘build up’ or ‘escalation’ phase of immunotherapy, local and 
systemic reactions are often witnessed with increasing doses, 
which impedes the procedural efforts to achieve a therapeuti‑
cally active ‘maintenance’ dose (15). Furthermore, due to huge 
variations in the sensitivity of different patients to an allergen, 
the therapeutic formulation applicable for one atopic individual 
may not be promising for others (10). Another confounding 
factor is the variation in the composition of allergenic extracts 
available for immunotherapy from different manufacturers, 
which may arise due to differences in allergen sources and 
allergen extract preparation protocols (171). Allergen extracts 
prepared from divergent natural sources may get contaminated 
with pathogens and allergens from other sources, which yields 
undesirable immunogenicity and even new IgE‑mediated 
allergies (46). One of the causes underlying the limited success 
and variable outcome of immunotherapeutic approaches so 
far is the absence of standardized procedures and regulatory 
guidelines for preparation of allergen extracts and their char‑
acterization (10,172). Another major bottleneck hindering the 
progress of AIT is the lack of appropriate biomarkers that can 
predict the efficacy of AIT (29).

Lack of uniform regulatory guidelines for AIT. The present 
review summarizes a consensus on the AIT guidelines 
followed by regulators on a global scale, which are funda‑
mentally based on the factors influencing the therapeutic 
efficacy of AIT (Table III). These guidelines are largely based 
on meta‑analyses, which include reports published over the 
past two decades, and primarily aim to ascertain the efficacy 
and safety of AIT (10,126,173‑177). However, at present, the 
drug and vaccine safety monitoring system for AIT is poorly 
organized and is only based on the voluntary reporting of 
side effects and efficacy. In this regard, there is a clear need 
to institutionalize dedicated monitoring systems of allergen 
immunotherapy outcomes and to further streamline uniform 
regulatory guidelines on the modalities of AIT.

Lack of successful AIT biomarkers. At present, no surrogate 
biomarkers that can predict the effectiveness of AIT have been 
identified (178). Decreased levels of allergen‑specific IgE and 
increased levels of serum IgG4 have been acknowledged as 
biomarkers to predict the clinical efficacy of AIT (179,180). 
Increased numbers of IL‑10 and TGF‑β‑producing Tregs 
during and after immunotherapy are also crucial emerging 
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Table III. Guidelines for allergen‑specific immunotherapy.

 Essential  
First author/s, year factors description (Refs.)

Gaur, 2017;  Selection of World Allergy Organization has approved SPT as the best (10,174,217,218)
Pajno et al, 2018;  diagnostic diagnostic method to detect allergen‑specific IgE in the serum 
Weinberg, 2011; tests for  sample of the allergic individual; if an allergic individual is 
Ansotegui et al, 2020 allergy suffering from any skin diseases, whether allergic or non‑ 
  allergic, SPT should not be performed or postponed until the
  skin problem is resolved; an intradermal test for the detection
  of allergen‑specific IgE can also be performed but it is 
  susceptible and may also provide false‑positive results 
  compared with SPT; SPT should not be performed in a 
  pregnant woman; in vitro detection of serum IgE against a 
  particular type of allergen should be used as a diagnostic 
  tool where SPT cannot be performed; radio/enzyme 
  immunoassays can be used to detect total and specific IgE 
  as an in vitro diagnostic test; clinically, a basophil‑activation 
  test can also be used to measure the progress of AIT and 
  diagnosis of allergy by detecting cross binding of the 
  allergen to IgE; presence of allergen‑specific IgE (either on 
  in vivo or in vitro testing) in serum does not always 
  mean that the individual is suffering from IgE‑mediated  
  allergy, and thus, before starting any immunotherapy, family 
  history analysis regarding allergies is always required
Gaur, 2017;  Selection of Allergen‑specific IgE must be present in the patient (10,174,176,219)
Pajno, et al, 2018;  patients for serum; the minimum age of the patient is >5years, with no 
Pfaar et al, 2014; immunotherapy upper limit; moderate to severe allergic rhino conjunctivitis, 
Pitsios et al, 2015  persistent rhinitis, large local reactions to insect venom 
  and atopic dermatitis in a patient aeroallergen sensitivity,  
  allergic asthma and symptoms are of sufficient duration and 
  severity; AIT should be performed in that case if allergen 
  avoidance is not possible or if symptom relief is inadequate 
  with treatment; for a particular age group (children, 
  young adults and adults), AIT formulation and duration 
  should be different; improvement in medical symptoms 
  should be observed periodically after the escalation phase;  
  therapy should be stopped if there is a lack of clinical 
  improvement even after 1year of immunotherapy 
  and the possibility of other cures should be explored
Gaur, 2017; Selection of The allergenic ingredient which is responsible for the (10,126,176,177,219)
Ring et al, 2014;  allergens to induction of allergy, is also used for the diagnosis and
Pfaar et al, 2014; use for specific immunotherapy of the same allergy. Furthermore, 
Halken et al, 2017;  immunotherapy the atmospheric condition and history of allergen exposure 
Pitsios et al, 2015  of the atopic individual directly affects their quality of life.  
  Therefore, for an effective immunotherapy, the selection 
  of the allergen must be local, and according to allergy, it 
  should also be seasonal as climate affects protein‑lipid 
  content and therefore allergenicity of the allergen; 
  allergen extracts used for immunotherapy can be used with 
  different types of modification to decrease the allergenicity; 
  the mixing of allergens during the preparation of 
  therapeutics formulation for polysensitization should 
  be decided after allergy diagnosis against more than one 
  allergen. If allergens are non‑homologous, then 
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biomarkers to assess the clinical response of AIT (29,181). In 
addition, AIT induces other molecular markers in dc2s, such 
as cd141, GATA‑3 and receptor‑interacting serine/threonine 
kinase 4, as well as in DCregs, such as complement C1q chain 
receptor variant IIIA of IgG Fc, which can also be used as a 
potential biomarker to predict the efficacy of AIT (182‑184). 
However, neither of these biomarkers is appropriate to precisely 
predict the prognosis and clinical efficacy of immunotherapy 
in all AIT‑receiving patients. Therefore, it is further required 
to refine the understanding of the specific mechanistic involve‑
ment of these biomarkers in the successful progression of AIT. 
This will help in monitoring the progress of therapy and inte‑
grating appropriate solutions, which will improve the clinical 
outcome.

6. Polyallergy

Another growing concern is the problem of ‘polysensitization’, 
which is a sensitivity of atopic individuals to two or more 
allergens, and this condition is referred to as ‘polyallergy’ 
after clinical confirmation (185). According to estimates, 
60‑80% of allergic patients are polysensitized (186). An 

increasing prevalence of polyallergy has been documented 
with age, which necessitates the development of immuno‑
therapeutic approaches that can take care of more than one 
allergen simultaneously (186,187). However, an additive 
preparation of mixture of allergens for simultaneous AIT 
may not yield the desirable outcome, as one allergen may 
affect the stability and optimal dose of the other allergen, 
thus affecting its immunotherapeutic potential, efficacy and 
even safety (188‑190). In this regard, the European Medicines 
Agency has suggested that AIT should not be performed with 
a mixture of two non‑homologous allergens, and should be 
performed separately for seasonal or perineal allergens (10). 
This creates the problem and annoyance of enduring separate 
immunotherapeutic procedures by patients for addressing 
multiple allergen sensitivities on an individual basis (190). The 
polyallergic condition in patients may arise due to ‘cross‑reac‑
tivity’ or ‘co‑sensitization’ (186). Cross‑reactivity is defined as 
IgE reactivity against structurally related proteins when the 
sequence homology is often >70%, whereas co‑sensitization 
may involve multiple IgE sensitizations against structurally 
unrelated allergen groups (191). It is essential to understand 
the nature of polyallergy with respect to ‘cross‑reactivity’ or 

Table III. continued.

 Essential  
First author/s, year factors description (Refs.)

  compatibility of each (cross‑reactivity and enzymatic degradation) 
  should be kept in consideration before mixing allergens; allergens
  with high proteolytic enzyme activities (such as dust mites, fungal 
  and insects) should not be mixed with any other allergen and should 
  be prescribed preferably in separate vials 
Pfaar et al, 2014; Selection of Important factors for selecting AIT are that it should be able to build (176,220‑222)
Wollenberg et al, 2018; AIT for and maintain long‑lasting immunity against an allergen without 
Lommatzsch, 2018; patient  triggering any local or systemic reaction. It should have the potential 
Wollenberg et al, 2018  to prevent new allergic sensitivities; patients with skin diseases 
  should not be allowed to undergo SCIT and EPIT; AIT should not 
  start in a pregnant woman; there is some possibility of local allergic 
  reactions at the site surrounding the route of AIT administration, 
  for example erythema, pruritus and swelling are common for SCIT 
  and EPIT, while oropharyngeal pruritus is common for OIT and SLIT. 
  However, immunotherapy should not provoke a systemic reaction 
  (anaphylaxis). Allergen injections (vaccine) should be administered 
  separately from other vaccinations for infectious diseases with a gap 
  of at least 1 week; AIT, if required, should be used in combination 
  with pharmacotherapy to control the clinical symptoms of a local 
  reactions, the AIT in combination with pharmacotherapy can also 
  increase the efficacy of AIT; AIT for respiratory allergy should not 
  start when the chances of getting in contact with the allergen are high 
  or during a peak pollen spell; injections should not be administered 
  when the patient has clinical symptoms, or the symptoms should be
  controlled by adequate medication 

AIT, allergen‑specific immunotherapy; EPIT, epicutaneous immunotherapy; IgE, immunoglobulin E; SCIT, subcutaneous immunotherapy; 
SPT, skin prick test.
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‘co‑sensitization’ to design a safe and effective AIT (192). 
With the advancement in science and technology, it is now 
possible to isolate the pure allergic components from their 
natural source for refined diagnosis and treatment of allergies. 
Component‑resolved diagnosis (CRD) utilizes purified native 
or recombinant allergens to detect IgE sensitivity against 
individual allergen molecules and has assumed increasing 
importance in clinical investigation of IgE‑mediated aller‑
gies (193). The cRd technique quantifies serum specific 
IgE against individual allergenic proteins or even allergenic 
peptides present in natural sources, rather than quantifying 
IgE against the whole natural extract (194). At present, CRD 
diagnosis is used in laboratory practices as single plex and 
multiplex arrays and offers a promising technology that could 
replace conventional serum specific IgE assays in the near 
future (195). One of the major advantages of cRd is that it can 
discriminate true allergens from the cross‑reactive allergen 
molecules and polyallergy of other related allergens (196). 
However, CRD analysis utilizes intact proteins or random 
peptides in its present form, which makes the data interpreta‑
tion complex and ambiguous (192,196). A more refined CRD 
approach could entail the use of individual IgE epitope‑based 
recombinant fragments present in a protein, rather than using 
the whole allergenic protein components (192). In silico analysis 
in conjunction with wet lab validation allows determination 
of specific IgE epitopes present in an allergen, which can be 
further employed for predicting epitope specific IgE reactivity 
of patient serum (197). The present review describes a strategy 
for developing allergy arrays with potential application for 
AIT in patients with polyallergy (Fig. 3).

The strategy offers a simple and robust tool with a high 
resolution for predicting IgE cross‑reactivity or co‑sensi‑
tization from single or multiple allergenic sources. After a 
thorough characterization of the IgE sensitivity profile of a 
patient, the same IgE epitope‑based recombinant fragments 
can also be used for generating hypoallergens intended for 
use in AIT (198,199). The hypoallergen could be prepared by 
modifying the IgE specific epitopes of the particular allergen 
either by coupling them with chemical modifiers or by altering 
the coding sequence of the allergy‑responsive component of 
the allergen using recombinant dNA techniques (46,200,201). 
A combination of these hypoallergenic epitope‑based 
proteins may be employed for AIT through a single dosing 
regimen plan (202). However, before the onset of AIT, it 
should be ensured by a skin prick test that the serum of the 
patient shows IgE reactivity towards the allergens but not the 
hypoallergens (202).

7. Future prospects

There is a need for devising strategies aiming at improved 
predictability of AIT, minimization of side effects, annoy‑
ance of injection, irritability, fatal outcomes and a shorter 
immunotherapeutic duration along with sustenance of 
life‑long tolerance for the allergen. Several combinatorial 
therapies, which involve administration of allergen extracts 
with immunomodulatory or suppressive cytokines, such as 
TGF‑β, IL‑35 and IL‑10, have yielded encouraging results; 
however, these approaches may markedly escalate the cost of 
immunotherapy (203,204). different endogenous specialized 

proresolving lipid mediators (SPMs) have also shown promise 
as therapeutic agents in the resolution of allergic inflamma‑
tion. Results from several experimental systems indicate that 
SPMs, including lipoxins, resolvins, maresins and protectins, 
are multi‑pronged and potent regulators of inflammation and 
stimulate resolution (205,206). For example, a combination of 
resolvin d1 (Rvd1) and 17‑hydroxydocosahexaenoic acid has 
been demonstrated to inhibit IgE production by human B cells 
and it also suppresses the differentiation of naïve B cells into 
IgE‑secreting cells by specifically blocking epsilon germline 
transcript (207). Furthermore, other studies have also investi‑
gated the roles of SPMs in murine models of allergic airway 
inflammation and have revealed their protective role in allergic 
asthma (208‑210). RvD1 is also known to reduce the allergic 
airway inflammation by targeting eosinophils and proinflam‑
matory mediators involved in the Th2 signaling pathway, 
while resolvin E1regulates the development of Th17 cells and 
IL‑23 production (205). Similarly, exogenous administration 
of maresin1 (MaR1) during the allergen challenge phase 
attenuates allergen‑triggered inflammation by decreasing 
the multiple allergy‑associated parameters, such as numbers 
of eosinophils, allergen‑specific IgE levels and type 2 cyto‑
kines in bronchoalveolar lavage fluid (BALF), and increasing 
TGF‑β levels (211). The MaR1‑mediated increase in BALF 
TGF‑β triggers Tregs to limit type 2 innate lymphoid cell acti‑
vation, and thus, promotes resolution of lung inflammation. In 
addition, MaR1 promotes lung catabasis for allergic asthma by 
suppressing ILC2‑derived IL‑5 and IL‑13, while stimulating 
the expression of amphiregulin (211). Furthermore, amphi‑
regulin itself contributes to a constitutive, low‑level release of 
bio‑active TGF‑β within tissues, leading to continuous tissue 
regeneration and to an immunosuppressive environment, 
which may keep inflammation‑prone tissues in the homeo‑
static state (212). Considering the multi‑pronged beneficial 
actions of SPMs, they are important potential candidates for 
combinatorial AITs.

Furthermore, as aforementioned, the lack of appropriate 
biomarkers indicating successful progression of AIT is a major 
bottleneck affecting the clinical outcome of allergy immu‑
notherapy. clinical investigations examining the expression 
levels and biosynthesis of SPMs in relation to efficacious AIT 
may help to identify prospective biomarkers. In a model of 
allergic lung inflammation, MaR1 production declined upon 
allergen challenge but increased with resolution of allergic 
inflammation (211). This finding suggests that levels of MaR1 
in tissues before and after allergen‑specific immunotherapy 
may be tested as a biomarker of successful immunotherapy.

8. Concluding remarks

The knowledge gathered in the past decades has helped in 
developing an improved understanding of the mutual interaction 
between immune cell types presents in diverse immunological 
niches, thereby propelling the evolution of different AIT routes 
of administration and improved therapeutic formulations. As a 
noteworthy breakthrough, the over‑the‑counter sale of certain 
AIT formulations is also now possible, the self‑administration 
of which does not require any special hospital supervision. 
However, there is still much to be done to address the issues of 
standardizing AIT formulations, the risk of frequent adverse 
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reactions, the maintenance of tolerance to allergens, the 
reduction in the duration of AIT, and other concerns, such as 
polyallergy. developing immune tolerance against allergens is 
the primary aim of AIT but the current understanding of the 
precise mechanism underlying the induction of allergen‑specific 
Tregs is still in its infancy. An improved scientific understanding 
of key events guiding antigen‑specific tolerance would pave the 

way for the advent of novel non‑invasive technologies targeting 
induction of allergen‑specific Tregs for an improved prognosis 
of AIT and complete cure of allergies.
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