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Abstract. Connexins (Cxs) play key roles in cellular commu‑
nication. By facilitating metabolite exchange or interfering 
with distinct signaling pathways, Cxs affect cell homeostasis, 
proliferation, and differentiation. Variations in the activity 
and expression of Cxs have been linked to numerous clinical 
conditions including carcinomas, cardiac disorders, and 
wound healing. Recent discoveries on the association between 
Cxs and angiogenesis have sparked interest in Cx‑mediated 
angiogenesis due to its essential functions in tissue formation, 
wound repair, tumor growth, and metastasis. It is now widely 
recognized that understanding the association between Cxs 
and angiogenesis may aid in the development of new targeted 
therapies for angiogenic diseases. The aim of the present 
review was to provide a comprehensive overview of Cxs 
and Cx‑mediated angiogenesis, with a focus on therapeutic 
implications.
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1. Introduction

Angiogenesis plays a significant role in tissue growth, wound 
repair, tumor development, and metastasis. It is controlled by 
growth factors, pro‑angiogenic cytokines, and neovasculariza‑
tion antagonists (1). Connexins (Cxs) are hexameric arrays of 
tetraspan integral membrane proteins that form gap junctions 
(GJs). GJs provide direct ionic and molecular communication 
between neighboring cells and coordinate the exchange of 
chemicals and electrical impulses between them.

Several studies have repor ted independent and 
GJ‑dependent roles of Cxs in mediating angiogenesis in 
various disorders (2,3). Although there are a few reviews on 
the role of Cxs in various physiological processes (4‑9), there 
is little discussion of how Cxs influence the angiogenic process 
involved in wound repair, tumorigeneses, and cardiovascular 
disorders. The purpose of the present study was to examine the 
current state of knowledge regarding Cx structure, nomencla‑
ture, function, and regulation, as well as the newly identified 
link between Cxs and angiogenesis. Major Cx‑mediated angio‑
genesis disorders and potential therapeutic approaches were 
also examined.

2. Methodology

A literature search was performed to identify articles 
that discussed the role of connexins in angiogenesis. The 
MEDLINE, PubMed, Scopus, and Cochrane Library databases 
were searched until June 02, 2022. Individual or combined 
searches for the terms ‘angiogenesis’, ‘connexin’, ‘Cx’, and 
‘gap junctions’ were performed. By scanning the references of 
the included studies, additional studies were identified. Letters 
to the editor and articles without abstracts were excluded.

Structure and diversity of Cxs and GJs. Each Cx has four 
hydrophobic transmembranes (M1‑M4), two extracellular 
areas (E1 and E2) that bind to another Cx in the neigh‑
boring cell, and three cytoplasmic regions that correspond 
to the cytoplasmic loop (CL), and the amino‑terminal (NT), 
and carboxy‑terminal (CT) tail regions. The N‑terminus, 
membrane‑spanning sections, and extracellular loops are 
consistent throughout the structure; however, the size and 
structure of the CL and the CT are not. The GJ channel is 
composed of two hemichannels (or connexons), consisting of 
six transmembrane proteins (Cx subunits) connected to the 
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plasma membrane of each symmetric cell. When two hemi‑
channels join to produce a cell‑cell conduit, one is tilted by 
30˚ with respect to the other. Homotypic GJs are formed when 
identical Cx subunits dock, whereas heterotypic GJs are formed 
when two different connexons (hemichannels) dock (10). The 
central cytoplasmic part and the second extracellular domain 
(E2) regulate the heterotypic adaptation of Cxs. Heterotypic 
channels have features that differ from those of homotypic 
channels, such as unitary conductance and gating. The perme‑
abilities of different channels formed by different Cxs differ, 
allowing secondary messengers to be discriminated against 
(cyclic guanosine monophosphate, Ca2+, or IP3) (Fig. 1).

Functional role of Cxs. Hemichannels regulate cellular 
responses to a wide range of physiological, oxidative, and 
metabolic stressors, whereas GJs permit intercellular trans‑
mission (Fig. 1). Molecules transported through these channels 
are responsible for several physiological functions. Different 
stimuli, including variations in voltage, Ca2+, pH, and Cx 
phosphorylation, can dynamically control gap junctional 
intercellular communication (GJIC) (10‑15). Voltage sensi‑
tivity is critical for controlling the intercellular connectivity 
of excitable cells. Channel independence has been demon‑
strated in the context of cellular proliferation, attachment, 
motility, apoptotic processes, and signaling (2,12,16‑19). It 
was also recently revealed by the authors' research group that 
Cx43 levels regulate angiogenesis in endothelial cells (ECs), 
irrespective of GJ function (2). Moorby and Patel conducted 
extensive research on the GJ‑dependent and‑independent 
functions of Cx43 and discovered that the carboxyl region of 
Cx43 mainly governs the independent GJ function (19). It is 
increasingly accepted that the effects of GJIC‑independent 
Cxs on carcinogenesis extend beyond proliferation and migra‑
tion, including angiogenesis and cell death (20‑23).

Cxs and angiogenic processes. Angiogenesis plays a crucial 
role in tissue growth, wound healing (WH), carcinogenesis, 
and metastasis (1,24). It begins with the growth and develop‑
ment of preexisting vessels, depending on a mixture of growth 
factors and proangiogenic cytokines, and is regulated by 
various neovascularization antagonists (Fig. 2) (25,26). Cxs 
have been shown to affect angiogenic processes in various 
ways, including growth, transport, and cellular stiffness (27). 
The roles of Cx43, Cx37, and Cx40, which are the most preva‑
lent Cxs engaged in angiogenic processes, are discussed in the 
next section. The expression of Cx43 expression influences 
the angiogenic potential of endothelial cells independently of 
the GJ interaction. Because proliferation was unchanged, it 
was hypothesized that the Cx43 protein may significantly alter 
endothelial cell relocation, thereby promoting angiogenesis (2).

Cx43. Decreased Cx43 expression can result in vascular 
dysfunction and impaired angiogenesis  (28). Cx43 is also 
involved in regulating lung microvascular permeability, and 
its modulation is related to endothelial monolayer perme‑
ability  (29,30). Salmina  et  al examined GJ‑dependent 
neurogenesis and concluded that alterations in Cx43 expres‑
sion were correlated with distinct steps in neural growth (31). 
Cx43 is also upregulated in ECs during hemodynamic stim‑
ulation‑induced angiogenesis (32). A study of the molecular 

processes during human trophoblast fusion revealed that 
protein kinase A‑dependent phosphorylation of Cx43 enhances 
cell fusion (33). Furthermore, decreased Cx43 expression can 
result in improper embryo implantation and inadequate angio‑
genesis (34). It has also been found that Cx43, as a negative 
regulator, participates in critical steps of WH, such as inflam‑
mation response, remodeling of the extracellular matrix, 
proliferation of epidermal/skin cells, and migration (35).

Cx37 and Cx40. Cx37 and Cx40, which are co‑expressed 
in ECs, have overlapping functions. Cx40 can promote EC 
migration, vessel sprouting, and expansion, whereas Cx40 
deficiency and inhibition reduce angiogenesis (36). Endothelial 
Cx40, according to Haefliger et al, affects the initial phases of 
angiogenesis in the retina by controlling vascularization (37). 
In Cx37‑/‑ mice, improved recovery of the hind limb was asso‑
ciated with increased vasculogenesis, which resulted in greater 
collateral remodeling and angiogenesis (38). Furthermore, the 
global deletion of Cx37 in mice causes increased angiogen‑
esis during tissue injury, aiding the recovery process after 
ischemic injury (39). Growth inhibition mediated by Cx37 
involves CT and the pore‑forming domain (14). Nitric oxide 
affects endothelial vasomotor activity by modulating calcium 
signaling (40). Cx37 and Cx40 have been shown to uniquely 
control post‑ischemic limb perfusion, affecting the intensity of 
ischemic stress and, as a result, post‑ischemic persistence (41). 
Cx37 selectively affects Ang II signaling by modulating Ang II 
receptor expression (42). Cx37 also suppresses the prolifera‑
tion of vascular and cancer cells. Cx37‑induced growth arrest 
or growth‑permissive phenotypes depend on conformational 
changes in Cx37 caused by phosphorylation (43).

3. Cxs, diseases and potential therapies

Cxs are implicated in the regulation of innate epithelial 
immunity, wound repair, and inflammatory processes. The 
pathophysiology of various Cx‑related diseases is determined 
by both the canonical and noncanonical functions of Cxs. 
Given the presence of several Cxs in the endothelium, it is 
possible that Cxs and immune‑targeted therapies could be 
used synergistically. In various pathological conditions, such 
as ischemia, optic nerve damage, stroke, and spinal cord injury, 
communication between junctions and hemichannels leads 
to secondary damage through inflammatory processes (44). 
Cx43 enhanced brain blood flow restoration in a mouse model 
by regulating reparative angiogenesis during chronic cerebral 
hypoperfusion (45). Due to the variety of Cx‑mediated commu‑
nication and its effect on cellular physiology and pathology, a 
definitive link between Cxs, angiogenesis, and disease has not 
yet been identified. However, in numerous cases, an associa‑
tion between aberrant Cx function, angiogenesis, and disease 
has been observed. The following section highlights the key 
mechanistic and therapeutic findings.

WH. Different layers of the human epidermis express 
different levels of Cxs, which are associated with a number of 
skin diseases (Fig. 3). During the early phases of WH, Cx43 
has been observed to be negatively regulated at the wound 
margins (46). Nitric oxide, a mediator of vasomotion, has been 
reported to be a strong modulator of GJ coupling in ECs (47). 
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Figure 1. Schematic diagram of Cxs, hemichannels, and GJs across two neighboring cells. The cylinders in Cxs show transmembrane segments (M1‑M4). 
Extracellular loops are shown as E1 and E2. Intracellular domains include one cytoplasmic loop and N‑ and C‑terminals. The GJ created by linking two 
hemichannels rooted in the plasma membrane of each symmetric cell permits ions and molecules to transport between cells. Cxs, connexins; GJ, gap junctions.

Figure 2. Key steps in angiogenesis. Stable arteries experience vascular permeability, enabling plasma proteins to extravasate. Matrix metalloproteinases 
break down the extracellular matrix, allowing growth factors to be released. Endothelial cells proliferate and migrate, undergo morphogenesis, and form 
lumen‑bearing cords. VEGF, vascular endothelial growth factor.
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It promotes the de novo formation of GJ by expanding the 
integration of Cx40 into the plasma membrane. One of the 
most evident applications that demonstrates the involvement 
of Cxs in angiogenesis is the efficacy of bioactive glass (BG) 
in WH. In rats, BG stimulates GJIC, which results in increased 
angiogenesis and accelerates the closure of excisional 
wounds (48). It was recently shown that BG affects the expres‑
sion of Cx43 and ROS levels, increasing WH by suppressing 
pyroptosis through the Cx43/ROS signaling pathway (49). 
Cx43 remodeling is an important event in WH that influences 
the cellular dynamics of keratinocytes and fibroblasts (50). 
It was revealed that siRNA knockdown of Cx43 in human 
microvascular endothelial cells reduced migration in vitro, 
as measured by a wound assay, and impaired aortic vessel 
sprouting ex vivo (16); Cx43 and the tyrosine phosphatase, 
SHP‑2, were also revealed to mediate endothelial cell migra‑
tion, revealing a novel interaction between Cx43 and SHP‑2 
that is required for this process (16).

Mutations in Cx26, Cx30, and Cx31 are associated 
with hyperproliferative skin diseases  (51). Furthermore, 
suppression of Cx43 function affects the expression of genes 
associated with WH (52). Cx mutations are associated with 
epidermal dysplasia  (15). Gain‑of‑function mutations alter 
Cx‑mediated calcium signaling within the epidermis; for 
example, suppressing Cx43 activity in fibroblasts has been 
shown to increase migration and control the expression of 
genes associated with WH through the mitogen‑activated 
protein kinase, specificity protein 1, activator protein 1, 
glycogen synthase kinase 3, and transforming growth factor 
pathways, contributing to rapid and scarless WH in the human 
gingiva (52).

Preclinical studies on peptide therapeutics, a mimetic of 
Cx43 CT, have reported improvements in WH (53). Cx43 has 
also been reported to counter‑regulate caveolin‑1 in controlling 
EC proliferation and migration, and this counterregulatory 
effect of Cx43 could be used in therapeutic angiogenesis (54). 
Morphine administration was found to inhibit angiogenesis and 
delay WH by upregulating Cx43, and high doses of morphine 
alter Cx43 expression by increasing fibronectin and actin 
levels through the activation of transforming growth factor 
signaling (55). A Cx43 mimetic peptide (TAT‑Gap19) signifi‑
cantly upregulates matrix metalloproteinases, tenascin‑C, and 
vascular endothelial growth factor (VEGF)‑A (13).

Cancer. In cancer cells, intercellular communication is aber‑
rant, and numerous studies have suggested that dysfunctional 
GJ and Cxs play a key role in this process  (56). However, 
there appears to be a skewed association between Cxs and 
cancer, with evidence suggesting that Cxs may limit cancer 
cell development in certain instances while also promoting 
cancer cell motility, invasion, and metastatic dissemination 
in others (57,58). A key study revealed that inhibiting Cx37 
decreases tumor angiogenesis; moreover, Cx37 and Cx40 
work together to promote tumorigenesis (20). Consequently, 
the involvement of Cxs and GJs in cancer is more complex 
than previously thought.

Breast tumor cells transplanted into heterozygous Cx43 
mice did not affect tumor growth, but greatly improved vascu‑
larization, indicating the role of Cx43 in vessel quiescence 
control and pathological tumor angiogenesis (22). The passage 
of tumor cells through the endothelial barrier is an important 
step in metastasis, in which endothelial cells adhere to the 
target organ by direct cell‑cell communication and paracrine 
activation to initiate angiogenesis (Fig. 4). Cx46 regulates 
cancer stem cell and epithelial‑to‑mesenchymal transition 
features in breast cancer cells, suggesting that it may be useful 
in the development of future cancer therapeutics (59).

Figure 3. Representative image of key connexins in different layers of the human epidermis.

Figure 4. Angiogenesis in cancer regulates the blood supply to the tumor. The 
tumor secretes angiogenic factors that promote angiogenesis, and connexins 
play multiple dynamic roles in this process. VEGF, vascular endothelial 
growth factor.
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Intercellular communication is also required for tumor 
cell trafficking across the lymphatic endothelium  (60). 
Hemichannels have been reported to facilitate interactions 
between cancer cells and blood vessels, leading to angiogen‑
esis. Choudhary et al revealed that tumors downregulate Cx43 
function, allowing the endothelium to respond to angiogenic 
stimuli, leading to pathogenic angiogenesis (22). The roles 
of Cx and Notch endothelial signaling in coordinating the 
appropriate proliferation and angiogenesis of ECs have been 
identified  (61). It has also been shown that GJIC inhibits 
tumor growth by transferring microRNAs from one EC to 
surrounding tumor cells, indicating a bystander role that can 
be exploited in cancer treatment (21).

Targeting Cx may be a promising therapeutic approach for 
cancer (23). Exosomes containing anti‑angiogenic microRNAs 
released immediately through Cx channels can prevent cancer 
cells from promoting angiogenesis (21). Peptide‑mediated inhi‑
bition of Cx40 in EC is a successful anti‑angiogenesis approach 
that suppresses tumor angiogenesis (36). In the conditioned 
medium, tumor size and vessel density in Cx43‑knockdown 
tumor cells decreased, indicating that Cx43 prevented tumor 
growth by decreasing angiogenesis (62).

Cardiovascular disorders. Several Cxs are co‑expressed in the 
heart; in particular, distinct combinations of Cx40, Cx43, and 
Cx45 are observed in functionally specialized cardiomyocytes 
(Fig. 5). GJ channels in the cardiovascular system regulate 
vascular tone, which is essential for the coordination of cell 
activity, by permitting the transport of chemical messengers and 
energy substrates (63‑65). Cxs form GJs for the transmission 
of precisely choreographed current flow patterns that control 
the synchronized beat of a healthy heart. Several pathophysi‑
ological conditions, including atherosclerosis, hypertension, 
hypertrophy, ischemia, and arrhythmias, have been linked to 

dysregulation of Cxs in the cardiovascular system in terms 
of expression, function, posttranslational modifications, and 
location. Ugwu et al reported a recurring somatic Cx43‑gene 
c.121G>T mutation as a cause of cutaneous venous abnor‑
malities (66). Although Cx43 levels are high in cardiac neural 
crest cells, both heterozygous and homozygous knock‑in mice 
live long and do not exhibit symptoms of coronary heart 
disease (67). Similarly, point mutations in Cx43 were not found 
to cause the tetralogy of Fallot (68).

Treatment with granulocyte colony‑stimulating factor 
improves arterial and capillary density and increases Cx43 
expression in failing hearts (69). Through Cx43, VEGF stimulates 
endothelial progenitor cells and supports vascular healing (70). 
In ECs, ischemia/reperfusion causes reactive species to disrupt 
Cx/pannexin signaling mitochondrial prompt division and 
promote macrovesicle release (71). Cx43 and angiogenesis levels 
are higher in the exercised mouse heart, indicating increased 
remodeling (72). Long‑term alienation combined with moderate 
environmental pressure has been associated with depressive 
symptoms and aberrant expression of Cx43 and Cx45 in the left 
ventricle (73). Notably, EC‑specific molecule 1 enhances the 
potential of induced pluripotent stem ECs to promote angio‑
genesis and neovascularization (74). Su et al determined that 
preconditioning for ischemia had cardioprotective effects on 
arrhythmia and myocardial recovery by upregulating phospha‑
tidylinositol 3‑kinase‑mediated Cx43 signaling (75). In a study 
on myometrial cell patch transplantation to cure myocardial 
infarction, angiogenesis was reported to occur in the trans‑
planted myometrium and Cx43 expression was observed in the 
transplanted patches (76). Cx43 passivation from intercellular 
signaling and buildup at the mitochondrial inner membrane has 
been revealed in diabetic cardiomyocytes, demonstrating that 
mtCx43 is responsible for triggering aberrant contraction and 
disrupting electrophysiology in cardiomyocytes (77).

Figure 5. Key connexins expressed in the different regions of the heart.
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Heart disease caused by myocardial tissue injury and 
fibrosis is related to Cx43‑based GJs. As a result, several Cx43 
mimetic peptides have been proposed as potential therapeutics 
for Cx43‑related degenerative disorders, some even reaching 
human clinical trials  (78). Cx43 improves infarcted heart 
angiogenesis, as evidenced by higher levels of VEGF and basic 
fibroblast growth factor (18). The cardioprotective properties 
of expanded umbilical cord mesenchymal stem cells (MSC) 
were attributed to paracrine substances that tend to enhance 
angiogenesis and preserve Cx43 GJ function (75). Cx43 was 
found to be dispensable for the adipogenic differentiation 
of early‑stage MSC, although it was protective against cell 
senescence (79). The survival and tube formation of MSCs 
are improved by Ang II treatment and Cx43 expression (80). 
TEM immunogold studies on rat heart ventricles indicated the 
lack of Cx26 at intercalated discs but the presence of Cx26 at 
various subcellular compartments (17). It was found that after 
a localized ischemic stroke, Cx43 regulated the angiogenesis 
of Buyang Huanwu decoction through VEGF and Ang‑1 (81). 
Due to the increase of tissue Cx43 and proangiogenic markers, 
regenerative treatment using nanofiber‑expanded hematopoi‑
etic stem cells has been reported to have a favorable effect on 
rat heart function following myocardial infarction (82).

4. Conclusions and future directions

Several studies have elucidated GJ/Cx‑mediated angiogenesis. 
To adequately describe the de novo blood vessels involved in 
the response to tumor angiogenesis, researchers must examine 
changes in the expression patterns of GJIC and Cxs in 
pro‑angiogenic stimuli in the neovasculature. Antiangiogenic 
therapy has been shown to increase survival in human tumors; 
therefore, GJ‑and Cx‑targeting techniques could be useful 
in the development of novel medicines. Chemical blockers 
of Cx channels, peptide mimics of short Cx sequences, such 
as Gap19/24/27/40, and gene therapy techniques have all 
been shown to be extremely effective molecular techniques 
for unraveling the complexity of the function of Cxs. Future 
research should focus on determining the specific molecular 
pathways underlying the significance of Cxs in various 
diseases and designing randomized control trials for specific 
therapeutic alternatives.
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