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Abstract. The motility of the gallbladder (GB) involves the 
storage, concentration and delivery of bile. GB motor functions 
are controlled by multiple complex factors, such as extrinsic 
and intrinsic innervation, humoral factors and neuropeptides. 
GB emptying results from coordinated contractions of the 
muscular layers of the GB wall. Depolarization of GB smooth 
muscle (GBSM) depends on the activation of the regular 
depolarization‑repolarization potential, referred to as slow waves 
(SWs). These rhythmic SWs of GBSM contraction are mediated 
by several cell types, including smooth muscle cells (SMCs), GB 
neurons, telocytes (TC) and specialized pacemaker cells called 
interstitial cells of Cajal (ICC). The present article introduced 
a new GB motor unit, the SMC‑TC‑ICC‑neuron (STIN) syncy‑
tium. In GB, STIN cells provide pacemaker activity, propagation 
pathways for SWs, transduction of inputs from motor and sensory 
neurons and mechanosensitivity. The present review provided an 

overview of STIN cells, mechanisms generating GBSM contrac‑
tile behavior and GB motility, and discussed alterations of STIN 
cell function under different disease conditions.
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1. Introduction

The gallbladder (GB), an accessory organ of the gastroin‑
testinal (GI) tract, stores and concentrates most hepatic bile 
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between meals and regulates the outflow of bile into the 
duodenum postprandial. The human liver normally produces 
at least 1,000 ml of hepatic bile per day (1). Up to 80% of 
hepatic bile partitions into the GB, depending on the synergy 
state of the GB and sphincter of Oddi (2,3). The GB undergoes 
structural and functional changes, as well as GB dysmotility, in 
numerous pathological conditions, including gallstone disease, 
GB polyps and acute acalculous cholecystitis (4‑6). Given that 
GB dysmotility is so prevalent in GB disease, a comprehensive 
understanding of the neurons and smooth muscles responsible 
for GB contractile activity is critical.

GI motility patterns, including those of the GB, result from 
coordinated contractions of the muscular layers of the alimen‑
tary canal. Several studies found that interstitial cells of Cajal 
(ICCs) and platelet‑derived growth factor receptor α‑positive 
(PDGFRα+) cells form electrical coupling complexes with 
smooth muscle cells (SMCs) in the GI tract. Sanders et al (7) 
initially proposed this structure as an SMC‑ICC‑PDGFRα+ 
cell (SIP) syncytium. In this functional structure, ICCs act 
as periodic spontaneous pacemakers to generate a slow wave 
(SW), which conducts SMCs to drive phasic contractions (8,9). 
Correspondingly, PDGFRα+ cell excitation causes hyperpolar‑
ization of SMCs, leading to muscle relaxation (10,11). Unlike 
skeletal muscle, there is no classical neuromuscular junction 
between nerve terminals of the enteric nervous system (ENS) 
and GI smooth muscle (12). Enteric nerve endings expand 
to form numerous varicosities containing neurotransmit‑
ters (13,14). Subsequently released neurotransmitters diffuse to 
the adjacent SIP syncytium to regulate GI motility. Although 
the integrity of the morphological structure and function of 
SIP syncytium are important for GI physiological function, the 
functions of SIP syncytium are mainly derived from evalua‑
tions of specific SIP cell types.

Previously, telocytes (TCs) were considered interstitial 
Cajal‑like cells (ICLCs) due to the similar morphology 
under the light microscope and immunohistochemical (IHC) 
features with ICCs, which were found >100 years ago and 
considered to be pacemakers for GI motility. Subsequently, it 
was demonstrated that TCs are not ICLCs, as TCs presented 
a distinctly different ultrastructure from ICLCs in transmis‑
sion electron microscopy (TEM) images. To avoid further 
confusion and to give a precise identity to these cells, in 2010, 
Popescu and Faussone‑Pellegrini (15) coined the term TCs 
for cells previously referred to as ICLCs. Differences in the 
TCs' immune phenotypes have been found to be significant in 
different tissues; by contrast, the ultrastructural differences of 
TCs are the least evident. Hence, the term TCs was proposed 
based on the cells' unique TEM features rather than selec‑
tive immune markers. Subsequently, Vannucchi et al (16) 
clearly indicated that TCs express PDGFRα in the human GI 
tract. Based on these IHC data, TCs are frequently referred 
to as PDGFRα+ cells and this definition is commonly used 
in scientific reports. Of note, as TCs express different IHC 
markers in different organs and even in different tissues 
from the same organ, it remains controversial whether TCs 
and PDGFRα+ cells are the same cell type (17‑20). However, 
in the gut, all cells identified as TCs were double‑positive 
for CD34 and PDGFRα and shared identical ultrastructural 
features (16,21); therefore, these TCs and PDGFRα+ cells 
are the same cell type, at least in GI tract. Further research 

substantiated the existence of TCs in the biliary system, 
including GB, extrahepatic bile duct, cystic duct, common 
bile duct and sphincter of Oddi (22).

Current electrophysiological studies of the GI tract are 
mostly focused on the stomach and intestine. The concept of 
SIP syncytium was also first demonstrated and proposed in 
the GI tract (7). Although the histological anatomy and physi‑
ological functions of the GB and the stomach or intestine 
are not identical, they belong to the same myogenic organs 
of the digestive tract and their physiological functions are 
both dependent on the movement of their smooth muscles. 
More importantly, both the expression and distribution of 
ICCs and TCs have also been demonstrated in myogenic 
organs such as the GB, ureter and uterus (23‑26). Current 
studies on GB electrophysiology are mainly on SMCs and 
ICCs (22,27‑33). The mechanisms of SMCs in the motor 
function of the GB have been most thoroughly studied. It 
is currently believed that ICCs in GB have a regulatory role 
in the motor function of the GB, but the exact mechanism 
of regulation remains to be clarified. The study of TCs in 
the GB is even more limited to histology. However, the 
regulation of GB motor function is important for benign GB 
diseases (e.g., cholelithiasis, cholecystitis, GB polyps, GB 
adenomyosis). In the most recent study by our group, the 
presence of a unique structure containing ICCs, TCs, SMCs 
and neurons in the GB has been proved by multiplexed IHC 
(Fig. 1; for methods see supplementary data). These results 
indicated that the four cells were in spatial proximity to each 
other in mouse GB. Furthermore, c‑Kit and anoctamin 1 
(Ano1) were used to label ICCs, CD34 and PDGFRα to 
label TCs, Myh11 and Acta2 to label SMCs to analyse the 
single‑cell RNA‑sequencing of normal mice (for methods 
see supplementary data) (34). The results also proved that 
there were three double‑positive cell types (ICCs, TCs and 
SMCs) for their respective specific molecular markers and 
they formed their own cell clusters (Fig. 2). All of these 
results demonstrated that these four types of cells are present 
and constitute the SMC‑TC‑ICC‑neuron (STIN) syncytium 
structure in the mouse GB. Based on these findings, the 
functional complex was proposed as an STIN syncytium 
(Fig. 3). The present review described various aspects of the 
morphology, regulation and function of STIN cells in GB 
and discussed pathological changes of the STIN syncytium 
in GB disease.

2. Morphology and distribution of STIN cells

Research of GB structure and function is primarily derived 
from animal studies, particularly guinea pig and mouse 
models. The identification of individual STIN cells is based on 
their morphology (Fig. 4; for methods see supplementary data) 
and immune phenotypes, which are summarized in Table I.

GB smooth muscle cells (GSMCs). Unlike the GI tract, the 
GB muscle layer only consists of a single layer of SMCs. GB 
muscle fibers are separated by different amounts of connec‑
tive tissue and orientated in different directions (35). GSMCs 
are shuttle‑shaped, with abundant thin (actin and calponin) 
and thick filaments (myosin) in the cell body. Typical binding 
of actin and myosin results in cross‑bridges, which form 
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the basic unit of smooth muscle movement (36). α‑Smooth 
muscle actin (α‑SMA) is frequently used as a specific 
marker for smooth muscle (37). Another characteristic 
structure of GSMCs is the plasma membrane‑sarcoplasmic 
reticulum (SR) junction, which are invaginations of the 
plasma membrane containing signaling molecules and ion 
channels (38).

ICCs. Research on GB ICCs began in the 21st century. In 
2006, Sun et al (39) first confirmed the existence of ICCs in 

CD1 mouse GB by c‑Kit antibody labeling in combination 
with methylene‑blue staining. Later, ICCs were also identified 
in human extrahepatic bile ducts, where they are more densely 
aggregated than in the GB (40,41). Light microscopy indicated 
that ICCs are typically elongated with oval‑shaped cell bodies 
and 1‑3 long processes extending from their poles, or exhibit a 
triangular cell body with several slender lateral branches (42). 
The fusiform ICCs form a multiple connecting network that is 
oriented parallel to adjacent muscle fibers in the GB muscularis 
layer. TEM scanning revealed that ICCs possess large nuclei, a 

Figure 1. Full‑thickness sections of mouse GBs stained by multiplexed immunohistochemistry methods to visualize STIN cells. (A) GB wall containing STIN 
cells (arrow). Ano1‑immunopositive reactivity is displayed in green, PDGFRα‑positive in red, α‑SMA‑positive in orange, PGP 9.5‑positive in yellow and cell 
nuclei were counterstained with DAPI (blue). (B) GB wall containing ICCs marked with Ano1 (arrow). (C) GB wall comprising TCs marked with PDGFRα 
(arrow). (D) GB wall including GSMCs marked with α‑SMA. (E) GB wall containing neurons marked with PGP 9.5 (arrow) (scale bars, 20 µm). STIN, 
SMCs‑TCs‑ICCs‑neurons; ICCs, interstitial cells of Cajal; TCs, telocytes; GSMCs, gallbladder SMCs; SMCs, smooth muscle cells; PDGFRα, platelet‑derived 
growth factor receptor α; Ano1, anoctamin 1; SMA, smooth muscle actin; GB, gallbladder; PGP 9.5, protein gene product 9.5.

Figure 2. T‑distributed stochastic neighbor embedding plot indicating the expression of known marker genes for cell types of normal mouse gallbladder. 
(A) Interstitial cells of Cajal, c‑Kit and anoctamin 1. (B) Telocytes, platelet‑derived growth factor receptor α and CD34. (C) Smooth muscle cells, Myh11 and 
Acta2. The raw data are from the Gene Expression Omnibus dataset GSE179524.
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well‑developed smooth endoplasmic reticulum, abundant free 
perinuclear mitochondria, distinctive caveolae, free ribosomes 
and intermediate filaments without thick filaments, which are 
adjacent to SMCs and nerve endings (43). Recently, two identi‑
fied genes, Ano1 and Na+‑K+‑Cl‑ cotransporter (NKCC1), were 
found to be highly expressed in GB, representing a new and 
highly selective molecular marker for studying the distribution 
and fate of ICCs (44,45).

TCs. In 2007, Hinescu et al (41) first described TCs in human 
GB in detail. In the human adult GB, TCs are mostly placed 
near small vessels in the subepithelial region of the lamina 
propria and between smooth muscle bundles in the muscu‑
laris (46). TEM is considered the most accurate method for 

identifying TCs (15,26,47). In TEM images, TCs exhibit a vari‑
able tiny body with several dichotomously branched, extremely 
long and thin telopodes. The shape of the cytoplasm varies, 
including fusiform, pyriform and triangular shapes depending 
on the number of telopodes, which have a moniliform profile 
characterized by the alternation of thin tracts with dilations. 
Hematoxylin and eosin staining revealed long and extremely 
thin prolongations undetectable by light microscopy. The thin 
segments are called podomers, while the dilated regions are 
called podoms. Podoms hold functional units consisting of 
numerous mitochondria, endoplasmic reticulum and caveolae. 
CD34 and PDGFRα are considered reliable markers of TCs 
in the GI tract (48,49). In addition, TCs selectively express the 
small conductance Ca2+‑activated K+ channel SK3 in the gut, 

Figure 3. Cellular components of the STIN syncytium. GB neurons, ICCs and TCs are electrically coupled via gap junctions in SMCs, forming the STIN 
syncytium and providing regulatory control of GB function. In the muscular layer of the GB, ICCs and TCs are closely associated with the terminal processes 
of GB neurons and express receptors, second‑messenger, neurohumoral pathways and ion channels facilitating responses to GB motor neurotransmitters. 
ICCs are pacemaker cells and generate electrical slow waves. TCs are responsive to purines and participate in the inhibitory neurotransmission of purinergic 
neurotransmitters. ICC and TCs are electrically coupled to SMCs, which may conduct slow waves to SMCs and regulate the excitability of the musculature in 
the gallbladder. STIN, SMCs‑TCs‑ICCs‑neurons; ICCs, interstitial cells of Cajal; TCs, telocytes; SMCs, smooth muscle cells; GB, gallbladder.

Figure 4. Transmission electron microscopy images of STIN cells in mouse GB. (A) The photographic reconstruction illustrates ICCs rich in mitochondria, 
smooth endoplasmic reticulum and caveolae observed in muscularis propria. The ICCs form electrical conduction structures with surrounding SMCs through 
gap junctions (*). (B) TCs have a small oval body, mainly occupied by the nucleus, and are thin and long; the repeatedly folded processes extend beyond the 
cellular body, which are called Tps. The thin segments are called podomers and the dilated regions podoms (scale bars, 10 µm). (C) The presence of typical 
GB nerve endings containing abundant synaptic vesicles in the muscular layer of the GB (scale bar, 5 µm). N, neuron; GSMC, GB smooth muscle cell; ICC, 
interstitial cells of Cajal; TC, telocytes; Tps, telopodes; STIN, SMC‑TC‑ICC‑neurons; GB, gallbladder; SMC, smooth muscle cell.
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which exhibits significant changes in functionality in the context 
of GI disease (50). TCs always form networks and provide 
mechanical support in the GI wall. However, the distribution 
of TCs in GB across various species remains controversial and 
further study is required to elucidate it.

3. GSMCs: Excitation‑contraction coupling units

Depolarization of GSMCs may occur through direct effects 
of neurotransmitters, hormones and other bioactive regulatory 
substances on GSMCs, or through the influence of other STIN 

Table I. Identification of STIN cells in gallbladder.

     Special 
Author(s), year Cell types Location Morphology Histochemistry marker (Refs.)

Sun et al, 2006 ICCs Muscularis Ovoid or Silver c‑kit (+), (39,42‑46,
Pasternak et al,  propria triangular, chromate Ano1 (+), 209‑215)
2016  layer body 1‑3 stain, MB NKCC1 (+),
Lavoie et al, 2007   cytoplasmic stain, CD34 (‑),
Gomez‑Pinilla et al,   processes, rhodamine tryptase (‑)
2009   large nuclei, 123 stain,
Zhu et al, 2016   abundant NADH
Pasternak et al,   mitochondria, diaphorase
2012   SER and stain
Burns et al, 1997   characteristic
Christensen et al,   caveolae,
1992   without thick
Ward et al, 1990   filaments
Mikkelsen et al,
1988
Xue et al, 1993
Huang et al, 2009
Vannucchi et al,
2016
Horowitz et al, SMCs Smooth Shuttle‑ Masson α‑SMA (+) (36,37,
1996  muscle shaped body, stain  216,217)
Ota et al, 2021  layer numerous
Sugai et al, 1985   thin and
Hartshorne et al,   thick
1998   filaments,
   plasma
   membrane‑
   SR junction
Popescu et al, 2010 Telocytes Muscular Tiny MB stain, CD34 (+), (15,16,21,22,
Vannucchi et al,  layer variable toluidine SK3 (+), 26,41,46,
2013   body, blue PDGFRα (+) 48‑50,218)
Pieri et al, 2008   hallmark staining
Chen et al, 2018   Tps with
Cretoiu et al, 2014   podomers
Hinescu et al, 2007   and podoms
Pasternak et al,
2012
Peri et al, 2013
Lu et al, 2018
Yeoh et al, 2016
Mnh et al, 1998

STIN, smooth muscle cell‑telocyte‑interstitial cells of Cajal‑neuron; SER, smooth endoplasmic reticulum; MB, methylene‑blue; NADH, nico‑
tinamide adenine dinucleotide; Ano1, anoctamin 1; NKCC1, Na+‑K+‑Cl‑ cotransporter; SR, sarcoplasmic reticulum; α‑SMA, α‑smooth muscle 
actin; Tps, telopodes; SK3, small conductance Ca2+‑activated K+ channels; PDGFRα, platelet‑derived growth factor receptor α.
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cells electrically coupled to GSMCs. In general, contractions 
are initiated by phosphorylation of myosin light chain (MLC) 
20 by Ca2+/calmodulin‑dependent myosin light chain kinase 
(MLCK) or Ca2+‑independent myosin light chain phosphatase 
(MLCP) (51). Phosphorylation of MLC20 facilitates myosin 
binding to actin, initiating cross‑bridge cycling and contrac‑
tion development.

Electrical properties of GB smooth muscle (GBSM). 
Intracellular voltage recordings from intact guinea pig GSMCs 
revealed that characteristic action potentials (APs) have four 
distinct components: A resting membrane potential of ‑40 
to ‑50 mV, a rapidly depolarizing (rarely exceeds 0 mV) and 
transient repolarizing spike, followed by a slowly sustained 
declining plateau phase, and finally complete repolariza‑
tion (52).

GSMCs exhibit rhythmic spontaneous APs (0.3 to 0.4 Hz) 
started by Ca2+ entry, mainly through voltage‑dependent Ca2+ 
channels (VDCCs) (52). The AP spike results from activation 
of L‑type VDCCs in the absence of a T‑type Ca2+ current 
in guinea pig GSMCs (53). The open state of L‑type Ca2+ 
channels is regulated by neurotransmitters and drugs (54,55). 
For instance, L‑type Ca2+ channel blockers such as 
nifedipine may abolish spontaneous AP and inhibit GB 
contraction. L‑type channels are critical for proper GSMC 
function, providing the major source of contractile Ca2+. 
Depolarization of Icat, a spontaneously active Na+‑mediated 
nonselective cation channel, was indicated to maintain the 
resting membrane potential and increase contractility of 
GBSM, thus stabilizing GB tone (56).

The repolarization of APs is determined by voltage‑gated K+ 
(Kv) channels and ether‑a‑go‑go‑related gene (ERG) K+ chan‑
nels (57,58). Potassium reflux via Kv channels is responsible 
for the repolarization of APs and regulates the contraction of 
GBSM. These channels demonstrate relatively low sensitivity 
to aminopyridines but are inhibited by quinine (59). ERG, 
which encodes a delayed rectifier K+ channel in GB, contrib‑
utes to repolarization of both the rapid spike and plateau 
phase (60). ERG channel blockers prolong repolarization of 
the plateau phase, increasing basal contractility of GSMCs and 
their response to receptor activation (57).

Other potassium channels identified in GSMCs include 
ATP‑sensitive K+ (KATP) channels and large‑conductance 
Ca2+‑activated K (BKCa) channels. Activation of the KATP 

channel causes prolonged hyperpolarization, reducing the 
frequency of GBSM APs and associated spontaneous GBSM 
contractions (61). The KATP channel appears to have a major role 
in receptor‑mediated relaxation of GBSM, as it is responsible 
for the inhibitory effects of calcitonin gene‑related peptide 
(CGRP) and agonists of H2 receptors for histamine (62,63). In 
GSMCs, localized Ca2+ release events from ryanodine‑sensitive 
receptors (RyR), also called Ca2+ sparks, antagonize GSMC 
excitability by activating BKCa channels in the nearby plasma 
membrane (see below) (64). Spontaneous transient activation of 
BKCa currents causes transient membrane hyperpolarization of 
GSMCs that was, in part, inhibited by cholecystokinin (CCK). 
Additional cellular mechanisms underlying bile acid‑induced 
GBSM relaxation in vivo and in vitro potentially include 
activation of BKCa channels to generate outward currents, thus 
counteracting contraction (65).

GSMCs also express the SK3 channel. SK3 likely physi‑
cally associates with ORAI calcium release‑activated calcium 
modulator 1 (Orai1), a plasma membrane protein, to form a 
signaling complex. Ca2+ influx through Orai1 activates SK3 
to induce membrane hyperpolarization in GBSM (66). This 
hyperpolarizing effect of the Orai1‑SK3 complex may serve 
to prevent excessive contraction in response to contractile 
agonists.

Regulation of intracellular Ca2+ concentration [Ca2+]i. 
GBSM excitation‑contraction (E‑C) coupling is dependent 
on an increase in the intracellular concentration of Ca2+ 
[Ca2+]i, which is caused by an influx of extracellular Ca2+ 
through VDCCs and/or receptor‑operated Ca2+ channels, as 
well as the release of Ca2+ from the SR (67). The influx of 
extracellular Ca2+ required for E‑C coupling may enter cells 
through VDCCs, capacitative calcium entry (CCE) or nonse‑
lective cation channels (NSCCs).

The predominant class of VDCC in GSMCs is the L‑type 
Ca2+ channel. As previously described, global cytosolic 
[Ca2+]i is largely dictated by the open state probability of plas‑
malemmal L‑type Ca2+ channels, while calcium entry through 
VDCCs is determined by the cell membrane potential (68). The 
depletion of intracellular calcium stores activates CCE, a Ca2+ 
entry mechanism at the plasma membrane (69). Thapsigargin, 
a sarcoplasmic Ca2+‑ATPase inhibitor, is able to prevent the 
accumulation of Ca2+ by the SR. Activation of extracellular 
Ca2+‑dependent responses and Ca2+ influx by thapsigargin is 
regarded as evidence in favor of the involvement of CCE (70). 
Contractile responses to Ca2+ re‑addition following depletion 
of SR Ca2+ stores with thapsigargin strongly supports CCE 
as a source of activating Ca2+ for GBSM contraction (71). In 
addition, actin reorganization is proven to participate in the 
implementation of CCE, supporting a conformational coupling 
model for this process in naive SMCs (72). NSCCs in GSMCs 
demonstrate high selectivity for Ca2+ over monovalent cations, 
leading to activation of VDCCs mediating extracellular Ca2+ 
entry and contraction (73). Transient receptor potential (TRP) 
channels are a large family of NSCCs widely expressed in 
GSMCs (74). TRPP2 protein belongs to the TRP superfamily 
and is encoded by the polycystin 2 gene (75). In guinea pig 
GB muscle strips, knockdown of TRPP2 significantly reduced 
carbachol‑evoked Ca2+ release (27). Accumulating evidence 
demonstrates that TRPP2 not only mediates intracellular 
Ca2+ release, but also regulates extracellular Ca2+ influx to 
enhance [Ca2+]i (76‑78). Furthermore, TRP protein family C 
(TRPC) is a candidate channel involved in CCE (28). The 
expression of TRPC protein depends on cytosolic Ca2+ levels 
through activation of Ca2+/calmodulin‑dependent kinases and 
cAMP‑response element binding protein.

Calcium influx and release from the SR, also known as 
intracellular stores, are crucial for GSMC contractility, which 
primarily depends on increases in [Ca2+]i (79). Intracellular 
calcium release from the SR involves the participation 
of two ligand‑gated channel/receptor complexes [inositol 
1,4,5‑trisphosphate receptors (IP3R) and RyR] and is 
regulated by sarcoplasmic/endoplasmic reticulum calcium 
ATPase (80,81). Calcium release via IP3R is activated by IP3, 
which is generated in response to numerous G‑protein‑coupled 
receptors (GPCRs) and tyrosine kinase‑linked receptor 
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activators, including neurotransmitters, hormones and drugs. 
RyR mediates the rapid release of calcium from intracellular 
stores into the cytosol, which is essential for numerous cellular 
functions, including E‑C coupling in muscle. Three types 
of rhythmic spontaneous Ca2+ transients were determined 
by laser confocal imaging of intracellular Ca2+ in GBSM 
whole‑mount preparations (31,64,79). Ca2+ flashes reflect 
calcium entry associated with spontaneous APs and simulta‑
neously occur in all GSMCs in the given bundle, although they 
are asynchronous among nonintersecting bundles. Ca2+ waves 
are rhythmic Ca2+ transients propagating within GSMCs that 
are asynchronous between individual muscle cells in the given 
bundle; apparently, these waves correspond to subthreshold 
depolarization of GSMCs. Both flashes and waves triggered by 
Ca2+ release from the SR occur through IP3 receptors, which 
is amplified by calcium‑induced calcium release (CICR) and 
VDCCs (82). Superimposed Ca2+ waves induce Ca2+ flashes, 
while the summation of spontaneous transient depolarizations 
results in APs. In the guinea pig GB, rapid Ca2+ transients 
occur simultaneously in all the GSMCs of a given bundle, 
but without synchronization between muscle bundles (38). Of 
note, synchronous Ca2+ flashes occur among smooth muscle 
bundles in the presence of CCK or muscarinic agonists. These 
findings indicate that the net tone in the GB originates from 
asynchronous, multifocal contractions of bundles throughout 
the tissue wall, while synchronous electrical rhythms occur‑
ring in all muscle bundles may contribute to GB emptying. 
Therefore, flashes and waves are critical in maintaining the 
basal tone and neurohormonal‑induced stimulation of GB 
motility and emptying. Ca2+ release from intracellular stores 
not only induces contraction, it also induces relaxation. Ca2+ 
sparks are another type of focal, nonpropagating calcium 
transients caused by the coordinated opening of a cluster of 
RyR. In GB, Ca2+ sparks do not lead to any elevation in global 
[Ca2+]i. Instead, transient localized [Ca2+]i elevations through 
opening of BKCa channels cause SMC hyperpolarization and 
relaxation (64).

Ca2+‑independent MLCP pathway. GSMC contraction is also 
regulated by Ca2+‑independent mechanisms via protein kinase 
C (PKC)/CPI‑17 or RhoA/Rho‑kinase (ROCK)‑mediated 
pathways. The regulation of MLC phosphorylation by MLCK 
causes SMC contraction, whereas inhibition of MLCP may 
enhance the extent of MLC phosphorylation and SMC contrac‑
tion and increase Ca2+ sensitivity, a phenomenon known as 
Ca2+ sensitization (83). In the classical PKC/CPI‑17 pathway, 
G proteins cause activation of phospholipase C (PLC), diac‑
ylglycerol output and activation of PKC. PKC phosphorylates 
CPI‑17, an inhibitor of MLCP activity, resulting in GBSM 
contraction (84,85). ROCK also regulates GSMC contraction 
by regulating the Ca2+ sensitization mechanism. Contractions 
induced by carbachol and CCK are mediated by GPCR 
muscarinic M3 receptors and CCK1 receptors in guinea‑pig 
GBSM (86,87). The selective ROCK inhibitor Y‑27632 
significantly inhibited GBSM contractions evoked by carba‑
chol and CCK in vitro (30). In human GB, Y‑27632 markedly 
reduced 5‑hydroxytryptamine, neurokinin A and KCl‑induced 
contractions (88). The results of these studies indicate that a 
RhoA/ROCK‑mediated pathway has a role in the regulation 
of GSMCs.

4. ICCs: Pacemaker of SWs

GB SWs were first recorded by Romański (89) through elec‑
tromyography. However, the signal of SWs was not always 
observed and variable in frequency and amplitude. The 
minute rhythm (MR), another rhythmic activity, consisted of 
a series of spike potentials recurring at minute intervals (90). 
The MR has been proven to regularly occur in the entire 
ovine small intestine and GB, which is controlled by both 
nicotinic and muscarinic receptor subtypes (91). However, it 
appears improbable that the MR spike bursts significantly 
contribute to the enhancement of GB filling or evacuation. 
Thus, the role of the MR in GB may be to maintain normal 
tension of the GB wall during the fasting period. Loss of 
ICCs is associated with a lack of SW activity of GB and the 
GI tract (92,93). However, the relationship between MR and 
ICCs requires further study.

Conduction of SWs and regulation of GSMCs. ICCs have 
an important role in producing and propagating rhythmic 
electrical activity and GB motility. Isolated ICCs display 
spontaneous electrical rhythmicity similar to the electrical 
activity of intact muscles. In fact, electrical coordination 
between regions of SMCs must occur through the integrity 
of ICC networks due to the lack of ion channels to regen‑
erate or actively propagate SWs (43,94). In GBSMs, SWs 
may also be recorded from SMCs due to electrical coupling 
with ICCs. The function of SWs is to change the membrane 
potential from a state of low open probability for VDCCs to 
depolarization, which means APs, when there is an increased 
probability of associated ionic channel opening (9). A Ca2+ 
imaging study by Lavoie et al (43) indicated that the inten‑
sity of fluo‑4 fluorescence in ICCs was higher than that of 
the surrounding GSMCs, while rhythmic Ca2+ flashes were 
synchronized in any given GBSM bundle and associated 
with ICCs. More importantly, gap junction blockers may 
eliminate or markedly disrupt spontaneous rhythmic Ca2+ 
flashes in GBSM, but persist in ICCs, whereas the selective 
Kit tyrosine kinase inhibitor imatinib mesylate disrupted or 
abolished APs and Ca2+ flashes in both cell types, as well as 
associated GBSM contractions. These results demonstrate 
that the spontaneous rhythmic activity detected in GBSM, 
which corresponds to smooth muscle bundle contractions, is 
generated by specialized ICCs and not an intrinsic property 
of GSMCs. Taken together, ICCs conduct pacemaker SWs 
into neighboring GSMCs, causing membrane depolarization, 
opening of the VDCC, intracellular Ca2+ release and activa‑
tion of the contractile apparatus of GB. To date, no specific 
‘pacing region’ has been identified in the GB.

Pacemaker mechanism of ICCs. ICCs serve as pacemaker 
cells and express a specialized apparatus that includes 
Ca2+‑activated Cl‑ channels (CaCCs), T‑type voltage‑dependent 
Ca2+ channels, NSCCs, NKCC1, inward rectifier K+ channels 
and Na+/Ca2+ exchanger (NCXs). SWs recorded from ICCs 
have fast upstroke depolarizations with large amplitudes and a 
sustained plateau potential.

SWs in ICCs are mediated by activation of Ano1 channels 
and NSCCs. ICC depolarization depends upon activation of 
CaCCs encoded by the ANO1 gene, such that loss or block 
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of Ano1 abolishes the electrical activity of SWs in intact 
smooth muscles (95). Periodic activation of Ano1 channel 
clusters generates spontaneous transient inward currents 
(STICs) and subsequently initiates coordinated activation of 
CaCCs that summates to cause the depolarization responses 
known as SWs (96). The calcium entry from RyR and IP3R 
of ICCs during CICR appears to be the signal coupled to 
activation of CaCC, as these channels are sensitive to [Ca2+]i (97). 
Of note, research on cultured ICCs indicated that NSCCs, 
not CaCCs, generated the inward current responsible for 
SWs (95,96,98,99). This may be explained by rapid loss of 
Ano1 expression in cell culture and alteration of the auto‑
rhythmicity retained by ICCs compared with the pacemaker 
activity of cells in situ. Unitary potentials, which are small 
irregular noisy fluctuations in membrane potential, may 
be the primary pacemaker activity that underlies SWs. 
These electric events were insensitive to concentrations of 
niflumic acid (the inhibitor of CaCC) that blocked SWs (99). 
The Ca2+‑inhibited NSCC‑activated STICs observed from 
isolated ICCs may be responsible for unitary potentials (95). 
Accordingly, NSCC may contribute to the pacemaker current 
and generation of electrical SWs in GI smooth muscles. T‑type 
Ca2+ channels coordinate Ca2+ release from stores in ICCs, 
thus controlling the openings of Ano1 channels responsible 
for SW currents (100). The mechanism of SW propagation 
in tissues has been explored by using muscle strips and 
partitioned recording chambers. Reduced extracellular Ca2+ 
or antagonists of T‑type Ca2+ channels inhibit SW upstroke 
depolarization velocity and propagation (101). These results 
suggest that SWs propagate through the ICC network by a 
voltage‑dependent mechanism that relies on activation of 
T‑type Ca2+ channels (38). ICCs have been demonstrated to 
express genes encoding inward rectifying K+ channels, and 
this inwardly rectifying conductance contributes to the regu‑
lation of resting potentials and excitability of SMCs (102).

The plateau component of SWs was dependent on the 
Cl‑ current through CaCCs, while the activation of Ano1 
channels results in efflux of Cl‑ during SWs (103). Thereby, 
a mechanism must exist for the recovery of Cl‑ loss. IHC 
confirmed that NKCC1 is expressed at high levels in 
ICCs (104). Inhibition of NKCC1 with bumetanide and 
gene knockout of NKCC1 both diminished the plateau 
component of SWs without directly affecting Ano1 or T‑type 
Ca2+ channels (45,105). In isolated GB ICCs, inhibitors of 
mitochondrial NKCC1 also abolished spontaneous rhythmic 
activity, suggesting that NKCC1 may have an important role 
in maintaining the Cl‑ gradient supporting the driving force 
for the inward current mediated by Ano1 (106). Furthermore, 
NKCC1 may elongate the plateau phase by activation of 
reverse‑mode NCX. NCX, an ion transport protein, extrudes 
Ca2+ in parallel with the plasma membrane ATP‑driven Ca2+ 
pump (107). NCX has dynamic features in the SW cycle, in 
which Ca2+ exit helps to maintain the basal [Ca2+]i between 
SWs and deactivate Ano1 channels at the end of the plateau; 
furthermore, Ca2+ entry sustains the activation of Ano1 chan‑
nels during the plateau phase of SWs (108). The longevity 
of the plateau phase is related to the duration of time that 
NCX remains in Ca2+ entry mode. However, the underlying 
molecular mechanisms of SWs in GB ICCs remain to be 
further elucidated.

5. Telocytes: Purinergic inhibitory neurotransmission 
bridge

In the GI tract, TCs are electrically coupled with ICCs and 
SMCs, and in close apposition with enteric motor neuron 
varicosities (10). IHC studies indicated that TCs highly 
express gap junction genes, as well as SK3 and purinergic 
P2Y1 receptors (48,109,110). In vitro, isolated TCs respond to 
P1Y1 agonists by activating SK3 channels (111). Purinergic 
compounds, such as ATP, ADP and β‑NAD, elicited 
large‑amplitude outward potassium currents in TCs that 
were blocked by P2Y1 receptor antagonists and SK3 channel 
antagonists. This outward current causes hyperpolarization of 
SMCs, ultimately leading to GI relaxation. Further research 
suggested that P2Y1 receptors mediate purinergic inhibitory 
responses in GI muscles, as this relaxation reaction was absent 
in P2Y1‑knockout mice (112). These findings indicate direct 
innervation of TCs by motor neurons. TCs are the primary 
targets for purinergic neurotransmitters in inhibitory neuro‑
transmission. The high expression of P2Y1 and SK3 in TCs 
has a key role in purinergic inhibitory regulation.

SMCs also express SK3 and purinergic receptors (113). 
However, a previous study indicated that SMCs, stimulated 
directly with purine agonists, exhibit either no response or 
small inward currents and depolarization (114). Another study 
suggested that the gap junction uncoupler 18β‑glycyrrhetinic 
acid blocked neural responses in SMCs, but not in nerve 
processes or TCs (115). These data indicate that the large‑ampli‑
tude hyperpolarization responses elicited in GI muscles by 
purine neurotransmission are more likely to be meditated by 
TCs than SMCs. Hyperpolarization responses are conducted 
to SMCs via gap junctions. No evidence suggests that TCs 
may either generate or regenerate SWs. However, there are 
no electrophysiological studies on GB TCs. Thus, the role of 
TCs in the regulation of GB motor function requires further 
investigation.

6. GB neurobiology

GB relaxation and contraction are primarily myogenic, but the 
GB plexus has a major role in monitoring the state of the GB, 
in turn controlling its volume, strength of contractions and bile 
secretion through ENS reflexes (116,117). The innervation of 
GB consists of the serosal plexus, muscular plexus and mucosal 
plexus (118). The most prominent network is the serosal plexus 
with small, irregularly shaped ganglia connected by bundles of 
unmyelinated axons (119‑121). The serosal plexus is connected 
to nerve bundles that parallel the extensive vascular distribu‑
tion in the same layer. However, in humans, the muscular 
plexus is prominent and does not contain ganglia (122‑124). 
Unlike GI neurons, all GB neurons are cholinergic and 
immunoreactive for choline acetyltransferase (ChAT) (118). 
The guinea pig is the most comprehensively studied species 
in this field. According to chemical coding patterns, the 
overall population of cholinergic neurons may be divided into 
two distinct subtypes (125,126): The first type (accounting 
for >80% of neurons) is immunoreactive for substance P, 
neuropeptide Y (NPY), somatostatin (SST) and orphanin FQ, 
and ChAT; the other one is immunoreactive for vasoactive 
intestinal peptide (VIP), pituitary adenylate cyclase‑activating 
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polypeptide (PACAP) and neuronal nitric oxide synthase 
(nNOS). In humans, most GB neurons express VIP, NPY, SST 
and PACAP, and also contain tachykinins (TKs) (123,127,128). 
Electrophysiological research of GB neurons indicates they 
rarely exhibit spontaneous APs and must be driven by extrinsic 
inputs to release neuroactive compounds onto their target 
cells, mostly GSMCs (129,130). ICCs and TCs are also tightly 
associated with excitatory and inhibitory motor neurons in 
the GB, and connected electrically to GSMCs. Several studies 
have indicated that numerous neurotransmitters and hormones 
may regulate GB motility (Table II).

Excitatory transmitters and hormones. GB neurons are 
relatively unexcitable, driven instead by vagal inputs and 
modulated by hormones, peptides released from sensory 
fibers, and inflammatory mediators (118).

CCK, an important gut hormone secreted by enteroen‑
docrine I‑cells of the upper small intestine, mainly exerts its 
physiological functions in GB through the activation of GPCRs 
identified as CCK1 receptors. CCK1 receptors have been iden‑
tified in both GSMCs and ICCs of human and guinea pig GB 
and are responsible for the stimulation of contraction (131,132). 
Previous electrophysiological studies of the GB demonstrated 
that CCK has presynaptic facilitatory effects within neural 
ganglia to increase acetylcholine (ACh) release from vagal 
terminals onto GB neurons, and also stimulates vagal afferent 
nerve fibers in the duodenum, thus increasing stimulation of 
vagal preganglionic neurons (133). Furthermore, CCK induces 
a decrease in resistance of the sphincter of Oddi, a determinant 
of GB emptying (134). In brief, CCK coordinates the pressure 
gradient in the biliary system by promoting GB emptying 
and relaxing the sphincter of Oddi, ultimately facilitating bile 
evacuation during the feeding period.

Co‑expression of TKs with ACh in GB neurons indicates 
that these factors may act together to promote GB emptying 
following afferent nerve stimulation (130). M3 receptors 
are the major muscarinic receptor in GB and M4 receptors 
appear to enhance carbamylcholine‑induced contractility 
of GBSM (135). Release of ACh from neurons results in 
the contraction of GBSM via activation of M3 receptors 
on GSMCs. Activation of M3 receptors leads to phosphati‑
dylinositol hydrolysis by the G protein‑coupled PLC pathway 
and inhibits cAMP accumulation (136). In human GB, M3 
muscarinic receptors are mainly regulated by voltage‑gated 
Ca2+ channels and ROCK (137). The TKs contract the guinea 
pig GB in vivo and in vitro by acting on NK2 receptors (138). 
TKs‑induced muscle contraction involves activation of PKC, 
for which stimulation of inositol phospholipid hydrolysis was 
associated with the state of NK2 receptors (139).

Bradykinins and their receptors (B1 and B2) are potent 
mediators of inflammation, smooth muscle contraction and 
nociception. In human and guinea pig GB, bradykinin has been 
demonstrated to evoke a robust contraction via B2 receptor 
activation (140,141). Bradykinin‑induced contraction of GBSM 
in vitro relies on the synthesis of prostanoids, whose activation 
evokes inflammatory responses either by direct stimulation 
of effector cells or through the release of other mediators, 
including prostanoid, NO and peptide neurotransmitters. By 
contrast, B1 receptors are rarely expressed in normal GB and 
their upregulation most probably depends on the inflammatory 

state of the tissue. Activation of B1 receptors has been related 
to the maintenance of chronic pain and inflammation (142). 
Thus, the kinins system has a major role in evoking contrac‑
tion in normal and, in particular, inflamed GB by stimulating 
both B1 and B2 receptors.

The physiological source of ATP in GB remains elusive and 
it is possible that ATP functions as a neurotransmitter (143). 
ATP is known to act on two different classes of P2 receptors, 
P2X ion channels and G‑protein‑coupled P2Y receptors (144). 
The dominant role of G protein‑coupled P2Y4 receptors in 
ATP‑induced contraction has been confirmed in guinea pigs. 
ATP likely stimulates P2Y4 receptors within GSMCs and, in 
turn, prostanoid production via cyclooxygenase‑1, leading to 
increased excitability of GBSM (145). In the guinea pig, high 
levels of P2X2 and P2X3 expression are found in sensory fibers 
of the paravascular plexus. Double labelling IHC revealed that 
P2X2 and P2X3‑immunoreactive neurons were also immuno‑
reactive for VIP, CGRP and nNOS (146).

Inhibitory transmitters and hormones. Neurotransmitters 
that have an inhibitory effect on GBSM include calcitonin, 
CGRP, VIP, PACAP and NO. Humoral factors that relax the 
GB include pancreatic polypeptide (PP), SST and fibroblast 
growth factor (FGF)15 in mice or FGF19 in humans.

CGRP may induce concentration‑dependent relaxation of 
GB in vivo, but has no effect on resting GB pressure (147). 
CGRP did not affect the release of CCK and the excitatory 
effect of CGRP was completely abolished by pretreatment 
with atropine. This implies that the site where CGRP activates 
contractile activity is on intramural cholinergic neurons rather 
than GSMCs. This relaxation is primarily due to the opening 
of KATP channels, as well as the cAMP pathway (62,148). The 
increased levels of NO observed when CGRP was present 
suggest NO is also involved in the CGRP‑induced relaxation 
response (149). NO has been proposed to serve as a neurotrans‑
mitter in non‑adrenergic non‑cholinergic nerves. Synthesized 
by nNOS, NO stimulates soluble guanylate cyclase enzyme 
in GSMCs, leading to the formation of 3',5'‑cyclic‑guanosine 
monophosphate (cGMP), which mediates GB relaxation (150). 
Endogenous carbon monoxide (CO) produced in the GB may 
act as a mediator in relaxation reactions by increasing cGMP 
levels (151). Of note, despite persistent nNOS expression in 
heme oxygenase 2‑knockout mice, their responses to stimu‑
lation are nearly abolished, whereas exogenous CO restored 
normal responses, indicating that NO does not function in the 
absence of CO generation (152).

VIP and PACAP are members of a VIP‑secretin‑glucagon 
superfamily of structurally related peptide hormones that exert 
their physiological actions through three GPCRs: PAC1, VPAC1 
and VPAC2 (153). VIP is thought to work as a neurotransmitter 
of vagus nerve terminals, which relaxes GBSM, decreases GB 
pressure and inhibits CCK‑induced contractions (127,154,155). 
PACAP was able to produce both contraction and relaxation 
of CCK‑induced GB preparations according to the resting 
GB tone (156). The dual effects of PACAP are likely medi‑
ated through a different type of receptor. Specifically, PACAP 
induces GB contraction through binding of PAC1 receptors 
in unstimulated strips, while the relaxant effect of PACAP in 
CCK‑contracted muscle strips appears to be directly mediated 
by GSMCs through VPAC2 receptors (157).
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Table II. Neuroactive compounds in STIN syncytium.

A, Excitatory compounds

 Neuroactive Receptors/   
Author(s), year compounds synthetase Mechanisms Effectors (Refs.)

Yu et al, 1998 CCK CCK1 receptors GPCRs‑PLC Facilitation of (86,131‑134,
Schjoldager et al,   pathway; bile evacuation 219)
1989   induction of by coordinating
Xu et al, 2008   ACh release the pressure
Mawe et al, 1994    gradient in
Behar et al, 1987    the biliary
Cawston et al,    system
2010
Stengel et al, ACh M2 and M3 GPCRs‑PLC Activation of M2 (135‑137)
2002  receptors pathway; and M3 receptors
    resulting in the
    contraction of
    the GB
Takahashi et al,   RhoA/ROCK
1994   pathway
Lee et al, 2013  M4 receptors  M4 receptors
    appear to be
    required for
    optimal
    functioning of
    M2 and M3

    receptor
Patacchini et al, TKs NK2 receptors PLC‑PKC Excitation (138,139)
1992   pathway GSMCs
Yau et al, 1990
O'Riordan et al, BKs B1 receptors Receptor Upregulation (140‑142)
2001   upregulation under inflammatory
    pathological states
Trevisani et al,  B2 receptors COX‑1 Induction of
2003    PE synthesis
Andre et al, 2008
Takahashi et al, ATP P2Y4 channels COX‑1 Induction of PE (143,145)
1987    synthesis
Bartoo et al,
2008
Greaves et al, PACAP PAC1 PLC‑PKC Excitation of resting (156,157)
2000  receptors pathway state of the GB
Parkman et al,
1997

B, Inhibitory compounds

 Neuroactive Receptors/   
Author(s), year compounds synthetase Mechanisms Effectors (Refs.)

Zhang et al, 1994 CGRP CGRP cGMP‑PKG Hyperpolarization (62,148,
Kline et al, 1997  receptors pathway of GSMCs via 149,220)
Kline et al, 1994    KATP channel;
Zhang et al, 1994    Relaxation GSMCs
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Table II. Continued.

B, Inhibitory compounds

 Neuroactive Receptors/   
Author(s), year compounds synthetase Mechanisms Effectors (Refs.)

    via dephosphory‑
    lation of MLC;
    Induction of NO
    release of
    GB neurons
Gultekin et al, NO nNOS cGMP‑PKG Relaxation of (150,221)
2006   pathway GSMCs via
Luman et al,    dephosphory‑
1998    lation of MLC
Alcón et al, 2001 CO HO‑2 cGMP‑PKG Relaxation of (151,152,
Xue et al, 2000   pathway; GSMCs via 222)
Farrugia et al,   Interaction dephosphory‑
1998   with NO as lation of MLC;
   cotransmitters CO may enhance
    nNOS catalytic
    activity or
    facilitate NO
    release from
    GB neurons
Harmar et al, VIP VPAC1 and cAMP‑PKA Hyperpolarization (153‑157,
2012  VPAC2 pathway; of GSMCs via 223‑225)
Pálvölgyi et al,  receptors Interaction KATP channel;
2005   with nNOS Inhibition of the
Pang et al,    CCK‑induced
1998    contraction, while
Greaves et al,    increasing the
2000    tension of the
Parkman et al,    sphincter of Oddi
1997
Zhang et al,
2014
Morales et al,
2004
Bitar et al, 1982
Harmar et al, PACAP VPAC2 cAMP‑PKA Hyperpolarization (153,155‑
2012  receptors pathway of GSMCs via 157,224)
Pang et al, 1998    KATP channel
Greaves et al,
2000
Parkman et al,
1997
Morales et al,
2004
Lavoie et al, BAs FGF15/19 FGF15/19‑ Partly rely on (172‑175,
2010   FXR the cAMP‑PKA 226)
Jain et al, 2012   pathway pathway to
Yusta et al, 2017    relax GSMCs
Kliewer et al,
2015
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Other gut hormones, such as the NPY family, SST and 
neurotensin (NT), also enhance GB relaxation (158‑160). 
However, it remains elusive whether these hormones regulate 
GB tone through direct effects on ICCs, GSMCs and TCs, 
as there is no direct evidence that their respective specific 
receptors are expressed in GB. The NPY family contains 
biological active peptides of the gut‑brain axis, including NPY, 
peptide YY (PYY) and PP (161). In guinea pigs, sympathetic 

postganglionic nerves are immunoreactive for NPY (125). 
These nerves likely represent the principal source of inhibitory 
neural input to the GB, leading to a decline of GB tone (162). 
PYY and PP are almost exclusively expressed in the GI tract. 
PYY is a GI peptide secreted from endocrine L cells local‑
ized in the distal small intestine, colon and rectum (163). PYY 
was able to abolish the cephalic phase of postprandial GB 
emptying and probably acts via vagal‑dependent rather than 

Table II. Continued.

B, Inhibitory compounds

 Neuroactive Receptors/   
Author(s), year compounds synthetase Mechanisms Effectors (Refs.)

Choi et al, 2006  TGR5 cAMP‑PKA Hyperpolarization
  receptors pathway of GSMCs via
    KATP channel
  GLP‑2 TGR5‑GLP‑2 Binding of
  receptors pathway  TGR5 in L cells
    and promotion
    of GLP‑2 release
Vu et al, 2001 SST SST receptor 2           / Reduction of CCK (167,168,
Maselli et al,  and SST  secretion as well 227,228)
1999  receptor 5  as ACh release;
Yamasaki et al,    Inhibition of
1995    intrinsic excitatory
Kaczmarek et al,    innervation of GB
2010
Mawe et al, NPY Y1 and Y2                   / Sympathetic nerves (125,161,
2001  receptors  pathway 162)
Holzer et al,
2012
Chen et al,
1998
Holzer et al, PYY Y2 receptors            / Inhibition of (161,163,
2012    vagal‑cholinergic 164)
McGowan et al,    pathway
2004
Hoentjen et al,
2001
Holzer et al, PP Y4 receptors            / Influence on the (161,165,
2012    afferent hepatic 165)
Hazelwood et al,    vagus
1993
Kojima et al,
2007

STIN, SMC‑telocyte‑interstitial cells of Cajal‑neuron; CCK, cholecystokinin; GPCRs, G‑protein‑coupled receptors; PLC, phospholipase C; 
ACh, acetylcholine; M, muscarinic; ROCK, Rho‑kinase; TKs, tachykinins; NK, neurokinin; PKC, protein kinase C; GB, gallbladder; GSMCs, 
GB smooth muscle cells; BKs, bradykinins; PE, prostaglandin E; PACAP, pituitary adenylate cyclase‑activating polypeptide; CGRP, calci‑
tonin gene‑related peptide; cGMP, cyclic guanosine monophosphate; PKG, protein kinase G; KATP, ATP‑sensitive K+ channel; MLC, myosin 
light chain; NO, nitric oxide; CO, carbon monoxide; HO, heme oxygenase; nNOS, neuronal nitric oxide synthase; VIP, vasoactive intestinal 
polypeptide; PKA, protein kinase A; BAs, bile acids; FGF, fibroblast growth factor; TGR5, Takeda GPCR 5; GLP, glucagon‑like peptide; SST, 
somatostatin; NPY, neuropeptide Y; PYY, peptide YY; PP, pancreatic polypeptide.
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CCK‑dependent pathways (164). PP is postprandially secreted 
from the pancreas, in which it is synthesized by endocrine F 
cells of the pancreatic islets. Similar to PP, PYY infusion results 
in increased volume and filling of the GB (165). Circulating 
PP binds to Y4 receptors in the dorsal vagal complex and 
affects the hepatic vagal afferent, leading to the inhibition of 
GB contraction and pancreatic exocrine secretion (166). SST, 
a peptide with potent inhibitory actions on GB contraction, 
enhances GB relaxation and reduces plasma excitatory gut 
hormone (ACh and CCK) secretion during the late postpran‑
dial phase (167). SST at a pathological concentration was 
able to inhibit the GB motor response to intrinsic excitatory 
innervation in vitro (168). NT, a peptide consisting of 13 amino 
acids, may either stimulate or inhibit GB motility, depending 
on the dose and species (169). NT induced a dose‑dependent 
contraction of isolated GB of guinea pigs, and these contractile 
effects resulted from the excitement of cholinergic neurons in 
the myenteric plexus of GB (170). However, intravenous infu‑
sion of NT caused relaxation of the GB in humans (160). Of 
note, this contractile response was not observed in vitro (171).

Recently, bile acids (BAs) have been recognized as 
signaling molecules capable of regulating GB filling through 
two different mechanisms: The BAs‑Takeda GPCR 5 (TGR5) 
pathway and the FGF15/19‑farnesoid X receptor (FXR) 
pathway. TGR5 expression was identified in both enteroendo‑
crine L cells and GSMCs (172,173). First, separate BAs were 
able to directly bind TGR5 in GSMCs, promoting GB filling. 
In addition, BAs in the intestinal lumen stimulated TGR5 
on enteroendocrine L cells, which released glucagon‑like 
peptide 2 (GLP‑2) that subsequently activated GLP‑2 receptors 
on GSMCs, ultimately mediating relaxation (174). BAs also 
activate the FXR expressed by enterocytes, thereby mediating 
the synthesis and release of FGF15/19 into the blood and 
subsequent stimulation of FGF receptors on GSMCs, inducing 
GB relaxation (175). Of note, activation of FXR of entero‑
endocrine L cells may inhibit GLP‑2 release, and this effect 
may antagonize BA‑induced relaxation of GB under certain 
circumstances.

7. STIN syncytium and the pathophysiology of GB diseases

Cholelithiasis. Cholelithiasis is a highly prevalent diges‑
tive system disorder with high socioeconomic costs 
worldwide (176). In China, the incidence of cholelithiasis is 
nearly 8‑10% and has been gradually increasing in recent 
years (177). Depending on individual composition and loca‑
tion, gallstones contain >90% cholesterol and the remaining 
material is black or brown pigment stones (4).

The loss of ICCs results in GB dysmotility in patients 
with cholesterol or pigment stones, as well as animal models 
of gallstone disease (33,178). Hypercholesterolemia is an 
independent risk factor for cholelithiasis, as it may increase 
biliary cholesterol concentrations, consequently leading to bile 
crystallization and, ultimately, gallstone formation (179,180). 
More importantly, cholesterol accumulation strongly damaged 
the density and ultrastructure of GB ICCs by inhibiting the 
stem cell factor (SCF)/c‑Kit pathway, and disrupted membrane 
receptor functions of STIN cells, particularly CCK1 recep‑
tors (181‑183). Due to impaired CCK‑induced emptying, the 
resulting GB stasis provides a microenvironment for excess 

cholesterol to remain in the lumen; in turn, the elevated choles‑
terol content further impairs GB emptying (184). During the 
chronic pathogenesis of cholelithiasis, cholesterol induces an 
oxidative stress response with characteristic concentration 
dependence, resulting in inhibited proliferation and continuous 
apoptosis of GB ICCs (185,186). In vitro studies suggested that 
cholesterol decreases Ca2+ channel function and the fluidity 
of caveolar regions, causing sequestration of excitatory 
receptors to support reduced binding of agonists in affected 
GBSM (187,188). High cholesterol diets also significantly 
inhibit ROCK expression in GMSCs, leading to the promo‑
tion of gallstone formation (189). Therefore, enhancement of 
ROCK expression in GSMCs may be a novel strategy for the 
prevention and treatment of cholelithiasis.

Hydrophobic bile salts decrease GB contractility, an effect 
directly related to the hydrophobicity of bile salt (190,191). 
Hydrophobic bile salts hyperpolarize GSMCs by binding to 
the GPCR GPBAR1 (also known as TGR5) and activating 
cAMP‑mediated opening of KATP channels, eventually 
disrupting GBSM function (172). The reduction in the number 
of ICCs may be a consequence of the toxicity of hydrophobic 
bile salts, while other bile components (such as glycocholic and 
taurocholic acids) may exert protective effects on ICCs (192). 
However, whether BAs are able to directly injure ICCs requires 
further study.

Patients with gallstones display abnormalities of the GB 
neural network. Specifically, IHC of GB with gallstones 
featured a significant decrease of neurons and enteric glial 
cells compared with that of GB without gallstones, while 
calretinin‑positive neurons were not different between the two 
groups of patients (193). Calretinin has been identified as a 
marker of Dogiel type II gut neurons, which appear to behave 
as mechanosensors. Thus, these findings support the hypoth‑
esis that GB wall mechanics remain intact in patients with or 
without gallstones, whereas GB motility is impaired.

Acute cholecystitis. Gallstones are responsible for 90‑95% of 
cases of acute cholecystitis (AC), while ~5‑10% of patients 
exhibit acute acalculous cholecystitis (5,194). The pathogenesis 
of AC is complex and multifactorial, but GB dysmotility is the 
most critical pathogenic factor, as it may cause GB ischemia, 
cholestasis and secondary bacterial infection.

Inflammation induces alterations of Ca2+ sensitization 
observed in AC by desensitizing Ca2+ pools and impairing the 
functional status of plasma membrane Ca2+ channels (195). 
Inflammation also reduces the expression of contractile 
proteins, such as F‑actin in GSMCs, which may be responsible 
for the observed reduction in sensitivity of E‑C coupling (195). 
Inhibition of MLCP mediated by the RhoA/ROCK pathway 
may also be responsible for the impairment of the contractile 
response (84). Hydrophobic bile salts may enhance inflam‑
matory processes, as they may diffuse through the mucosa 
and affect the generation of reactive oxygen species (ROS) 
by GBSM, either by direct action on GSMCs or increasing 
numbers of inflammatory cells in the GB wall (196).

Like other inflammatory processes, AC involves the release 
of inflammatory factors, including prostaglandins (PGs), ROS, 
histamine and endothelin (ET). Early studies of AC patients 
demonstrated that both the mucosa and muscularis of GB 
produce high levels of PGE2 and the severity of inflammation 
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was associated with the concentration of PGE2 (197). Symptoms 
of AC are significantly reduced during the first 24 h by the 
cyclooxygenase inhibitor indomethacin (198). Furthermore, 
PGE2 has been indicated to hyperpolarize GB neurons, thereby 
inhibiting neurogenic contractions of GB (199). Normally, ROS 
produced during oxidative metabolism is cleared by antioxi‑
dant mechanisms, yet oxygen‑derived free radical production 
may exceed the capability of scavengers, resulting in ROS 
accumulation and pathogenic effects during inflammation. 
Furthermore, during inflammation, excessive production of 
NO through inducible NOS with concurrent ROS production 
increases H2O2 formation (200,201). Exogenous H2O2 causes 
GBSM contraction and impairs GB responses to agonists of 
membrane‑dependent receptors, thus inducing GBSM impair‑
ment (201,202). Histamine is released from mast cells, which 
are abundant in the GB wall. In GSMCs, histamine performs 
diametrically opposed functions through H1 and H2 recep‑
tors. Activation of H1 receptors depolarizes GSMCs, whereas 
activation of H2 receptors causes hyperpolarization via KATP 
channels (63,203). However, the net effect of histamine in GB 
is normally contraction (204). Although the role of histamine 
in AC is not fully understood, it is possible that AC is associ‑
ated with increased mast cell infiltration and degranulation. 
ETs are bioactive peptides produced by GB epithelial cells, 
which have a crucial role in the early inflammatory process of 
AC. GB tissue ET levels are elevated, which is accompanied 
by an increase in GB tone (205). This pathological change 
precedes any histological evidence of GB inflammation. ET 
likely exerts an autocrine/paracrine role in the human GB via 
ET‑a and ET‑b receptors of GBSM (206). Pretreatment of the 
GB with an ET antagonist abrogated the development of AC.

In addition, decreased GB motility in AC results from the 
effects of neutrophils on the development and function of the 
ICCs network via depression of SCF/c‑Kit expression (207). 
Upon coculture with neutrophils in vitro, the intracellular 
calcium transient of ICCs was less sensitive to contraction 
agonists and inhibitors (208). A study of human GB strips from 
AC suggested that overexpression of B1 receptors by GSMCs 
may contribute to the typical symptoms that underline biliary 
colic during the cholecystitis state (142).

8. Conclusions

In summary, regulation of the membrane potential is complex, 
as GSMCs are electrically coupled to ICCs and TCs. Activation 
of conductance in any STIN cell affects the excitability of 
the syncytium. Individual STIN cells express intrinsic elec‑
trophysiological mechanisms and a variety of receptors for 
neurotransmitters, hormones, paracrine substances and inflam‑
matory mediators. Similar to other GI SMCs, GSMCs rely on 
the formation of cross‑bridges between actin and myosin for the 
development of force to empty the GB. The onset of GSMC depo‑
larization requires SWs generated and propagated by GB ICCs. 
TCs (also known as PDGFRα+ cells) exert an inhibitory effect on 
the excitability of SMCs through SK3 channels in the GI tract. 
However, the specific role of TCs in GB has yet to be studied 
and is a potential topic for future electrophysiological studies of 
GB. Therefore, the integrated output of the STIN syncytium sets 
the transient excitability of GSMCs. The primary risk factor for 
benign GB disease is GB dysmotility. Loss and dysfunction of 

STIN cells have been observed in patients and animal models 
with cholelithiasis and cholecystitis, suggesting that impairment 
of the STIN syncytium may be a critical pathogenic factor in 
benign GB disease. However, to date, there remains a lack of 
breakthroughs in the study of STIN syncytium. Thus, further 
research to better understand the pharmacology and physiology 
of the STIN syncytium is required.
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