
INTERNATIONAL JOURNAL OF MOLEcULAR MEdIcINE  51:  35,  2023

Abstract. The inflammasome regulates innate immunity 
by serving as a signaling platform. The Nod‑like receptor 
protein 3 (NLRP3) inflammasome, equipped with NLRP3, the 
adaptor protein apoptosis‑associated speck‑like protein (ASc) 
and pro‑caspase‑1, is by far the most extensively studied and 
well‑characterized inflammasome. A variety of stimuli can 
activate the NLRP3 inflammasome. When activated, the 
NLRP3 protein recruits the adaptor ASc protein and activates 
pro‑caspase‑1, resulting in inflammatory cytokine matura‑
tion and secretion, which is associated with inflammation 

and pyroptosis. However, the aberrant activation of the 
NLRP3 inflammasome has been linked to various inflam‑
matory diseases, including atherosclerosis, ischemic stroke, 
Alzheimer's disease, diabetes mellitus and inflammatory bowel 
disease. Therefore, the NLRP3 inflammasome has emerged 
as a promising therapeutic target for inflammatory diseases. 
In the present review, systematic searches were performed 
using ‘NLRP3 inhibitor(s)’ and ‘inflammatory disease(s)’ as 
key words. By browsing the literature from 2012 to 2022, 100 
articles were retrieved, of which 35 were excluded as they 
were reviews, editorials, retracted or unavailable online, and 
65 articles were included. According to the retrieved literature, 
the current understanding of NLRP3 inflammasome pathway 
activation in inflammatory diseases was summarize, and 
inhibitors of the NLRP3 inflammasome pathway targeting 
the NLRP3 protein and other inflammasome components or 
products were highlighted. Additionally, the present review 
briefly discusses the current novel efforts in clinical research.
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1. Introduction

The innate immune response, often known as non‑specific 
immunity, is the body's first line of defense (1) and recog‑
nizes pathogen‑associated molecular patterns (PAMPs) and 
host‑derived danger‑associated molecular patterns (dAMPs) 
via pattern recognition receptors (PRRs) (2). NOd‑like recep‑
tors (NLRs), which belong to the evolutionarily well conserved 
PRR family are located in the cytoplasm. By recruiting 
downstream adaptor proteins, they can form inflammasome 
complexes that promote the maturation and secretion of 
inflammatory mediators, including interleukin (IL)‑1β and 
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IL‑18, resulting in inflammatory reactions. A total of five 
major inflammasomes currently exist, i.e., NLRP1, NLRP3, 
NLRC4, NLRP6 and absent in melanoma 2 (AIM2), which 
are activated to promote inflammasome‑dependent immune 
responses when they recognize PAMPs and DAMPs from 
pathogenic microorganisms (3). The activation of the majority 
of inflammasomes is dependent on a few highly specific 
agonists; however, the NLRP3 inflammasome can be activated 
by various unrelated stimuli, including K+, cl‑, ca2+, lysosomal 
destruction, mitochondrial dysfunction and metabolic altera‑
tions (4). Additionally, inflammasomes are activated when 
PAMP receptors, including Toll‑like receptors, recognize their 
ligands. Concomitant with the cleavage of IL‑1β and IL‑18, 
gasdermin d (GSdMd) is cleaved by activated caspase‑1, 
resulting in a lytic‑regulated cell death mode, termed pyrop‑
tosis. Upon cleavage, the N‑terminus of GSdMd binds to 
membrane lipids and forms micropores, causing cell rupture and 
the occurrence of an inflammatory cascade (5). Accordingly, 
apart from being crucial to the resistance to pathogen invasion, 
the NLRP3 inflammasome modulates inflammation (6). There 
is increasing evidence to suggest that inflammatory diseases 
can be treated more effectively by targeting the NLRP3 
inflammasome (7), including atherosclerosis (8), ischemic 
stroke (9), Alzheimer's disease (AD) (10), diabetes mellitus 
(DM) (11) and inflammatory bowel disease (IBD) (12). A 
therapeutic strategy for inflammatory disorders focuses on 
recombinant cytokine receptor antagonists and neutralizing 
antibodies targeting the IL‑1 family (7). Nonetheless, there is 
an increased risk of infection associated with cytokine therapy. 
Inhibitors targeting the NLRP3 inflammasome pathway rather 
than effector molecules currently exhibit desired prevention 
or therapeutic effects in animal models of inflammatory 
diseases, as discussed below. In the present review, systematic 
searches in the title, key words and abstract of articles were 
performed using the PubMed and Web of Science databases 
with ‘NLRP3 inhibitor(s)’ and ‘inflammatory disease(s)’ as 
key words at initial retrieval. By browsing the literature from 
2012 to 2022, 100 articles were retrieved, of which 35 were 
excluded as they were reviews, editorials, retracted, or unavail‑
able online, and 65 articles were included. NLRP3 inhibitors 
were shown to relieve inflammatory diseases. Therefore, when 
discussing specific inflammatory diseases, the present review 
included further literature by combining ‘Atherosclerosis’, 
‘ischemic stroke’, ‘Alzheimer's disease ,̓ ‘Diabetes mellitus’ 
and ‘Inflammatory bowel disease’, respectively with ‘NLRP3 
inhibitor(s)’ as key words. According to the retrieved literature, 
a brief review of studies on LRP3 inflammasome inhibitors is 
presented herein, in an aim to aid the development of NLRP3 
inflammasome‑related disease drugs.

2. Biology of the NLRP3 inflammasome

due to inflammatory stimuli, the NLRP3 inflammasome 
is predominantly found in immune and inflammatory 
cells (13,14), and is equipped with NLRP3, the adaptor protein 
apoptosis‑associated speck‑like protein (ASc) and 
pro‑caspase‑1 (15). The NLRP3 protein comprises three main 
components, i.e., a leucine‑rich repeat (LRR), a central nucle‑
otide‑binding oligomerization domain (NOD), also known as 
NAcHT, in the carboxy terminus, and a pyrin domain (PYd) 

in the amino‑terminal. Similar to Toll‑like receptor (TLR), 
LRR recognizes and binds PAMP or DAMP stimuli; PYD 
is the functional region connecting downstream bridging 
proteins to effector molecules; NOd is the core part of NLRs 
that undergoes oligomerization when the LRR recognizes and 
binds PAMPs or dAMPs and exerts adenosine triphosphate 
(ATPase) activity for the self‑association and function of 
NLRP3 (4). 

NLRP3 inflammasome activation is tightly regulated, due 
to a two‑step process known as priming and assembly (16) 
(Fig. 1). The priming step, indicated as ‘the first signal’, is 
initiated by TLR and nuclear factor‑κB (NF‑κB) to increase 
the intracellular transcript levels of pro‑IL‑1β, pro‑IL‑18 and 
NLRP3 (17,18). Once primed, subsequent NLRP3 inflam‑
masome activation by NLRP3 oligomerization and the later 
NLRP3 inflammasome assembly is termed ‘the second 
signal’ (19).

Studies have reported four possible models [K+ efflux, 
lysosomal damage, reactive oxygen species (ROS) and ca2+ 
mobilization] (20) for NLRP3 inflammasome activation 
(Fig. 1), which may not be exclusive. i) K+ efflux: Multiple 
signaling pathways initiated by PAMPs/DAMPs can converge 
on K+ efflux (21), resulting in NLRP3‑NEK (NIMA‑related 
kinase) interaction, further activating the NLRP3 inflam‑
masome. As several NLRP3 activators reduce intracellular 
K+ concentrations, K+ efflux is a key function in NLRP3 
inflammasome activation (21). Research has indicated that 
the incubation of bone marrow‑derived macrophages in 
potassium‑free buffer induces potent mitochondrial damage 
and ROS production to promote NLRP3 inflammasome 
activation (22). By contrast, NLRP3 inflammasome activa‑
tion has been shown to be suppressed by the increasing 
extracellular K+ concentration (22). There is a well‑conserved 
serine or threonine kinase known as NIMA‑related kinase 
(NEK)7, a key component of the NLRP3 inflammasome (23). 
As a downstream component of the K+ eff lux, NEK7 
participates in NLRP3 activation (23). ii) Lysosomal damage: 
due to the phagocytosis of crystals or specific ligands, 
including monosodium urate (24), silica (25) and amyloid‑β 
(Aβ) (26), lysosomal damage occurs, releasing its contents. 
Lysosomal contents, specifically cathepsin B, can activate 
the NLRP3 inflammasome via a direct interaction (23). 
iii) ROS: A majority of NLRP3 stimuli, including ATP and 
asbestos, generate ROS, directly causing the combination 
of thioredoxin‑interacting protein (TXNIP) with NLRP3 
and activating it (27). Several small molecules targeting the 
mitochondria produce mitochondrial ROS (mtROS), which 
activates the NLRP3 inflammasome complex (28). Previous 
research, however, has revealed that while N‑acetyl cysteine 
(NAc) suppresses NLRP3 activation by blocking ROS in 
wild‑type macrophages stimulated with lipopolysaccharide 
(LPS)/silica or LPS/nigericin, caspase‑1 activation is not 
inhibited when NLRP3 expression is uncoupled from the 
priming signal by stable overexpression. As such, ROS affects 
NLRP3 inflammasome activation only during priming, but 
not during activation (4,29). As a key molecular upstream 
regulator of the NLRP3 inflammasome, ROS are able to acti‑
vate the NLRP3 inflammasome; however, their role in this 
process has not yet been fully elucidated. iv) ca2+ mobiliza‑
tion: Increased cytosolic ca2+ concentration (ca2+ overload) 



INTERNATIONAL JOURNAL OF MOLEcULAR MEdIcINE  51:  35,  2023 3

results from NLRP3 agonists inducing the mobilization of 
ca2+ from endoplasmic reticulum (ER) ca2+ stores or extra‑
cellular milieu. Through ca2+ channels, calcium ions are 
released from the ER, the intracellular calcium storage pool, 
when cells are stimulated (30). Researchers have demonstrated 
that intracellular ca2+ levels are increased by calcium‑sensing 
receptor (31,32). It has been shown that both calcium influx 
and ER calcium release are required for essential NLRP3 
activation (33), causing the assembly of the NLRP3 inflamma‑
some complex (Fig. 1). NLRP3 inflammasome activation is a 
complex process, including protein transcription and trans‑
lation, post‑translational modification and protein‑protein 
interaction (34). Although research has been documented on 
the activation process of NLRP3 inflammasomes, the specific 
mechanisms remain unclear in different diseases.

3. Pathophysiological role of the NLRP3 inflammasome in 
inflammatory diseases

The NLRP3 inflammasome is crucial for innate immunity; 
however, its aberrant activation promotes various inflamma‑
tory disorders, including atherosclerosis, ischemic stroke, Ad, 
DM and IBD (Fig. 2).

Atherosclerosis. cardiovascular disease (cVd) remains the 
leading cause of morbidity and mortality across the globe (35). 
Ischemic cVd is largely caused by atherosclerosis, a chronic 
inflammatory disease of the arterial wall caused by lipids (36). 
In patients with atherosclerosis, the NLRP3 inflammasome is 
highly expressed in the aorta (37). NLRP3 activation signifi‑
cantly increases macrophage lipid deposition susceptibility 
and migration capacity, hence promoting atherosclerosis. 
In advanced atherosclerosis, the NLRP3 inflammasome is 
crucial for necrotic core formation, and its silencing increases 
plaque stability (38). However, other researchers have observed 
opposite effects. NLRP3 also promotes the proliferation 
and migration of vascular smooth muscle cells (VSMcs) in 
vessels (39), which may contribute to vascular remodeling 
and plaque stability. Smoking affects the stages of atheroscle‑
rosis, and is hence one of the major independent risk factors. 
cigarette smoke extracts impair the cardiovascular system 
in vitro by activating the nuclear factor erythroid2‑related 
factor 2 pathway and inducing ROS generation, hence acti‑
vating the NLRP3 inflammasome (40,41). Furthermore, 
cigarette smoke condensate induces THP‑1 monocyte differ‑
entiation into macrophages (42), which, in combination with 
a high‑fat diet (HFd), exert a synergistic promoting effect 

Figure 1. Model and regulation of NLRP3 inflammasome activation. The priming step involves the transcriptional of NLRP3 inflammasome key components 
via TLR IL‑1R and TNF‑R and subsequent NF‑κB signaling. At the activation step, the NLRP3 inflammasome is activated by diverse stimuli, including 
K+ efflux, Ca2+ overload, ROS, and lysosomal rupture to trigger NLRP3 inflammasome assembly, resulting in IL‑1β and IL‑18 release. NLRP3, Nod‑like 
receptor protein 3; TLR, Toll‑like receptor; IL, interleukin; dAMP, danger‑associated molecular pattern; PAMP, pathogen‑associated molecular pattern; ATP, 
adenosine triphosphate; cASR, calcium‑sensing receptor; ROS, reactive oxygen species; TXNIP, thioredoxin‑interacting protein; TRX, thioredoxin; NEK7, 
NIMA‑related kinase 7; mtdNA, mitochondrial dNA; mtROS, mitochondrial ROS. 
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on atherosclerosis (43). during atherogenesis, the formation 
of cholesterol crystals in the vessel wall initiates plaque 
inflammation by activating the NLRP3 inflammasome during 
atherogenesis (44). Similarly, the NLRP3 inflammasome is 
involved in hyperglycemia‑induced endothelial inflammation 
and diabetes‑related atherosclerosis (45). 

Ischemic stroke. Ischemic stroke is caused by cerebral ischemia, 
which eventually causes lifelong disability or mortality (46). It 
is characterized by an inflammatory response responsible for 
its pathophysiology (47). Neuroinflammation due to ischemic 
stroke is controlled by microglia, which are categorized into 
M1‑like (pro‑inflammatory) and M2‑like (anti‑inflammatory 
pro‑regenerative) phenotypes (48). An increased number of 
M1 microglia is caused by dysregulated microglia polarization 
dynamics, resulting in post‑stroke injury expansion (49,50). 
The NLRP3 inflammasome promotes the development of 
ischemic stroke, primarily by promoting microglial polar‑
ization. For instance, ischemic stroke increases NLRP3 
inflammasome expression and activation (51). Liu et al (52) 
and Zhao et al (53) found that the NLRP3 inflammasome was 
activated in the microglia and astrocytes affected by cere‑
bral ischemia/reperfusion injury (cIRI). The Kv1.3 channel, 

a transmembrane protein, is involved in the production of 
inflammatory cytokines and ROS (49), and even promotes 
neuronal death (54). cerebral ischemic injury is alleviated by 
inhibiting Kv1.3 channels, which may be related to the remod‑
eling of the microglial phenotypic response from M1 to M2 as 
well as inhibiting NLRP3 inflammasome activation and IL‑1β 
release (49). In addition, the injection of salvianolic acids has 
been found to generate similar effects, altering the microglial 
phenotype from M1 to M2 by suppressing the pyroptosis 
mediated by the NLRP3 inflammasome (55). CHRFAM7A, 
a dominant‑negative inhibitor of α7 nicotinic acetylcholine 
receptor (α7nAchR, coded by cHRNA7), causes brain 
disorders (56). cHRFAM7A overexpression attenuates cIRI 
by inhibiting microglial pyroptosis via the NLRP3/caspase‑1 
pathway and promoting M2 microglial polarization (57). 
In addition to microglia, NLRP3 expression is upregulated 
in endothelial cells and neurons following stroke (58,59). 
Low‑density lipoprotein (LDL) receptors (LDLRs) regulate 
cholesterol uptake and exhibit anti‑inflammatory proper‑
ties (47). Research indicates that LdLRs play a modulatory 
role in LRP3‑mediated neuronal pyroptosis and inflammation 
following ischemic stroke (47). Furthermore, LDLR knockout 
increases caspase‑1/GSdMd expression, resulting in severe 

Figure 2. Pathophysiological role of the NLRP3 inflammasome in inflammatory diseases. Different pathological factors can cause the aberrant activation of the 
NLRP3 inflammasome, leading to the development of various inflammatory diseases, such as atherosclerosis, ischemic stroke, Alzheimer's disease, diabetes 
mellitus and inflammatory bowel disease. The same color represents the same disease. The dotted and solid lines in the same disease represent different mech‑
anisms. NLRP3, Nod‑like receptor protein 3; BRCC3, BRCA1/BRCA2‑containing complex 3; DMF, dimethyl fumarate; ERβ, estrogen receptor β; JOSd2, 
Josephin domain containing 2; LDLR, low density lipoprotein receptor; Nrf2, nuclear factor erythroid2‑related factor 2; TXNIP, thioredoxin‑interacting 
protein; ROS, reactive oxygen species.
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neuronal pyroptosis (47). By contrast, opposite findings have 
also been reported, demonstrating that ischemic brain injury is 
reduced in ASc‑/‑, AIM2‑/‑ and NLRc4‑/‑ mice and not in mice 
deficient for the canonical sensor of sterile injury, NLRP3 (60).

AD. Ad is the most prevalent type of dementia among the 
elderly, characterized by hyper‑phosphorylated tau protein 
and Aβ accumulation (61). Moreover, numerous inflamma‑
tory markers are present in the Ad‑affected brain, including 
inflammatory cytokines and chemokines (62). Senile plaques 
activate microglia, contributing to cerebral neuroinflamma‑
tion, which is termed the third core pathological characteristic 
of Ad (63). TLR4 functions as a ‘priming’ signal for the 
NLRP3 inflammasome activation (64), unlike TLR4, whose 
inhibitor (TAK‑242) provides neuroprotection and promotes 
microglial M2‑like phenotype in Ad (65). Trained microglia 
respond to subsequent unspecific stimuli in an enhanced 
manner and microglial training is a major pro‑Ad factor, 
augmenting the subsequent inflammatory response (66). In a 
previous study, in mice with sporadic AD injected with strep‑
tozotocin, microglial training worsened Aβ accumulation, 
neuronal loss and cognitive impairment, effects which were 
attenuated by the microglial NLRP3 inhibitor (66). Moreover, 
increased ER stress has been observed in Ad (67). TXNIP, 
an endogenous inhibitor of thioredoxin, is a key antioxidant 
reductive protein and anti‑apoptotic protein (66), which may 
also represent a connection between ER stress and neuroin‑
flammation (67). According to a previous study, using double 
immunofluorescence staining, TXNIP and IL‑1β were shown 
to be co‑localized near Aβ plaques and p‑tau (68). TXNIP 
also directly interacts with the NLRP3 inflammasome in 
Ad‑affected brains, modulating inflammatory cascades. 
Therefore, inhibiting the NLRP3 inflammasome activation 
may help to control AD. However, Tang and Harte (69) indi‑
cated that the levels of NLRP3 activation markers were not 
significantly altered in in the temporal cortex of patients with 
Ad, and in age‑ and sex‑matched controls.

DM. DM is a prevalent metabolic disorder characterized 
by hyperglycemia, marked by a chronic state of low‑grade 
inflammation (70); it is a highly prevalent disease with high 
morbidity and mortality rates (71). Several common clinical 
complications of dM have been reported, including cVd, 
stroke, diabetic nephropathy and diabetic retinopathy (72,73), 
which are all closely associated with NLRP3 inflammasome 
activation (74). Additionally, there is evidence to indicate that 
hyperglycemic conditions cause endothelial cell dysfunction 
and NLRP3 inflammasome activation (75). Mcc950, an 
NLRP3 inhibitor (11), tetramethylpyrazine (76), hydrogen 
sulfide (77) and Kakonein (78) have been shown to improve 
endothelial dysfunction by suppressing NLRP3 inflamma‑
some activation or the production of its effectors, caspase‑1 
and IL‑1β. Moreover, Mcc950 targets NLRP3‑mediated 
inflammation, and reduces plaque development, promotes 
plaque stability and improves diabetes‑associated vascular 
disease (79). Similarly, Mcc950 is a promising treatment 
that prevents neurovascular remodeling and cognitive impair‑
ment in diabetic patients following stroke (80). Dimethyl 
fumarate exerts vasculoprotective effects on diabetic aortas 
by suppressing the activation of the ROS/TXNIP/NLRP3 

inflammasome pathway (81). Furthermore, NLRP3 inflam‑
masome activation has been shown to exacerbate cardiac 
dysfunction following ischemic stroke in diabetic mice (82). 
By contrast, sodium‑glucose cotransporter 2 inhibitor exerts 
cardioprotective effects by suppressing the NLRP3 inflamma‑
some (83). differing from NLRP3, IL‑1β has a more complex 
effect on systemic glucose metabolism. It has been shown that 
IL‑1β contributes to the postprandial stimulation of insulin 
secretion (84). Moreover, the deletion of IL‑1R impairs glucose 
tolerance and reduces the insulin‑positive area in pancreatic 
tissue of db/db and C57BL/6 mice (85). 

diabetic nephropathy is a prevalent complication of dM 
and a major cause of end‑stage renal disease. The inflammatory 
response induced by NLRP3 inflammasome activation modu‑
lates the pathological process of diabetic nephropathy (86). 
curcumin, a principal and most active curcuminoid (87), 
attenuates the progression of diabetic nephropathy by limiting 
the activation of the NLRP3 inflammasome (88). Similarly, the 
E3 ubiquitin ligase speckle BTB‑POZ protein, a suppressor of 
the NLRP3 inflammasome, promotes NLRP3 degradation by 
improving the K48‑linked polyubiquitin of NLRP3, thereby 
suppressing renal dysfunction and pathological changes to 
ameliorate diabetic nephropathy (89). Moreover, the NLRP3 
inflammasome may promote pathological neovascularization 
in the advanced stages of diabetic retinopathy (90). Li et al (91) 
discovered that quercetin, a bioactive flavonoid pigment in 
several fruits, had therapeutic potential in diabetic retinop‑
athy‑associated retinal neovascularization by suppressing the 
NLRP3 inflammasome. Furthermore, isoflurane pre‑treatment 
has been shown to inhibit NLRP3 inflammasome activation 
in the retina and provide substantial retinal protection against 
retinal injury induced by stroke associated with DM (92). 
Taken together, these findings demonstrate that NLRP3 
inflammasome participates in the development and progres‑
sion of dM and its related complications. 

IBD. IBD is an idiopathic disease of the gut characterized by 
chronic, recurrent inflammation (93). Its pathogenesis is directly 
associated with changes in the immune environment (94,95). 
It has been demonstrated that the NLRP3 inflammasome in 
childhood IBD may be involved in the regulation of immune 
mechanisms by upregulating caspase‑1 and IL‑1β expres‑
sion (96). There is evidence to suggest that the NLRP3 
inflammasome is persistently activated and plays a key role in 
IBD (97). Consequently, it is a potential therapeutic target for the 
treatment of IBD. Adenosine diphosphate, which is abundant in 
injured colonic tissue, activates the NLRP3 inflammasome by 
regulating P2Y1 receptor‑mediated ca2+ signaling, resulting in 
the maturation and secretion of IL‑1β, further aggravating the 
progression of colitis (98). On the other hand, dextran sulfate 
sodium salt (dSS)‑induced colitis and endotoxic shock have 
been shown to be significantly ameliorated by genetic ablation 
or the pharmacological blockade of the P2Y1 receptor (98). 
Additionally, the BRCA1/BRCA2‑containing complex 3 
and Josephin domain containing 2 mediate NLRP3‑R779c 
deubiquitination (99) and the interaction between NEK7 and 
NLRP3 (100), both of which promote NLRP3 inflammasome 
activation and an increased risk of IBD. Munronoid I is a 
novel diterpenoid isolated and purified from the Meliaceae 
family. In mice with DSS‑induced IBD, NLRP3 has been 
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found to be ubiquitinated and degraded to regulate canonical 
pyroptosis (101). Moreover, estrogen receptor β is a crucial 
anti‑inflammatory agent in rats with IBD, related to P2X7R 
downregulation, the inhibition of NLRP3 inflammasome 
activation, as well as the release of IL‑1β from macrophages 
via the JAK2/STAT3 signaling pathway (102). A disrupted 
intestinal microbiota is also a feature of IBD (103). Notably, 
probiotics alleviate IBD by modulating the intestinal microor‑
ganisms‑bile acid‑NLRP3 inflammasome pathway (104). 

4. Inhibitors of the NLRP3 inflammasome pathway

currently available clinical treatment agents for NLRP3‑related 
diseases include drugs targeting IL‑1β, including anakinra, 
canakinumab and rilonacept (105). However, there are some 
concerns that these treatments may increase the risks of 
infection (106). Therefore, inhibitors targeting the NLRP3 
inflammasome may be more effective than those targeting 
IL‑1β in the treatment of NLRP3‑driven diseases (12). In 
recent years, researchers have suppressed the NLRP3 inflam‑
masome through various targets by exploiting their complex 
signaling pathways, including the priming step of NLRP3 
inflammasome activation, the content of K+, ca2+, cl‑ and 
ROS in the microenvironment, the assembly of NLRP3 the 
inflammasome and GSDMD cleavage. As such, the present 
review summarizes recent inhibitors of the NLRP3 inflam‑
masome pathway and their roles in inflammatory diseases 
(Table I and Fig. 3). 

NLRP3 inflammasome pathway inhibitors targeting the 
priming step of NLRP3 inflammasome activation. LPS, 
oxidized LDL (ox‑LDL) and cholesterol are recognized by 
TLR4 and IL‑1R to mediate NF‑κB entry and upregulated the 
expression of pro‑caspase‑1, NLRP3, pro‑IL‑1β and pro‑IL‑18, 
which is defined as the priming step.

Inhibitors of TLR4. TLRs are a type of transmembrane 
protein, which can be combined with a corresponding ligand 
to trigger intracellular signal transduction cascade responses, 
hence stimulating chemokines and proinflammatory cyto‑
kines (107). As the PRR, TLR4 regulates neuroinflammation. 
In the priming step of NLRP3 inflammasome activation, 
TLR4 signals are activated by LPS via myeloid differentia‑
tion primary response 88 (MyD88), which ultimately activates 
NF‑κB, thereby upregulating pro‑IL‑1β, pro‑IL‑18 and NLRP3 
expression (108,109). Therefore, it is possible to develop 
chronic/sustained inflammation caused by a vicious circle of 
NLRP3 inflammasome activation via TLR4 signaling (110). 
Consequently, the development of small molecule pharmaco‑
logical antagonists for TLR4 is a novel molecular therapeutic 
approach. TAK‑242, or resatorvid, is a TLR4 inhibitor that binds 
to the TIR domain of TLR4 and competes with TLR4 interacting 
molecules, thereby suppressing the TLR4‑mediated release of 
several cytokines (111). TAK‑242 penetrates the blood‑brain 
barrier (BBB) and is an effective inhibitor of congenital 
inflammation (112), as well as neuroinflammation (112‑114). 
TAK‑242 inhibits the TLR4/NLRP3 inflammasome signaling 
pathway induced by Aβ in microglia (115). A similar mecha‑
nism is adopted by TAK‑242 to provide neuroprotection 
and promote M2 microglial polarization by suppressing 
the TLR4/Myd88/NF‑κB/NLRP3 signaling pathway (65). 

Moreover, a HFd exacerbates the extent and severity of acute 
pancreatitis via the inflammatory response. The inhibition of 
TLR4 signaling by TAK‑242 decreases inflammatory reac‑
tion, exerting a protective effect during acute pancreatitis 
in HFd rats (116). Moreover, TAK‑242 improves symptoms 
of myocardial infarction (MI) (117), periodontitis (118), 
renal/retinal lesions (107,119), ischemia‑reperfusion and acute 
lung injury by inhibiting TLR4 and its downstream inflamma‑
tory markers (120). 

Inhibitors of NF‑κB. BAY 11‑7082 is an NF‑κB inhibitor that 
targets the phosphorylation of IκBα (inhibitor of NF‑κB) (121). 
BAY 11‑7082 suppresses the phosphorylation of IκBα and 
NF‑κB translocation to the nucleus induced by TNF‑α, 
thereby suppressing NLRP3 inflammasome activation (122). 
Following oxygen‑glucose deprivation and re‑oxygenation, 
BAY 11‑7082 decreases the levels of the NLRP3 inflamma‑
some and cleaved caspase‑1 protein in BV2 microglial cells, 
presenting a pharmacological effect in stroke (123). Moreover, 
chronic cold stress activates the microglia, causing neuroin‑
flammation that can be significantly inhibited by BAY 11‑7082 
by targeting the GABA‑induced NLRP3 inflammasome (124). 
Sulfasalazine is a drug used in the treatment of rheumatoid 
arthritis and ulcerative colitis. It can also inhibit NF‑κB 
activity (125). Sulfasalazine significantly inhibits NF‑κB 
expression to dose‑dependently ameliorate acetic acid‑induced 
inflammasome activation by reducing NLRP3 and caspase‑1 
expression, thereby reducing ulcerative colitis in rats (126). 
Moreover, the therapeutic administration of sulfasalazine 
effectively downregulates NF‑κB activation, as well as IL‑1β 
and IL‑8 mRNA expression, whereas IκBα levels have been 
shown to be stable in biopsy specimens from patients with 
ulcerative colitis (125). Analogous data were also obtained 
when sulfasalazine was used to attenuate oxazolone‑induced 
ulcerative colitis in mice (127).

NLRP3 inflammasome pathway inhibitors targeting the 
microenvironment of NLRP3 inflammasome assembly. As 
the priming signal, intracellular K+ efflux, increased ROS 
generation and lysosomal damage disrupt the local microenvi‑
ronment, they promote the assembly of NLRP3 and ASc, and 
recruit pro‑caspase‑1 to complete the assembly of the NLRP3 
inflammasome. As such, maintaining a balanced internal envi‑
ronment is critical for the inhibition of NLRP3 inflammasome 
activation. The K+ efflux is an upstream signaling event that 
causes NLRP3 inflammasome activation (128). The inflam‑
masome activators that trigger NLRP3 inflammasome reduce 
the intracellular K+ levels (129). ATP, a P2X7 purinoceptor 
agonist, induces a significant K+ efflux in LPS‑primed cells, 
which is substantially diminished by 11Cha1, a chalcone deriv‑
ative. Additionally, 11cha1 exerts a concentration‑dependent 
inhibitory effect on LPS/ATP‑induced LdH release, further 
suppressing pyroptosis (129). NEK7 also functions downstream 
of K+ efflux during NLRP3 inflammasome activation (23). 
As one of the major components of licorice, licochalcone B 
specifically inhibits the NLRP3 inflammasome and directly 
binds to NEK7 to inhibit its interaction with NLRP3, thereby 
suppressing NLRP3 inflammasome activation (130).

Apart from K+ efflux, ROS are a contributing factor for 
NLRP3 inflammasome activation (131). Nicotine is involved 
in the development of atherosclerosis‑related endothelial 
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cell pyroptosis via ROS/NLRP3 signaling, whereas the ROS 
scavenger, NAc, exerts opposite effects (40). Thioredoxin 
and its endogenous inhibitor, TXNIP, play crucial roles in 
oxidative stress (132). In mice with DSS‑induced colitis, 
flavonoid VI‑16 has been shown to reduce oxidative stress by 
suppressing the TXNIP/NLRP3 inflammasome pathway (133). 
CLIC‑dependent chloride efflux is also a proximal upstream 
regulator of NLRP3 inflammasome activation (22). IAA94 
and anthracene‑9‑carboxylic acid can suppress NLRP3 
agonist‑induced cL‑ efflux (134), whereas the latter is a CLIC 
inhibitor. Furthermore, ca2+ also regulates NLRP3 inflamma‑
some activation. The IP3R‑mediated increase in the release of 
ca2+ stimulates NLRP3 inflammasome activation via ER stress 
and mitochondrial dysfunction, involved in the inflammatory 
pathophysiology of ventilator‑induced lung injury (135). The 
IP3R inhibitor, 2‑aminoethoxydiphenyl borate, and the ca2+ 
chelator, BAPTA‑AM, can maintain Ca2+ homeostasis to 
suppress NLRP3 inflammasome activation (135). Collectively, 
various molecular or cellular events, including K+ efflux, ROS 
production, CLIC‑dependent chloride efflux and Ca2+ release, 

disrupt the local microenvironment and may promote NLRP3 
inflammasome assembly.

NLRP3 inflammasome pathway inhibitors targeting NLRP3 
protein and NLRP3 inflammasome assembly. NLRP3 
inflammasome complex formation is dependent on NLRP3 
oligomerization and the recruitment of ASC to NLRP3 oligo‑
mers (136) (Fig. 3). NLRP3 is oligomerized by the ATPase 
activity of NLRP3 NACHT domain to recruit and oligomerize 
ASC, hence activating caspase‑1 (137,138). Consequently, 
NLRP3 inflammasome‑specific inhibitors targeting NLRP3 
are considered attractive targets (Table I).

MCC950. Mcc950 (cP‑456,773, cRId3), an inhibitor of 
the NLRP3 inflammasome, has demonstrated excellent in vivo 
efficacy in several species and disease models. There is ample 
evidence to suggest that Mcc950 inhibits ATP hydrolysis, 
ASC oligomerization and chloride efflux by directly inter‑
acting with the Walker B motif of the NLRP3 NACHT domain, 
thereby suppressing NLRP3 inflammasome activation (139). 
However, its inhibitory effects are independent of NLRP3 

Figure 3. NLRP3 inflammasome pathway inhibitors. In the activation step of the NLRP3 inflammasome, NLRP3 oligomerizes via the NACHT domains 
following stimulation by DAMP and PAMP. It also recruits ASC and caspase‑1 to form the NLRP3 inflammasome, which mediates GSDMD to cause 
cell membrane rupture and release IL‑1β and IL‑18, causing inflammation and pyroptosis. NLRP3 Inflammasome inhibitors target the priming and activa‑
tion step in the NLRP3 inflammasome signaling pathway. Arrows indicate activation, whereas blunted lines indicate inhibition by selective compounds. 
NLRP3, Nod‑like receptor protein 3; dAMP, danger‑associated molecular pattern; PAMP, pathogen‑associated molecular pattern; ASc, apoptosis‑associated 
speck‑like protein; GSdMd, gasdermin d; NEK7, NIMA‑related kinase 7.
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inflammasome priming, calcium signaling, potassium efflux, 
mitochondrial respiration, ROS production, NLRP3‑NLRP3, 
NLRP3‑ASc and NEK7‑NLRP3 interaction (140‑142). It has 
been demonstrated that Mcc950 is responsible for the treat‑
ment of inflammatory‑based diseases and their complications. 
For instance, Mcc950 attenuates macrophage inflamma‑
tion and pyroptosis to prevent atherosclerosis (8). Similarly, 
MCC950 significantly reduces plaque sizes in hyperlipidemic 
murine models, suggesting that NLRP3 inhibitors may be 
candidates for the treatment of atherosclerosis (143). The oral 
administration of MCC950 is a recently identified approach for 
reducing the severity of spontaneous chronic colitis in Winnie 
mice (144) and for suppressing human retinal endothelial cell 
dysfunction for the treatment of diabetic retinopathy induced 
by high glucose conditions (145). Furthermore, NLRP3 
inflammasome activation in neurons mediates neuroinflam‑
mation in acute ischemic stroke, whereas MCC950 reduces 
CIRI by mitigating inflammation and preserving BBB integ‑
rity (146). Similarly, MCC950 treatment significantly improves 
insulin sensitivity to alleviate diabetic encephalopathy in 
db/db mice (147). Additionally, Mcc950 ameliorates diabetic 
kidney injury in db/db mice by decreasing the fibrosis markers 
in high glucose‑induced mesangial cells to prevent diabetic 
nephropathy progression (148). Due to its effects on inflam‑
mation, Mcc950 may be effective in treating such disorders.

Oridonin. Oridonin, an ent‑kaurane diterpenoid, is a 
primary active component of Rabdosia rubescens (149) that 
exerts anti‑inflammatory effects against NLRP3. Oridonin 
blocks NLRP3 inflammasome assembly by covalently bonding 
to cysteine (cys)279 of NLRP3 in the NAcHT domain (150). 
However, oridonin does not affect NLRP3 and NLRC4 ATPase 
activity, AIM2 activation, or upstream signaling events that 
trigger the activation of the NLRP3 inflammasome, including 
K+ efflux and mitochondrial damage. Notably, oridonin exerts 
preventive or therapeutic effects against MI, cIRI, traumatic 
brain injury (TBI) and insulin resistance by inhibiting NLRP3 
inflammasome activation (150). In a mouse model of MI, 
oridonin was shown to inhibit myocardial fibrosis, reduce the 
myocardial infarct size, and improve cardiac function (151). 
Oridonin also suppresses BV2 microglial cells stimulated by 
oxygen‑glucose deprivation/reoxygenation, particularly upon 
the activation of the NLRP3 inflammasome (152). In mice 
with TBI, oridonin has been found to prevent the inflammatory 
response and neuronal apoptosis, maintain the BBB integrity 
and attenuates neurological deficits (153). In addition, oridonin 
causes insulin resistance partially by inhibiting macrophage 
infiltration into the islets and NLRP3 activation induced by 
chronic unpredictable mild stress (154).

OLT1177. OLT1177 is an orally active β‑sulfonyl cyanide 
molecule (155), whose pharmacokinetic and safety analyses 
have been conducted with healthy volunteers following an oral 
administration in a phase 1 trial (156). By directly binding to 
NLRP3, OLT1177 reduces ATPase activity and suppresses 
ASC oligomerization (28), but not NLRC4 or AIM2 inflam‑
masome activation (157). Moreover, OLT1177 prevents the 
NLRP3‑ASc interaction to inhibit NLRP3 inflammasome 
assembly. However, OLT1177 does not affect, the K+ efflux 
or synthesis of the pro‑IL‑1β (157). As previously reported by 
Lonnemann et al (158) in a mouse model of Ad, OLT1177 
reduces the activation of microglia, reduces cerebral cortex 

plaques, and normalizes the levels of plasma metabolic 
markers in a dose‑dependent manner. Moreover, the prophy‑
lactic oral administration of OLT1177 has been shown to 
significantly reduce the infiltration of CD4+ T‑cells and macro‑
phages in the spinal cord, hence ameliorating the clinical 
signs of experimental autoimmune encephalomyelitis (159). 
Oizumi et al (160) demonstrated that OLT1177 administration 
early in the disease phase, prevented inflammation in mice 
with DSS‑induced colitis. In addition to reducing the myocar‑
dial infarct size in mice, OLT1177 has been shown to prevent 
left ventricular dysfunction following ischemia‑reperfusion 
injury (within 60 min) (161). Due to its low toxicity and limited 
side‑effects, OLT1177 is an orally bioavailable drug with a 
significant benefit for inflammatory diseases.

INF39. INF39 is a non‑toxic, irreversible, specific inhibitor of 
the NLRP3 inflammasome, which specifically inhibits NLRP3 
activation, but not the NLRC4 or AIM2 inflammasomes (162). 
However, INF39 affects neither the upstream events of NLRP3 
inflammasome activation, including K+ efflux, ROS generation 
or mitochondrial membrane potential, nor the downstream 
signal, GSdMd (162). The inhibition of NEK7‑NLRP3 
interaction is a major mechanism of the anti‑inflammatory 
effects of INF39, followed by the inhibition of NLRP3 oligo‑
merization, NLRP3‑ASC, ASC oligomerization and speckle 
formation (162). According to bioluminescence resonance 
energy transfer analyses, INF39 suppresses the release of 
IL‑1β from macrophages by directly interfering with NLRP3 
activation (163). In rats with type 2 DM (T2DM), INF39 has 
been shown to effectively suppress the expression of ICAM‑1, 
NLRP3, as well as other inflammatory factors, and to reduce 
intimal‑media thickness, as well as platelet activation (76). 
INF39 also promotes the effect of Arctigenin on dSS‑induced 
acute colitis by suppressing the NLRP3 inflammasome (164). 
Pellegrini et al (165) also demonstrated that directly inhibiting 
NLRP3, reduced systemic and bowel inflammation more effec‑
tively than inhibiting caspase‑1 or IL‑1 receptors. 

Tranilast. Tranilast is a tryptophan metabolite that 
suppresses NLRP3 inflammasome activation; it is also used 
in the treatment of allergies and asthma, without affecting 
AIM2 or NLRC4 inflammasome activation (166). Tranilast 
suppresses NLRP3 oligomerization by binding to the NACHT 
domain and subsequent NLRP3 inflammasome assembly, 
caspase‑1 activation and IL‑1β production with no effects 
on its ATPase activity, K+ efflux, mitochondrial damage, or 
cL‑ efflux (166,167). In recent research, tranilast was shown 
to inhibit NLRP3 oligomerization in an ATPase‑independent 
manner and exert profound treatment and preventive effects 
in mouse models of gout, cryopyrin‑associated periodic 
syndrome (cAPS), and T2dM (28). According to cao and 
Peng (168), tranilast ameliorated the symptoms of gestational 
dM, including hyperglycemia, insulin deficiency, glucose 
intolerance and insulin resistance by suppressing NLRP3 
inflammasome activation, as well as inflammatory responses. 
Furthermore, tranilast has been shown to inhibit NLRP3 
inflammasome activation by improving NLRP3 ubiquitination 
to reduce vascular inflammation, and ameliorate atheroscle‑
rosis in both LDLR‑ and apolipoprotein E‑deficient mice (169).

CY‑09. There is evidence to indicate that cY‑09 suppresses 
the NLRP3 inflammasome (12). It inhibits NLRP3 ATPase 
activity by directly binding to the ATP binding motif of the 
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NACHT domain, which is specific as it does not affect NLRC4, 
NLRP1, NOd2 or RIG‑I ATPase activity. Notably, cY‑09 
does not affect mitochondrial damage, potassium, or chloride 
ion efflux during NLRP3 inflammasome activation (12). More 
importantly, Jiang et al (12) revealed that cY‑09 directly 
targeted NLRP3 to inhibit NLRP3 inflammasome activation 
in vivo and was particularly effective in treating T2DM and 
cAPS caused by NLRP3. A recent study noted that cY‑09 
therapy attenuated IL‑1β secretion and astrocyte activation, 
which was effective in reducing neuronal loss (170).

JC124. JC124 is an active and selective NLRP3 inflam‑
masome inhibitor that targets ASC oligomerization in 
macrophages, and constitutively expresses active NLRP3 
inflammasome (171). A previous photoaffinity labeling probe 
experiment indicated that Jc124 directly targets NLRP3 
inf lammasome complex without changing its ATPase 
activity (172). Furthermore, JC124 targets the NLRP3 inflam‑
masome and exerts beneficial effects in APP/PS1 mice, 
significantly decreasing Aβ accumulation and improving 
cognitive function (173,174). Moreover, JC124 significantly 
decreases the number of degenerating neurons, the inflamma‑
tory response, and cortical lesion volume post‑injury (172). In 
TBI, JC124 substantially downregulates NLRP3, ASC, IL‑1β, 
TNF‑α, inducible nitric oxide synthase and caspase‑1 expres‑
sion (172). SAR adds more information to the Jc124 structure, 
leading to the discovery of two novel lead compounds, i.e.,14 
and 17, with improved inhibitory potency (175).

3,4‑Methylenedioxy‑β‑nitrostyrene (MNS), partheno‑
lide and BOT‑4‑one. MNS, parthenolide and BOT‑4‑one 
impair NLRP3 ATPase activity, thereby suppressing NLRP3 
inflammasome activation. MNS does not inhibit K+ efflux 
or influence NLRc4 or AIM2 inflammasome activation, 
suggesting that it specifically inhibits NLRP3 inflamma‑
some (176). Apart from targeting NLRP3, parthenolide is a 
direct inhibitor of caspase‑1 protease activity (177). Moreover, 
BOT‑4‑one increases NLRP3 ubiquitination and suppresses 
NLRP3 inflammasome activation (178). Summarily, for 
NLRP3 inflammasome inhibitors targeting NLRP3 protein 
and NLRP3 inflammasome assembly, tranilast, CY‑09 and 
BOT‑4‑one can only suppress NLRP3 oligomerization by 
binding to the NAcHT domain or affect its ATPase activity; 
hence, they are NLRP3 inflammasome‑specific inhibitors. 
Additionally, INF39, OLT1177, oridonin and X‑11‑5‑27 inhibit 
NLRP3 inflammasome assembly. Among all the inhibitors, 
only parathenolide can inhibit NLRP3, NLRc4 and AIM2, 
whereas others exhibit NLRP3 specificity.

NLRP3 inf lammasome pathway inhibitors targeting 
caspase‑1. As the protease that matures IL‑1β, IL‑18 and 
GSdMd, caspase‑1 is a key initial event at the onset of NLRP3 
inflammasome activation and canonical caspase‑1‑dependent 
pyroptosis (179). Therefore, the pharmaceutical industry has 
focused on developing clinical‑grade molecules that suppress 
caspase protease activity. 

Belnacasan. Belnacasan (VX‑765), an efficient and 
selective caspase‑1 inhibitor, can hinder the development 
and progression of atherosclerosis at least by targeting 
ox‑LdL‑induced VSMc pyroptosis (180). caspase‑1 inhibi‑
tion with VX‑765 has been shown to significantly reduce 
neuropathological damage and pyroptosis following prolonged 

ketamine exposure (181). It has also been shown that VX‑765 
significantly attenuates cerebral ischemic injury and cerebral 
edema, as well as reduces ischemia‑associated BBB perme‑
ability in rats sujected to middle cerebral artery occlusion by 
suppressing pyroptosis and the RAGE/MAPK pathway (182). 
Similarly, it has been shown that VX‑765 not only attenuates 
brain injury, but also suppresses microglial pyroptosis and 
neuroinflammation by downregulating GSDMD, TNF‑α 
and MPO in an in vivo model of intracerebral hemorrhage 
(IcH) (183). In addition, overactivated N9 microglia treated 
with VX‑765 are responsible for the reduction in the NLRP3 
inflammasome and pyroptosis‑associated proteins expression 
in vitro (184). Other research has shown that VX‑765 inhibits 
silica nanoparticle‑induced cardiomyocytic pyroptosis and 
cardiac hypertrophy (185).

Ac‑YVAD‑cmk. Ac‑YVAD‑cmk is a peptide whose 
sequence is homologous to a known caspase substrate sequence, 
confirming its capacity in suppressing caspase‑1 activa‑
tion (186). As a selective caspase‑1 inhibitor, Ac‑YVAd‑cmk 
effectively inhibits pyroptosis, and IL‑1β and IL‑18 expression 
in numerous diseases (187). As previously demonstrated, in 
rat H9C2 cardiomyocytes, LPS pre‑treatment can efficiently 
mediate pyroptosis by activating the NLRP3 inflammasome, 
exacerbating high glucose and hypoxia/reoxygenation injury. 
Ac‑YVAd‑cmk responds by counteracting these effects (188). 
Ac‑YVAd‑cmk reduces the expression of mature IL‑1β/IL‑18, 
improves behavioral performance, and alleviates microglia 
in the perihematoma region in rats with ICH (189). The 
SARS‑coV‑2 N protein promotes NLRP3 inflammasome 
activation and generates excessive inflammatory responses, 
which are blocked by Ac‑YVAD‑cmk (190). 

AI‑44 and FC11A‑2. AI‑44, a curcumin analogue, binds 
to peroxiredoxin 1 (PRdX1) and promotes the interaction 
of PRDX1 with pro‑caspase‑1, thereby demonstrating an 
association between pro‑caspase‑1 and ASC (191). However, 
the inhibitory effect of AI‑44 on NLRP3 inflammasome is 
markedly diminished after PRdX1 is knocked out (192). 
FC11A‑2, another caspase‑1 inhibitor, has been shown to 
significantly attenuate experimental colitis in mice induced 
by dSS, primarily by targeting caspase‑1 activation prior to 
IL‑1β/IL‑18 production in macrophages (193). VX‑765 and 
Ac‑YVAD‑cmk are the most broadly used inhibitors. Both 
can reduce the related inflammatory diseases by suppressing 
caspase‑1 expression to varying degrees, such as atheroscle‑
rosis, cVd (cerebral ischemia injury, cerebral edema and 
cerebral hemorrhage), myocardial pyroptosis and myocardial 
hypertrophy.

NLRP3 inf lammasome pathway inhibitors targeting 
GSDMD. As a candidate for pyroptotic pore formation, 
GSDMD is a downstream effector of caspase‑1 that not only 
regulates pyroptosis, but also releases IL‑1β and IL‑18 to 
the extracellular space (194). As described above, caspase‑1 
cleaves GSDMD following NLRP3 inflammasome activa‑
tion, allowing GSDMD‑N‑mediated pore formation in the 
plasma membrane to promote pyroptosis (195). In total, 12 
Cys residues are present in the sequence of GSDMD, and the 
reactivity of cys191/192 (human/mouse) is crucial for pore 
formation, since it is well exposed and is highly reactive in 
the protein structure. Suppressing GSdMd can alleviate 
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inflammasome‑induced pyroptosis (196), thus suggesting 
that GSdMd may be an attractive novel target for regulating 
inflammation.

Necrosulfonamide (NSA). NSA was initially identified as an 
inhibitor in mixed lineage kinase domain‑like protein‑medi‑
ated necroptotic cell death (197). However, Rathkey et al (198) 
found that the NSA also bound to GSdMd via cys191, 
thereby inhibiting the oligomerization of p30‑GSDMD and 
preventing pyroptosis through both primary and immortal‑
ized macrophages. Additionally, pre‑treatment with NSA was 
shown to suppress Aβ‑142‑induced mouse cortical neuron 
(McN) pyroptosis, primarily by targeting the permeability of 
cell membrane and inflammatory factor release (199). Notably, 
the inhibition of p30‑GSDMD oligomerization blocks the 
opening of membrane pores, confirming its importance in 
McN pyroptosis and its potential as an NSA target (199). In 
A549 and H1299 cells, Teng et al (200) similarly found that 
NSA inhibited the polyphyllin VI‑induced activation of the 
NLRP3 inflammasome (200).

Disulfiram. Disulfiram inhibits membrane pore formation 
in GSdMd, but not in other GSdMs families, hence cova‑
lently modifying GSdMd in cys191/cys192 of human/mice 
to inhibit pore formation. disulfiram and its metabolism 
exhibit anti‑inflammatory activities, which can alleviate 
inflammation in vitro and in vivo (201). Disulfiram relieves 
severe acute pancreatitis induced by caerulein and related 
lung injury, and inhibits IL‑1β and IL‑18 production by 
targeting GSdMd cleavage (202). In both human and mouse 
monocyte/macrophage cells, disulfiram has been shown to 
inhibit the release of IL‑1β and pyroptosis (203). Similarly, 
disulfiram has been shown to block pyroptosis and cytokine 
release in phorbol 12‑myristate 13‑acetate‑differentiated, as 
well as LPS‑primed human THP‑1 cells and LPS‑induced 
sepsis‑associated mortality in mice (204). It has also been 
demonstrated that disulfiram significantly promotes macro‑
phage M2 phenotype polarization based on a small‑molecule 
compound library (205). Mechanistically, disulfiram targets 
GSdMd to attenuate macrophagic pyroptosis, IL‑1β and 
high mobility group box 1 protein release (205). In mouse 
experiments, Hu et al revealed that disulfiram inhibited the 
function of GSdMd by covalently modifying its cys192, 
hence blocking the IL‑1β release without affecting caspase‑1 
and pro‑IL‑1β expression (204). Thus, disulfiram does not 
affect IL‑1β production and maturation, but rather blocks 
pores formation in the cell membrane to prevent IL‑1β release 
and pyroptosis (204,206).

Dimethyl fumarate (DMF). As an ester of fumaric acid, 
dMF exerts anti‑inflammatory effects (207). dMF deliv‑
ered to cells or endogenous fumarate reacts with GSDMD 
at cys191/cys192 to form S‑(2‑succinyl)‑cysteine, further 
preventing its interaction with Caspase‑1, hence limiting its 
capacity to process, oligomerize and pyroptosis (208). GSDMD 
is distributed into NK92 cell membranes following LPS stim‑
ulation, a process suppressed by dMF in NK92 cells (209). 
Furthermore, dMF inhibits GSdMd production by targeting 
dNA methyltransferases, preventing them from hypermethyl‑
ating the promoter region of the gene (209). Moreover, dMF 
effectively reduces GSdMd‑N and inflammatory factors, 
including IL‑1β and IL‑18 in the hippocampus following 
status epilepticus (210). NSA, disulfiram and DMF can inhibit 

pore formation by reacting with GSDMD at Cys191/Cys192, 
thereby suppressing the inflammatory reaction.

5. Clinical perspectives

As described above, the treatment efficacy of NLRP3 inhibi‑
tors in inflammatory diseases has been largely documented 
in animal and cellular experiments. However, their practical 
application in treating these diseases is limited because of 
insufficient clinical research. Tranilast, OLT1177, NAC, DMF 
and disulfiram have been tested thus far in clinical trials 
(Table II). For instance, tranilast at a dose of 300 mg/day for 
1 year, is safe for patients with both early‑stage and advanced 
diabetic nephropathy. Increased mesangial cell proliferation, 
and the accumulation of extracellular matrix components, such 
as collagen in the glomeruli, is one of the pathologic features 
during in the early stages of diabetic nephropathy (211). 
Tranilast treatment may suppress collagen accumulation in 
renal tissue and may be therapeutically beneficial in reducing 
the progression of advanced diabetic nephropathy. Moreover, 
tranilast may be therapeutically beneficial for early‑stage 
diabetic nephropathy (212,213). In another study, tranilast 
was administered to patients with coronary artery disease 
following a successful directional coronary atherectomy 
(DCA) at a dose of 600 mg daily for 3 months. Consequently, 
the oral administration of tranilast significantly prevented 
restenosis following DCA (214). In a phase I study, OLT1177 
was analyzed for safety in patients with heart failure and 
reduced ejection fraction; as a result, it was found to be 
safe and well‑tolerated after 14 days of treatment (215). 
Furthermore, the trial demonstrated that NAC was safe when 
preoperatively administered; however, its efficacy as an 
antioxidant and anti‑inflammatory agent was not statistically 
significant and thus, additional investigations using a larger 
sample are warranted (trial no. NCT03589495). In patients 
ICH with oxidative stress, was shown to NAC substantially 
reduce perihematomal edema volume and shorten intensive 
care unit stay (216). Furthermore, NAC has been shown to 
significantly improve remission maintenance in ulcerative 
colitis patients receiving 800 mg NAC for 16 weeks unlike 
the placebo (217). Alcohol‑dependent patients are subjected 
to disulfiram‑treatment to discourage alcohol‑consumption. 
Besides, disulfiram can increase A disintegrin and metallo‑
protease 10 expression (218), which inhibits the production of 
Aβ, the hallmarks of Ad pathology (219). Therefore, NLRP3 
inflammasome pathway inhibitors have been demonstrated 
in vitro or in vivo and in clinical trials. Among these candidate 
molecules are tranilast and OLT1177, which are safe and effec‑
tive in both clinical and basic studies. Furthermore, tranilast is 
the most extensively studied, with apparent treatment effects 
on early or late diabetes nephropathy. Additionally, tranilast 
can also prevent stenosis following DCA in patients with coro‑
nary artery disease.

6. Conclusion and future perspectives

The NLRP3 inflammasome is present at low levels under 
normal circumstances, which is important for innate immu‑
nity regulation. However, NLRP3 inflammasome activation 
ultimately results in inflammation and pyroptosis. Therefore, 
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the NLRP3 inflammasome may provide novel targets for the 
treatment of various inflammatory diseases. Notably, both 
priming and activation steps are crucial for NLRP3 inflam‑
masome activation. Therefore, beginning from the priming 
step, the present review summarized the related TLR4 and 
NF‑κB inhibitors, among which TAK‑242, BAY11‑7082 and 
sulfasalazine inhibit inflammatory diseases caused by the 
NLRP3 inflammasome, without any notable adverse toxic 
side‑effects. Subsequently, the present review also summa‑
rized the associated ion inhibitors to preserve the associated 
ion homeostasis during NLRP3 inflammasome activation. Of 
note, NLRP3, ASc and caspase‑1 inhibitors for the NLRP3 
inflammasome itself were also described. NLRP3‑induced 
pyroptosis is an important mechanism causing inflamma‑
tory disease. Therefore, the present review described the 
related inhibitors of pyroptosis executor, GSDMD, which 
may serve as an effective target for inflammatory diseases. 
In conclusion, the present review comprehensively described 
the inhibitors that can trigger NLRP3 inflammasome activa‑
tion from the priming step to the activation step, illustrating 
their promising roles in the treatment of NLRP3 inflam‑
masome‑induced inflammatory diseases. However, future 
research is necessary to elucidate certain issues. First, TLR4 
and NF‑κB, as common membrane receptors and transcrip‑
tion factors activate the NLRP3 inflammasome. Secondly, K+ 
and cL‑ efflux are two independent, yet indispensable events 
that activate the NLRP3 inflammasome. The small‑molecule 
inhibitors of the NLRP3 inflammasome documented thus far 
have not been confirmed in clinical trials or approved by the 
FdA or other institutions. Therefore, their pharmacokinetic 
characteristics and comprehensive mechanisms warrant 
further investigation, given their promising prospects as 
NLRP3 inflammasome inhibitors.
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