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Abstract. The aim of the present review was to summarize 
the potential interactive effects between the gut microbiota 
and advanced glycation end‑product (AGE) accumulation 
and toxicity in the host, and to reveal potential the mediatory 
effects of the gut microbiota on AGE‑related health effects. 
The existing data demonstrate that dietary AGEs can have 
a significant impact on the richness and diversity of the gut 
microbiota, although the particular effect is dependent on 
the type of species, as well as the exposure dose. In addi‑
tion, the gut microbiota may metabolize dietary AGEs. It 
has been also demonstrated that the characteristics of the gut 
microbiota, including its richness and relative abundance of 
certain taxa, is tightly associated with AGE accumulation 
in the host organism. In turn, a bilateral interplay between 
AGE toxicity and the modulation of the gut microbiota may 
contribute to pathogenesis of ageing and diabetes‑associated 
diseases. Bacterial endotoxin lipopolysaccharide appears as 
the molecule that mediates the interactions between the gut 
microbiota and AGE toxicity, specifically via the modulation 
of the receptor for AGE signaling. Therefore, it is proposed 
that the modulation of the gut microbiota using probiotics or 

other dietary interventions may have a significant impact on 
AGE‑induced glycative stress and systemic inflammation.

Contents

1. Introduction
2. Bacterial AGE metabolism
3.  The impact of dietary AGE exposure on gut microbiota 

characteristics and host metabolism
4.  Involvement of AGE‑gut microbiota interplay in disease 

pathogenesis
5.  Effects of gut microbiota modulation on AGE metabolism 

and toxicity
6.  Role of lipopolysaccharide in the interplay between 

microbiota and AGE toxicity
7. Conclusions and future perspectives

1. Introduction

Advanced glycation end‑products (AGEs) are highly 
heterogeneous group of chemical species formed through 
non‑enzymatic reactions of glucose or other carbohydrates 
with proteins and other biomolecules (1). AGEs are formed 
due to condensation between the carbonyl group of a reducing 
sugar and free amine group of proteins, lipids or nucleic acids 
with the irreversible formation of end‑products (2). Depending 
on the molecules involved in glycation, AGEs have been clas‑
sified into three groups as follows: i) Glycated proteins [e.g., 
glycated hemoglobin (HbA1c), ApoB100, crystallin, etc.]; 
ii) low molecular weight AGEs [pyrraline, carboxyethyl lysine 
(CEL), carboxymethyl lysine (CML), pentosidine, imidazole]; 
iii) AGEs formed by modification with a particular glycating 
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agent [glucose (AGE‑1), glyceraldehyde (AGE‑2), glycolal‑
dehyde (AGE‑3), methylglyoxal (AGE‑4), glyoxal (AGE‑5), 
3‑deoxyglucosone (AGE‑6) and acetaldehyde (AA‑AGE)] (3). 
AGEs have also been classified as fluorescent (pentosidine, 
methylglyoxal‑lysine dimer) and non‑fluorescent (CML, CEL 
and pyrraline) (1).

AGEs are formed both endogenously and exogenously 
through a number of mechanisms (Fig. 1). One of the mecha‑
nisms of AGE formation termed the Maillard reaction involves 
a series of non‑enzymatic reactions with the formation of a 
Schiff base and its subsequent rearrangement into a more 
stable Amadori product. AGEs are also formed through the 
interaction of reactive carbonyl species, including glyoxal or 
methylglyoxal with protein amino acid residues (4). At the 
same time, multiple other mechanisms may also contribute to 
the formation of AGEs (5,6).

Endogenously formed AGEs are generated at high amounts 
in diabetes mellitus due to insulin resistance and persistent 
hyperglycemia (7). AGEs impart toxic effects to cells through 
the induction of oxidative stress, endoplasmic reticulum 
stress, mitochondrial dysfunction, apoptosis and inflammation 
dysregulation (8,9). Excessive AGE formation along with its 
toxicity in diabetes mellitus is considered a potential mecha‑
nism linking diabetes with other metabolic disorders (10). In 
addition to diabetes and metabolic syndrome (11), AGEs have 
been shown to be involved in the pathogenesis of a variety of 
other diseases, including neurodegeneration (12), cancer (13), 
osteoporosis (14), infertility (15), chronic kidney disease (16) 
and aging (17,18). Correspondingly, the results of a recent 
meta‑analysis demonstrated a significant association between 
circulating AGEs and their soluble receptor levels and both 
all‑cause and cardiovascular mortality (19).

Dietary AGE intake also significantly contributes to AGE 
accumulation and toxicity (20). Western diets which are based 
on highly processed and heat‑treated foods are known to 
contain high levels of AGEs (21). Given these associations, 
AGEs are considered a potential link between the modern diet 
and adverse health outcomes (22).

It has been proposed that the modulation of the gut micro‑
biota significantly contributes to the effect of AGEs on human 
health (23), and mediates the differences observed between the 
effects of low and high molecular mass glycation products in 
the organism (24). However, the existing data are inconsistent 
and the potential contribution of the gut microbiota in the 
modulation of AGE‑induced toxicity and glycation stress, as 
well as the health effects of AGE accumulation are unclear. 
Therefore, the aim of the present review was to summarize 
and discuss the potential interactive effects between the gut 
microbiota and AGE accumulation and toxicity in the host, 
as well as to reveal the potential mediatory effects of the gut 
microbiota on AGE‑related health effects.

2. Bacterial AGE metabolism

The existing data demonstrate that the gut microbiota may be 
considered as a source of AGEs. Specifically, it has been demon‑
strated that Escherichia coli (E. coli) cultures release AGEs 
during growth (25). Such an effect may be mediated by the 
bacterial secretion of methylglyoxal (MGO), which is consid‑
ered as a reactive carbonyl species and an AGE precursor (4). 

High MGO‑producing activity has been demonstrated for 
Proteus spp. (26), E. coli (27), Pediococcus acidilactici and 
other bacteria (28).

MGO is formed in bacterial cells as a product of multiple 
metabolic processes (29), although its overaccumulation with 
a subsequent increase in AGE formation has been shown to 
exert toxic effects (30) and limit bacterial growth (31).

The main source of MGO is glucose catabolism, including 
both enzymatic and non‑enzymatic reactions. The key 
mechanism of MGO synthesis is the transformation of dihy‑
droxyacetone phosphate catalyzed by methylglyoxal synthase 
(MgsA). In turn, non‑enzymatic MGO formation may result 
from the fragmentation of triosephosphates via phosphoene‑
diolate intermediate (29).

The toxicity of MGO for bacterial cells is associated 
with its high reactivity and modification of nucleic acids and 
proteins, resulting in AGE formation (30). Specifically, it 
has been demonstrated that MGO exposure is toxic to both 
Gram‑positive (Bacillus subtilis and Staphylococcus aureus) 
and Gram‑negative (Pseudomonas aeruginosa and E. coli) 
bacteria, inhibiting their growth and inducing structural 
alterations in bacterial fimbriae and flagella (31).

To overcome the toxic effects of increasing MGO 
concentrations and subsequent cell death (32), MGO decom‑
position is strictly regulated by a number of mechanisms 
involving glyoxalases and NAD‑dependent enzymes (Fig. 2). 
Glyoxalases I and II catalyze the glutathione (GSH)‑dependent 
conversion of MGO to D‑lactate through the formation of 
S‑D‑lactoylglutathione, whereas glyoxalase III catalyzes this 
conversion without consuming GSH. The NAD‑dependent 
enzymes, glycerol dehydrogenase (GldA) and aldehyde dehy‑
drogenase (AldA), catalyze the transformation of MGO to 
D‑lactate through D‑lactaldehyde (30). The resulting D‑lactate 
may be subsequently transformed to pyruvate or excreted (33).

In addition to MGO, which is considered a precursor of 
AGEs, existing data demonstrate that gut bacteria can metabo‑
lize other AGEs. Specifically, it has been demonstrated that 
the human gut microbiota is able to degrade Maillard reaction 
products with a substantial reduction at 24 h observed for fruc‑
tosyllysine (100%) > carboxymethyllysine (41%) > pyrraline 
(20%), but not maltosine (34). A recent study by Bui et al (35) 
demonstrated that the gut microbiota is capable of anaerobic 
carboxymethyllysine degradation to carboxymethylated 
biogenic amines and 11 carboxylic acids with Oscillibacter 
and Cloacibacillus evryensis being the potential responsible 
taxa. It has been demonstrated that adult fecal microbiota and 
particularly Intestinimonas spp. can convert Nε‑fructosyllysine 
to butyrate, whereas such a property in bacteria isolated from 
3‑4‑month‑old infants was dependent on the type of feeding. 
Specifically, the microbiota of breast‑fed infants was unable 
to degrade Nε‑fructosyllysine, whereas that of formula‑fed 
infants possessed a Nε‑fructosyllysine‑converting ability 
due to the presence of this AGE in infant formulas following 
thermal exposure, thus being indicative of the adaptation of 
microbiota metabolism to dietary compounds (36). In addi‑
tion, E. coli has been shown to metabolize CML with the 
formation of three metabolites, N‑carboxymethylcadaverine, 
N‑carboxymethylaminopentanoic acid and the N‑carboxymet
hyl‑Δ1‑piperideinium ion, although the particular end‑product 
may be strain‑specific (37).
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It has also been demonstrated that bacterial metabolites can 
modulate AGE toxicity. The existing data demonstrate that gut 
microbiota‑derived metabolite trimethylamine N‑oxide (TMAO) 
can increase the production of AGEs in the aorta, thus promoting 
arterial stiffening (38), and underlying the role of TMAO and 
AGEs in the progression of cardiovascular and chronic kidney 
diseases (39).

3. The impact of dietary AGE exposure on gut microbiota 
characteristics and host metabolism

Diet has a significant impact on the biodiversity and metabo‑
lism of the gut microbiota (40). Correspondingly, the results of 
a recent systematic review demonstrated that the characteristics 
of dietary protein, including protein glycation can modulate gut 
biodiversity, although significant inconsistencies still exist (41).

Adverse effects of dietary AGEs on the gut microbiota. Consistent 
with the overall understanding of AGEs as perilous molecules, 

several studies have demonstrated that the dietary intake of AGEs 
induces the dysfunction of the gut microbiota along with unfavor‑
able effects in the host organism. Specifically, in a human study, 
it was demonstrated that the increased exposure to glycated BSA 
significantly affected the colonic microbiota sampled from the 
feces of both healthy subjects and patients with ulcerative colitis, 
with a profound decrease in beneficial bacteria (eubacteria and 
bifidobacteria) and an increased abundance of more hazardous 
phyla (clostridia, bacteroides, sulfate‑reducing bacteria) (42). 
The detailed study by Seiquer et al (43) revealed the significant 
association between AGEs intake and gut microbiota composi‑
tion both in humans and rats. Specifically, the relative abundance 
of lactobacteria was inversely associated with dietary hydroxy‑
methylfurfural and carboxymethyl‑lysine, whereas the relative 
numbers of bifidobacterial were inversely associated with the 
intake of Amadori compounds in adolescents. Similarly, in rats, 
the dietary intake of the Amadori compounds, hydroxymethyl‑
furfural and carboxymethyl‑lysine, was negatively associated 
with both total bacteria and lactobacteria (43).

Figure 1. Common pathways of AGE formation in vivo. The first step of the Maillard reaction includes a reaction between the carbonyl group of a reducing 
sugar with a free protein amino group with the formation of a Schiff base that is transformed to a more stable Amadori product through a series of rearrange‑
ments. Following a series of rearrangements, oxidation and dehydration reactions, Amadori products are transformed into AGEs, such as CML and pentosidine. 
Another mechanism of AGE formation involves the generation of reactive carbonyls, glyoxal, methylglyoxal and 3‑deoxyglucosone that are considered AGE 
precursors. Specifically, the interaction of glyoxal, methylglyoxal and 3‑deoxyglucosone with protein molecules yields CML, GOLD and G‑H1, MOLD and 
MG‑H1, as well as DOLD and 3DG‑H1, respectively. In addition, other sources of reactive carbonyls may include polyol pathway, lipid peroxidation and ketone 
body metabolism. AGE, advanced glycation end‑product; CML, carboxymethyllysine; GOLD, glyoxal‑lysine dimer; G‑H1, glyoxal‑derived hydroimidazolone; 
MOLD, methylglyoxal‑derived di‑lysine imidazolium crosslink; MG‑H1, methylglyoxal‑derived hydroimidazolone; DOLD, desoxyglucosone lysine dimer; 
3DG‑H1, 3‑deoxyglucosone‑derived hydroimidazolone 1.
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In a laboratory study, it was demonstrated that AGE‑rich 
food significantly aggravated alterations in gut microbiota 
biodiversity in a time‑dependent manner, being more profound 
at 18 weeks of exposure, as compared to 6 and 12 weeks. 
Furthermore, it was shown that the high‑AGE group ws 
characterized by a significant decrease in the abundance 
of Ruminococcaceae, Lachnospiraceae, Alloprevotella, 
Mollicutes, Christensenellaceae, Treponema, Prevotellaceae, 
Sphaerochaeta,  Elusimicrobium,  Butyrivibrio  and 
Anaeroplasma, whereas that of Oscillibacter, Allobaculum, 
Anaerotruncus,  Barnesiella,  Fusicatenibacter  and 
Veillonellaceae was elevated (44). Feeding rats with a 
heat‑treated diet rich in AGEs resulted in a significant 
increase in the relative abundance of Parabacteroides, 
Alloprevotella, Helicobacter, Ruminococcaceae_UCG‑014, 
and unclassified Rhodospirillaceae, whereas populations 
of Desulfovibrio, Rikenellaceae, Lachnospiraceae and 
Alistipes, were significantly reduced, being associated with 
perturbations of microbial metabolites and certain metabolic 
pathways, including impaired carbohydrate and amino acid 
metabolism (45). Correspondingly, in another study, the admin‑
istration of an AGE‑rich diet, obtained by heating the standard 
chow, to C57BL/6 mice resulted in a significant increase in 

circulating and tissue AGEs levels, systemic inflammation, 
and the alteration of the gut microbiota mainly characterized 
by the increased abundance of Clostridium_sensu_stricto_1, 
Turicibacter and Parasutterella, and in particular, Dubosiella 
at the genera level, as well as the increased abundance of 
Clostridiaceae_1, Erysipelotrichaceae and Burkholderiaceae 
families (46).

Dietary AGE‑induced effects on gut microbiota have also 
been linked to several diseases. Specifically, a previous study 
demonstrated that feeding C57BL/6 mice with an AGE‑rich 
diet significantly increased systemic AGE (CML) levels, 
protein glycosylation, receptor for AGEs (RAGE) expression in 
the ileum and submandibular glands, as well as complex altera‑
tions in gut microbiota composition. AGE intake significantly 
increased Lawsonia, Parabacteroides and Ruminococcus 
abundance, whereas the relative numbers of Lactobacillus, 
Prevotella, Anaerostipes and Candidatus Arthromitus 
were significantly reduced, altogether being associated with 
impaired insulin signal transduction (47). It has been also 
demonstrated that feeding rats with casein glycated with meth‑
ylglyoxal 5‑hydro‑5‑methylimidazolone significantly affects 
the intestinal microbiota, which may at least in part be respon‑
sible for a reduction in systemic gastric inhibitory polypeptide 

Figure 2. Mechanism of MGO detoxication in bacteria. The bacterial MGO decomposition is generally catalyzed by two enzymatic systems: GSH‑dependent 
and GSH‑independent glyoxalases and NAD‑dependent dehydrogenases. Glyoxalases I and II catalyze the GSH‑dependent conversion of MGO‑derived 
hemithioacetal to D‑lactate through the formation of S‑D‑lactoylglutathione. In turn, glyoxalase III catalyzes D‑lactate from MGO without using GSH as a 
cofactor. NAD‑dependent GldA mediates the transformation of MGO to D‑lactaldehyde that is subsequently transformed to D‑lactate using AldA. MGO, 
methylglyoxal; GSH, glutathione; GldA, glycerol dehydrogenase; AldA, aldehyde dehydrogenase.
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and glucagon‑like peptide‑1 levels, consistent with an altered 
incretin‑insulin axis, as well as with the overproduction of the 
pro‑inflammatory cytokines, interleukin (IL)‑1β and IL‑17 and 
plasminogen activator inhibitor‑1 (48).

Potentially beneficial effects of dietary AGEs on the gut micro‑
biota. In contrast to the aforementioned findings, a number 
of studies have demonstrated that administration of dietary 
AGEs can afford beneficial effects, both to the gut microbiota 
and host metabolism. It is notable that the majority of results 
demonstrating the positive influence of AGEs on gut microbiota 
were attributable to administration of glycated fish proteins. 
Specifically, the glycation of dietary grass carp myofibrillar 
proteins resulting in increased furosine levels in glycoconju‑
gates significantly increased gut microbiota biodiversity and 
butyrate production that was positively associated with the rela‑
tive abundance of Mitsuokella, Lachnospiraceae_UCG‑004, 
Sutterella, Salinimicrobium, Fodinibius and Nitriliruptor, 
being inversely associated with that of Enterococcus, Dorea, 
Escherichia‑Shigella and Phascolarctobacterium, thus being 
indicative of the potential beneficial effects of protein glycation 
on gut health (49). Correspondingly, another study demon‑
strated that the administration of glycated fish protein to rats 
significantly increased the relative abundance of Allobaculum, 
Akkermansia, Turicibacter and Lactobacillus animalis, 
and reduced that of Escherichia‑Shigella, Fusobacterium 
and Erysipelatoclostridium in the caecum, altogether being 
associated with the increased production of butyrate from 
fructoselysine (50). Similar findings were obtained in another 
study, where the administration of fish peptide glycated with 
galactooligosaccharide resulted in increased abundance of the 
Veillonellaceae, Prevotellaceae and Coriobacteriaceae fami‑
lies, and increased the abundance of the genera, Anaerovibrio, 
Collinsella, Prevotella_9, as well as reduced Alloprevotella, 
Holdemanella, Escherichia‑Schigella and Streptococcus 
when compared to the control rats (51). Increasing fish protein 
glycation through heating for 24 or 48 h with its subsequent 
in vitro fermentation in a model of human distal colon signifi‑
cantly increased the relative abundance of Lactococcus in 
parallel with a decrease in Bacteroides. Moreover, the expo‑
sure of gut bacteria to glycated fish protein heated for 48 h 
resulted in a greater abundance of Holdemania, Streptococcus, 
Enterococcus and Lactobacillus, as well as a reduction of 
Parabacteroides when compared to a less glycated protein 
(24 h of heating). These changes, and particularly a decrease in 
Bacteroides, Dialister and Parabacteroides, were associated 
with reduced ammonia and indole production (52). The intake of 
glycated fish protein in high‑fat fed rats also decreased relative 
abundance of Ruminiclostridium and Desulfovibrio, as well 
as dose‑dependent effects, including increased Ruminococcus 
and Roseburia abundance in low glycated protein diet and 
decreased Helicobacter and Lachnospiraceae upon high‑dose 
glycated protein intake. Moreover, the observed AGE‑induced 
modulation of gut microbiota composition was associated with 
a significant reduction of systemic proinflammatory cyto‑
kine (IL‑1β and IL‑6) levels and lipid profile improvement, 
thus indicative of the potential beneficial effects on gut and 
metabolism (53).

It has been also demonstrated that the glycation of the 
milk proteins, β‑lactoglobulin and casein, significantly 

increased fermentability of the proteins by Lactobacillus and 
Bifidobacterium thus promoting their growth, although the 
effect was more profound at the initial steps of Maillard reac‑
tion (54). β‑lactoglobulin‑galactose conjugate was also shown 
to promote Clostridium coccoides‑Eubacterium rectal group 
growth, as well as increase bacterial acetate production (55). 
Notably, the modification of β‑lactoglobulin by glycation 
and ultrasonication has been shown to reduce milk protein 
allergenicity, which may be mediated by lower digestibility, 
modification of allergenic epitopes on the protein molecule, as 
well as modulation of gut microbiota composition (56).

The administration of glycated whey proteins to aged 
male non‑obese diabetic mice with autoimmune prostatitis 
significantly increased mice survival, reduced prostatic inflam‑
mation, as well as an increased abundance of Allobaculum, 
Anaerostipes, Bacteroides, Parabacteroides and Prevotella 
and reduced abundance Adlercreutzia and Roseburia, whereas 
the population of Bacteroides acidifaciens significantly 
correlated with the observed effects, indicative of the role of 
gut microbiota modulation in protective effects of glycated 
whey proteins (57). Similarly, a beneficial effect on the gut 
microbiota was demonstrated for glycated pea protein which 
increased Bacteroides, Lactobacillus/Enterococcus and 
Bifidobacterium growth as well as short chain fatty acids 
(SCFAs), acetate, propionate, lactate, and butyrate produc‑
tion (58).

The dietary restriction of AGEs was shown to reduce 
systemic CML and MG levels, as well as affect the gut 
microbiota by increasing the relative abundance of Alistipes 
indistinctus, Clostridium citroniae, Clostridium hathewayi, 
and Ruminococcus gauvreauii, in parallel with a decrease in 
Prevotella copri and Bifidobacterium animalis in peritoneal 
dialysis patients (59). Concomitantly, in another study, a 
reduction in dietary AGEs intake did not have a significant 
effect on the most abundant gut bacteria in healthy obese 
subjects. As compared to the group with a high AGE 
intake, the low dietary AGE group was characterized by a 
greater abundance of Tyzzerella, Family_XII_UCG‑001 and 
Christensenellaceae_R‑7 Group, as well as a lower abundance 
of Negativibacillus, Oscillibacter and Anaerostipes (60).

An insight into the distinct effects of various AGEs on the gut 
microbiota. As clearly detailed in previous studies, the effects 
of dietary AGEs on the gut microbiota vary significantly, 
depending on their characteristics, including both the dose, 
source and chemical properties. The study by Cao et al (61) 
proposed that the observed inconsistencies in the reported 
effects of AGE intake on the gut microbiota and overall 
health were dependent on the dose of the glycated protein 
in the diet. The intake of low levels of glycated fish proteins 
for 15 weeks in mice resulted not only in an increased abun‑
dance of the butyrate‑producing bacteria, Lachnospiraceae 
and Allobaculum, but also increased intestinal tight junc‑
tion protein expression (occludin and Zonula occludens‑1), 
reduced pro‑inflammatory cytokine production (IL‑1β and 
IL‑6) and improved insulin sensitivity. By contrast, inverse 
effects were observed upon exposure to high‑dose glycated 
fish protein in parallel with a reduction in Bifidobacterium 
and Lactobacillus abundance (61). It has been posited that 
free AGEs, such as carboxymethyllysine have detrimental 
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effects on the composition and functions of the gut microbiota, 
whereas bound AGEs have a more beneficial effect, although 
certain detrimental effects may be also observed (62). It was 
hypothesized that the positive effects of glycated proteins, 
namely fish proteins on the gut microbiota are due to the use of 
such proteins as a slow fermentable protein source or carbonyl 
donors providing additional energy to gut microbiota (46). In 
addition, free and protein‑bound AGEs in the diet have distinct 
effects on the gut microbiota due to differences in digest‑
ibility (63). In addition to the AGE species, the molecular 
weight of the ligand has a significant impact on digestibility. 
Specifically, in a previous study, in a model of glyoxal‑glycated 
casein digests, CML was degraded predominantly in the 
low molecular weight fraction (38.7%) followed by medium 
(21.7%) and high molecular weight fractions (9.6%) which may 
be mediated by the lower activity of proteases (64).

4. Involvement of AGE‑gut microbiota interplay in disease 
pathogenesis

Type 2 diabetes mellitus. The understanding of the patho‑
genesis of diabetes mellitus sheds light onto the toxicological 
effects of AGEs and their role in metabolic diseases (10). 
Although the dysfunction of the gut microbiota has been 
known to play a significant role in diabetogenesis (65), the 
potential interplay between gut microbiota dysfunction and 
excessive protein glycation in diabetes has been studied 
only recently. Wu et al (66) demonstrated that dietary AGE 
exposure significantly affected the gut microbiota, with an 
irreversible increase in Bacteroidetes populations and a 
decrease in Firmicutes abundance at the phylum level, whereas 
at the genera level, a high‑AGE diet stimulated Helicobacter, 
Bacteroides, Rikenella, Alistipes, Bif idobacterium, 
Candidatus Saccharimonas, Faecalibaculum, Clostridiales, 
Erysipelatoclostridium and Intestinimonas, and decreased 
unidentified Lachnospiraceae, Roseburia, Oscillibacter, 
Anaerotruncus, Blautia, Mucispirillum, Angelakisella, 
Lachnoclostridium, Lachnospira, Ruminiclostridium, 
Acetatifactor, and Desulfovibrio. These perturbations were 
shown to contribute to diabetes pathogenesis through the 
modulation of glyceraldehyde and pyruvate production with 
the subsequent aggravation of insulin resistance and other 
alterations in carbohydrate and lipid metabolism, as well as 
inflammation due to higher systemic lipopolysaccharide (LPS) 
levels (66). A comparative analysis demonstrated that despite 
a significant increase in circulating AGEs and the induction 
of insulin resistance in mice exposed to both an AGE‑rich 
diet or purified methylglyoxal‑bovine serum protein (exog‑
enous AGE), profound alterations of intestinal permeability 
and microbiota structure were observed only upon exog‑
enous AGE intake. A high AGE intake was shown to reduce 
the abundance of Bacteroidales_S24‑7, Bacteroidaceae, 
Porphyromonadaceae, Odoribacteraceae, Lachnospiraceae, 
Rikenellaceae, and Erysipelotrichaceae in parallel with 
an increase in Desulfovibrionaceae abundance (67). It 
was proposed that a decrease in butyrate production by 
butyrate‑producing bacteria may promote the impairment of 
the intestinal epithelial barrier and induce inflammation, thus 
contributing to systemic insulin resistance (67). The observed 
increase in Desulfovibrio abundance generally corresponds to 

the early observed positive association between these bacteria 
with blood glucose indices (68) and Parkinson's disease (69), 
although the results of the Guangdong Gut Microbiome 
Project demonstrated that the abundance of Desulfovibrio may 
be inversely associated with body mass index and triglyceride 
levels (70). Moreover, earlier findings in diabetic db/db mice 
exposed to high levels of dietary AGEs demonstrated in a 
significant increase in gut permeability, as well as an eleva‑
tion of the Firmicutes‑to‑Bacteroidetes ratio, altogether being 
associated with kidney damage and albuminuria, whereas 
the administration of resistant starch ameliorated these 
effects (71). It is also notable that the formation of Maillard 
reaction products with subsequent protein aggregation in 
bacterial species shares certain similarity to that observed in 
Parkinson's and Alzheimer's disease (72). Therefore, prelimi‑
nary data demonstrate that AGE‑induced alterations in the 
gut microbiota can contribute to the aggravation of insulin 
resistance through a number of mechanisms, including the 
impairment of the intestinal epithelial barrier and subsequent 
increase in circulating LPS levels.

Ageing‑associated diseases. Recent studies have demonstrated 
that alterations in the gut microbiota, as well as increased 
levels of AGEs are associated with aging, contributing to 
the development of age‑related diseases (73,74). Age‑related 
changes in the gut microbiota characterized by a reduced 
Firmicutes‑to‑Bacteroidetes ratio at the phylum level, as well 
as by the increased abundance of Turibacter, Alloprevotella, 
Parasutterella, Bif idobacterium, Macellibacteroides, 
Alistipes sensu stricto 1, Peptostreptococcaceae incertae 
sedis and Parabacteroides, and the lower abundance 
of Pantoea, Anoxybacillus, Lachnospiraceae incertae 
sedis, Cutrobacterium and Acetatifactor at the genera 
level, were shown to contribute to the accumulation of 
N6‑carboxymethyllysine in microglia and subsequent oxida‑
tive stress and mitochondrial dysfunction by increasing 
intestinal permeability, whereas germ‑free mice brain 
microglia were characterized by lower oxidative stress and 
mitochondrial damage (75). In corroboration, the translocation 
of fecal microbiota from aged to young rats impaired cogni‑
tion, induced synaptic dysfunction, along with oxidative stress 
and inflammation, which may be at least partially mediated 
by an increased AGE production and RAGE expression (76). 
Correspondingly, the antibiotic treatment of 5xFAD mice, a 
model of Alzheimer's disease that is known to be age‑related, 
resulted in a significant decrease in intestinal Lactobacillaceae 
abundance, being also associated with reduced hippocampal 
plaque formation, antidiabetic effect and decreased RAGE 
expression (77). Taken together, even these limited data 
demonstrate that age‑related alterations of the gut micro‑
biota may contribute to AGE accumulation, particularly in 
brain tissues, indicating the gut microbiota‑AGE interplay in 
age‑related neurodegeneration.

Other diseases. A recent study in ethanol‑fed mice demon‑
strated an increased abundance of Bacteroidetes and a 
decrease in Firmicutes numbers, which was associated with 
an elevation in AGE and RAGE levels in colonic tissues, and 
considered a potential mechanism of ethanol‑related colorectal 
cancer pathogenesis (78).
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5. Effects of gut microbiota modulation on AGE metabolism 
and toxicity

Probiotics. Several studies have demonstrated that the modula‑
tion of the gut microbiota using probiotics is also associated with 
reduced AGE accumulation and toxicity, thus also supporting 
the role of the gut microbiota in AGE toxicity. Specifically, 
in a previous study, in a model of Alzheimer's disease, the 
modulation of the gut microbiota through the administration 
of SLAB51 probiotic significantly reduced brain AGE accu‑
mulation and tau phosphorylation, and also improved insulin 
signaling through the Akt/AMPK pathway (79). In another 
laboratory in vivo study, the administration of probiotic 
Lactobacillus paraplantarum BGCG11 significantly reduced 
AGE accumulation in parallel with inhibiting hyperglycemia, 
oxidative stress, DNA damage, liver and kidney fibrosis in rats 
with streptozotocin‑induced diabetes (80). In another study, 
the administration of the commercial probiotic, Protexin®, in 
Cd‑exposed rats significantly reduced the serum MGO levels, 
as well as decreased tissue Cd accumulation and Cd‑induced 
oxidative stress (81). Lactococcus lactis KF140 supplementa‑
tion has also been shown to reduce serum CML levels and 
hepatic CML accumulation that may be at least partially medi‑
ated by activity of bacteria‑derived β‑galactosidase (82).

In addition to probiotics, it has been demonstrated that 
treatment with prebiotics may also modulate AGE accumu‑
lation and toxicity. Specifically, the administration of the 
prebiotic, resistant dextrin, has been shown to significantly 
reduce carboxymethyl lysine, soluble RAGE, as well as several 
other cardiometabolic risk factors in adult women (83).

At the same time, additional studies, including clinical 
trials are required to address the impact of microbiota modula‑
tion by probiotics and prebiotics on AGE toxicity and RAGE 
signaling, as well as the clinical validity of these interventions.

Phytochemicals. Polyphenols have also been shown to have 
a significant beneficial effect on gut microbiota and glycative 
stress, and these effects appear partially interrelated (84). 
Specifically, the administration of Physalis alkekengi L. fruit 
polysaccharide to AGE‑fed mice was shown to modulate gut 
microbiota by increasing the abundance of Rikenallaceae, 
Alistipes, Nocardiaceae, Rhodococus, Bacilli, Lactobacillaceae, 
Bacteroidaceae and Burkholderiaceae, improving the 
Bacteroidetes/Firmicutes ratio, as well as decreasing LPS 
production. Treatment with Physalis alkekengi polysaccharide 
also improved the bacterial production of SCFAs, namely acetic 
and propionic acids, which may at least partially mediate the 
treatment‑induced reduction of insulin resistance (85). It has 
also been demonstrated that the administration of quercetin 
to AGE‑fed mice significantly ameliorated cognitive dysfunc‑
tion through the reduction of tau phosphorylation, cathepsin B 
and neuroinflammation, as well as increased gut microbiota 
biodiversity and reduced the abundance of Verrucomicrobia 
phylum, and Blautia and Anaerotruncus genera (86). In addi‑
tion, it has been proposed that an increase in Lactobacteria 
and particularly Bifidobacteria by Geranium dielsianum 
extract may at least partially mediate antiglycative effect of the 
extract (87). These data demonstrate that the protective effects 
of phytochemicals against AGE toxicity are mediated by its 
influence on the composition of the gut microbiota.

6. Role of lipopolysaccharide in the interplay between 
microbiota and AGE toxicity

LPS, also known as endotoxin, is a cell wall component 
of Gram‑negative bacteria. In the human gut microbiota, 
Bacteroidetes, and to a lesser extent, Proteobacteria phyla, are 
considered as key sources of LPS production (88). LPS medi‑
ates a substantial part of the effects of altered microbiota on the 
host, including the regulation of systemic inflammation (89).

Several studies have demonstrated the significant effect of 
LPS on cellular production and the accumulation of AGEs or 
their precursors. Specifically, a previous study demonstrated 
that the stimulation of RAW264.7 murine macrophages with 
LPS resulted in a significant increase in intracellular meth‑
ylglyoxal generation upon high‑glucose conditions in parallel 
with HIF‑1 downregulation and pyroptosis (90). A similar 
effect was observed in LPS‑stimulated J774A.1 macrophages 
and N11 microglia (91). Correspondingly, long‑term LPS treat‑
ment was shown to increase aortal AGE accumulation (92). 
In turn, in rat aortic smooth muscle cells, MGO treatment 
was shown to inhibit LPS‑stimulated inducible nitric oxide 
synthase expression by inhibiting Akt phosphorylation 
that may be involved in diabetic vascular dysfunction (93). 
These findings generally corroborate recent data obtained by 
Kitaura et al (94), demonstrating that AGEs may reduce LPS 
uptake by RAW264.7 macrophages, which may be at least 
partially mediated by RAGE activation, resulting in altered 
immune response in diabetes (94).

LPS is a potent pro‑inflammatory agent that induces an 
inflammatory response through a number of mechanisms. It 
has been shown that AGEs potentiate the pro‑inflammatory 
effects of LPS on gingival fibroblasts under high‑glucose 
conditions, as evidenced by an elevated IL‑8 secretion (95). 
The potentiation of the pro‑inflammatory effects of LPS and 
AGEs may be mediated by the activation of mitogen‑activated 
protein kinases and NF‑κB activation in endothelial cells (96).

One of the mechanisms underlying the pro‑inflammatory 
effects of LPS and its impact on NF‑κB signaling is the 
modulation of RAGE signaling (97) (Fig. 3). The activation 
of RAGE signaling has been shown to mediate certain effects 
of glucotoxicity, as well as the toxic effects of environmental 
factors (98,99).

Given the role of AGEs as ligands for RAGE, the modu‑
lation of RAGE signal transduction by LPS may also be 
considered as one of the aspects of microbiota‑AGE interplay. 
Specifically, in human umbilical vein endothelial cells, LPS 
treatment has been shown to increase both RAGE expression 
and NF‑κB activation, as well as p65 nuclear translocation, 
whereas anti‑RAGE antibody ameliorated the LPS‑induced 
NF‑κB activation and subsequent endothelial barrier 
dysfunction, thus being indicative of the role of RAGE in the 
LPS‑induced inflammatory reaction (100). Anti‑RAGE anti‑
body has also been shown to reduce LPS‑induced acute lung 
injury in a neonatal rat model (101). Concomitantly, tje inhibi‑
tion of NF‑κB signaling significantly decreases LPS‑induced 
RAGE expression in alveolar type I epithelial cells, whereas 
RAGE knockdown inhibits both basal and LPS‑induced 
NF‑κB activation (102).

A previous study demonstrated that LPS may directly bind 
RAGE with a subsequent NF‑κB‑dependent inflammatory 
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response in a murine model of septic shock, whereas the 
injection of soluble RAGE significantly reduced LPS‑induced 
proinflammatory cytokine expression and tissue damage (103). 
It has been proposed that the ratio between cell surface RAGE 
and soluble RAGE (sRAGE) may significantly mediate inflam‑
matory response to bacterial molecules (103). Additional 
research has demonstrated that the direct interaction between 
LPS, high mobility group box 1 (HMGB1) and AGEs results 
in the formation of a triplet complex and subsequent increase 
in HMGB1 mobility, altogether leading to increased TNF‑α 
mRNA expression in RAW264.7 macrophages through 
Toll‑like receptor 4 (TLR4) and RAGE activation (104).

Another study demonstrated that the inhibition of RAGE 
signaling thwarted the LPS‑induced upregulation of HMGB1 
and IL‑6 expression through a NF‑κB‑mediated mecha‑
nism (105). Accordingly, the inhibition of RAGE activation 
has been considered as one of the mechanisms underlying the 
protective effects of certain agents including β‑caryophyllene 
and perindopril against LPS‑induced liver injury (106) and 
amyloidogenesis (107), respectively. In agreement with this, the 
phytochemicals, icariin and icaritin, have been found to signifi‑
cantly reduce LPS‑induced hippocampal neuroinflammation 
through the downregulation of HMGB1‑RAGE signaling (108). 
Concomitantly, preconditioning with HMGB1 has been shown 
to induce LPS tolerance in a RAGE‑dependent manner (109).

In addition to the role of RAGE signaling in LPS‑induced 
inflammation, this mechanism may also trigger the adverse 
effects of LPS on the cytoskeleton and tight junction 
proteins. Specifically, RAGE signaling has been shown 
to be involved in LPS‑induced cytoskeletal alterations 
in mouse pulmonary microvascular endothelial cells, as 
demonstrated in RAGE‑knockout pulmonary microvascular 
endothelial cells, which did not develop F‑actin rearrange‑
ment and stress fiber formation upon LPS stimulation (110). 
In another study, RAGE‑deficient mice were also found to be 
resistant to LPS‑induced leukocyte infiltration and proinflam‑
matory cytokine secretion, as well as alteration of lung Zonula 
occludens‑1, sodium‑potassium ATPase (Na, K‑ATPase), and 
epithelial sodium channel expression. Moreover, in patients 
with infection‑induced acute respiratory distress syndrome, 
bronchial alveolar lavage fluid sRAGE levels were increased, 
being associated with pro‑inflammatory cytokine levels and 
pulmonary vascular permeability (111). In line with these 
observations, it was previously demonstrated that the inhibi‑
tion of RAGE signaling not only reduced pro‑inflammatory 
cytokine expression in a model of LPS‑induced acute lung 
injury, but also prevented the downregulation of claudin‑2 
and occludin expression (112). While discussing the role of 
AGE signaling and LPS in the alteration of cell contacts, it 
is important to note that glycated caseinate hydrolysate has 
been shown to possess significantly lower barrier‑protective 
effects in LPS‑exposed intestinal IEC‑6 cells as compared to 
unmodified caseinate hydrolysate (113).

The activation of LPS‑RAGE signaling has also been 
shown to mediate carcinogenesis. Specifically, the upregu‑
lation of HMGB1/RAGE signaling has been found to be 
responsible for LPS‑induced inflammation and the subse‑
quent malignant transformation of normal cervical epithelial 
cells (114). Moreover, a previous study demonstrated that the 
breast tumor microbiota was enriched with Gram‑negative 
bacteria producing LPS. In vitro LPS treatment was shown to 
upregulate S100A7 expression in breast cancer cells, resulting 
in the upregulation of RAGE expression along with a reduced 
TLR4 expression that may contribute to tumor growth progres‑
sion (115).

At the same time, it has been proposed that RAGE signaling 
may mediate the inflammatory response to bacteria through 
reactions to other bacterial molecules than LPS (116).

Taken together, these findings demonstrate that AGEs 
can modulate the pro‑inflammatory effects of bacterial LPS, 
that is normally released by gut microbiota, whereas the 
pro‑inflammatory signals of LPS are mediated by RAGE 
activation, which is also activated by AGEs.

7. Conclusions and future perspectives

The existing data demonstrate a bilateral association between 
gut microbiota and the effects of AGEs. Such an association 
may be summarized by the following aspects: i) Dietary AGEs 
may have a significant impact on the richness and diversity 
of the gut microbiota; ii) the gut microbiota may metabolize 
dietary AGEs; iii) the composition of the gut microbiota is 
tightly associated with AGE accumulation in the host organism; 
iv) certain effects of AGE accumulation in the organism may 
be mediated by the modulation of the gut microbiota; v) the 

Figure 3. Role of AGEs and LPS in RAGE signaling. AGEs, advanced glyca‑
tion end‑products; LPS, lipopolysaccharide; RAGE, receptor for advanced 
glycation end products; HMGB1, high mobility group box 1.
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alteration of the gut microbiota may mediate the development 
of comorbidities associated with ageing and diabetes; vi) LPS 
may be considered as the molecule mediating the association 
between the gut microbiota and AGEs, and particularly, RAGE 
signaling; vii) dietary interventions aimed at the improvement 
of the gut microbiota may exert protective effects against 
AGEs toxicity. Given a mutual interaction between AGE 
toxicity and dysbiosis, it can be hypothesized that exposure to 
dietary AGEs may induce gut dysbiosis that further promotes 
AGE production, thus composing a vicious circle involved 
in disease pathogenesis. This vicious circle may be involved 
in the development of opportunistic infections and systemic 
inflammation in diabetic patients characterized by high levels 
of endogenous AGE. Therefore, the modulation of the gut 
microbiota with probiotics or other nutrients may be consid‑
ered as a potential protective strategy against AGE‑induced 
glycative stress and systemic inflammation. However, further 
studies on the molecular aspects of the interaction between 
gut microbiota and AGE metabolism and toxicity are required.
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