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Abstract. Ferroptosis is a novel form of regulated cellular 
necrosis that plays a critical role in promoting cancer progres‑
sion and developing drug resistance. The main characteristic 
of ferroptosis is iron‑dependent lipid peroxidation caused by 
excess intracellular levels of reactive oxygen species. CUGBP 
ELAV‑like family number 2 (CELF2) is an RNA‑binding 
protein that is downregulated in various types of cancer 
and is associated with poor patient prognoses. CELF2 can 
directly bind mRNA to a variety of ferroptosis control factors; 
however, direct evidence of the regulatory role of CELF2 in 
ferroptosis is currently limited. The aim of the present review 
was to summarise the findings of previous studies on CELF2 
and its role in regulating cellular redox homeostasis. The 
present review may provide insight into the possible mecha‑
nisms through which CELF2 affects ferroptosis and to provide 
recommendations for future studies.
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1. Introduction

Ferroptosis is a novel form of cell death discovered in recent 
years, and is characterised by an excessive accumulation of 
cellular levels of lipid peroxide, caused by elevated levels of 
reactive oxygen species (ROS) owing to a severe imbalance 
in the intracellular redox state. This process is closely linked 
to intracellular iron homeostasis, where an accumulation of 
the strongly oxidising ferrous ion, which becomes a labile 
iron pool, can generate ROS via the Fenton or Haber‑Weiss 
reaction, thereby initiating the ferroptosis process. Ferroptosis 
is classified as a form of regulatory necrosis, a class of 
genetically regulated cell death. Its similarity to necrosis is 
the disruption of plasma membrane integrity and the release 
of cytoplasmic contents, which usually leads to a potent 
inflammatory response (1,2). However, unlike necrosis, 
the unregulated decadence process resulting from extreme 
adverse conditions, different types of regulated necrosis have 
different downstream execution mechanisms and stimulatory 
molecular pathways (1,2). Ferroptosis is regulated by a variety 
of factors, such as the glutathione peroxidase 4 (GPX4) anti‑
oxidant system, dihydroorotate dehydrogenase (DHODH), the 
ferroptosis suppressor protein 1 (FSP1)‑mediated ferroptosis 
protection mechanism and the lipoxygenase trigger mechanism, 
which are independent of each other and together influence the 
occurrence of ferroptosis (3). An increasing number of studies 
have revealed that ferroptosis is a key mechanism involved 
in the development and progression of cancer, as well as in 
the development of drug resistance. Therefore, it is crucial to 
elucidate the regulatory mechanisms that underlie ferroptosis.

CUGBP ELAV‑like family (CELF) proteins are a family of 
RNA‑binding proteins (RBPs) that, similar to the majority of 
RBPs, play broad and diverse roles in RNA regulation. CELF2 
is the second member of this family and has been found to play 
a critical role in cancer development. CELF2 functions as a 
tumour suppressor in a variety of tumours, and its downregu‑
lation is associated with a poor patient prognosis (4,5). The 
tumour‑suppressive effects of CELF2 are dependent on the 
post‑transcriptional regulation of various genes, such as heme 
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oxygenase‑1 (HO‑1) and cyclooxygenase 1 (COX‑1) (6,7), and 
its inhibition of various cellular signalling pathways.

The present review discusses in detail the possible mecha‑
nisms through which CELF2 regulates the mitogen‑activated 
protein kinase (MAPK) signalling pathway, PI3K/AKT 
signalling pathway, endoplasmic reticulum (ER)‑associated 
protein degradation (ERAD) pathway, autophagy and the 
Wnt/β‑catenin pathway. Subsequently, the role of these path‑
ways in influencing ferroptosis was further summarized. It 
was hypothsized that the tumour‑suppressive effects of CELF2 
may be partially dependent on ferroptosis mechanisms.

2. CELF2 affects ferroptosis through the MAPK signalling 
pathway

Association of MAPK signalling pathway with ferroptosis. 
MAPK is an intracellular signalling pathway that has been 
extensively studied. This cascade is activated by a sequence 
of three to five hierarchical layers of protein kinases known 
as the MAPK kinase kinase kinase (MAPKKKK) class, 
MAPK kinase kinase (MAPKKK) class, MAPK kinase 
(MAPKK) class, MAPK and MAPK‑activated protein kinase 
(MAPKAPK) (8). The first three layers are considered the basic 
core units that recognise and conduct various signals inside 
and outside the cell via phosphorylation. MAPK activation is 
a critical step in the MAPK signalling pathway that mainly 
involves the extracellular signal‑regulated kinase (ERK), 
c‑Jun N‑terminal kinase (JNK) and p38 protein families. 
These proteins can activate a variety of MAPKAPKs, thereby 
regulating the expression of downstream genes or proteins and 
allowing cells to respond to intra‑ and extracellular signals 
including proliferation, differentiation, apoptosis, senescence 
and carcinogenesis (9,10). Targeting the MAPK pathway, 
which is the most commonly mutated signalling pathway in 
human cancers, has long been considered a promising strategy 
for cancer therapy. An increasing number of recent studies 
have demonstrated that influencing the ferroptosis process is 
a key mechanism by which the MAPK signalling pathway 
promotes tumour development (11‑14). The role of CELF2 in 
the MAPK signalling pathway and its possible role in ferrop‑
tosis is illustrated in Fig. 1.

ERK1/2, two key members of the ERK/MAPK pathway, 
are normally found in the cytoplasm and, when activated, can 
enter the nucleus and regulate the activity of various transcrip‑
tion factors and gene expression, playing a crucial role in cell 
differentiation and proliferation (15). Additionally, ERK1/2 
activation can regulate ferroptosis in cancer cells via multiple 
pathways. 

The ERK/MAPK pathway causes resistance to ferrop‑
tosis in cancer cells by inhibiting F‑box and WD repeat 
domain‑containing 7 (FBW7). FBW7 is a target of the 
ERK/MAPK signalling pathway, and ERK1 can directly bind 
and phosphorylate the Thr205 site of FBW7, which promotes 
the ubiquitinated degradation of FBW7 in a Pin1‑dependent 
manner, thereby inhibiting FBW7 expression (16). FBW7 is 
an E3 ubiquitin ligase that ubiquitinates target substrates, 
usually via K11 or K48 linkages, and consequently degrades 
target proteins that include a number of crucial human 
cancer proteins (17,18). Thus, FBW7 functions as a tumour 

suppressor; its expression is downregulated in several tumours 
and is associated with patient prognosis (16,18). As previously 
reported, FBW7 induces cancer cell death by promoting 
ferroptosis. For example, FBW7 has been shown to reduce the 
binding of nuclear receptor subfamily 4 group A member 1 to 
the promoter of stearoyl‑CoA desaturase 1 (SCD1), an enzyme 
that converts saturated fatty acids to monounsaturated fatty 
acids, and to inhibit its transcription via an unknown mecha‑
nism, thereby promoting ferroptosis in pancreatic cancer 
cells (19). Furthermore, FBW7 has been found to be able to 
recognize and ubiquitinate c‑Myc in a manner dependent on 
Thr58 and Ser62 phosphorylation, thereby regulating the level 
of c‑Myc in cancer cells and likely influencing the process of 
ferroptosis in cancer cells (20,21).

c‑Myc, a component of the ERK/MAPK pathway, is a key 
regulator of ferroptosis. c‑Myc is located downstream of the 
ERK/MAPK signalling pathway. In addition to indirectly 
regulating c‑Myc levels through FBW7, ERK1/2 directly 
phosphorylates Ser62 of c‑Myc and activates its transcription 
under conditions of oxidative stress (22). Moreover, p38a, 
another MAPK parallel to ERK, promotes c‑Myc expression 
by directly phosphorylating Ser64 and Ser67 and inhibiting 
its proteasome‑dependent degradation (23), or transcription‑
ally activating c‑Myc by directly binding and phosphorylating 
β‑catenin (24). c‑Myc is considered an oncogenic transcrip‑
tion factor that binds to the promoters of various oncogenes 
to promote their transcription. It has been reported that c‑Myc 
is able to transcriptionally activate a variety of ferroptosis 
suppressor genes, conferring cancer cells the ability to resist 
ferroptosis. For example, c‑Myc is enriched at the solute carrier 
family 7 member 11 (SLC7A11) and γ‑glutamylcysteine synthe‑
tase promoters, and transcriptionally activates these genes to 
help cancer cells resist oxidative stress through a pathway 
that promotes glutathione synthesis, which also renders 
cancer cells resistant to chemo‑ and radiotherapy (22,25‑27). 
c‑Myc activates lymphoid specific helicase gene transcription, 
which promotes WD40‑repeat protein 76 enrichment at the 
SCD1/fatty acid desaturase 2 promoter and inhibits ferrop‑
tosis through a pathway that affects lipid metabolism (28). 
Furthermore, c‑Myc can bind to the E‑box on the nuclear 
factor E2‑related factor 2 (NRF2) promoter to activate NRF2 
transcription, thereby maintaining intracellular redox homeo‑
stasis (29). The non‑transcription factor activities of c‑Myc 
have also been identified; for example, c‑Myc has been found 
to be able to directly inhibit the expression of miR‑23b, which 
regulates cellular ferroptosis by targeting glutaminase expres‑
sion at the 3'‑untranslated region (3'‑UTR) (30,31). c‑Myc was 
also demonstrated to directly bind and inhibit nuclear receptor 
coactivator 4 (NCOA4) mRNA expression, suppressing ferrop‑
tosis by inhibiting ferritinophagy (32).

ADP‑ribosylation factor 6 (ARF6), a small GTPase 
belonging to the Ras superfamily, is mainly localised in 
the plasma membrane and endosomal compartments, and 
plays a crucial role in plasma membrane endocytosis, 
cytokinesis, endosomal recycling, cytokinesis and actin cyto‑
skeletal reorganisation (33). ARF6 is located downstream of 
the ERK/MAPK signalling pathway and ERK1/2 activates 
ARF6 transcription via c‑Myc (34). Notably, ARF6 continu‑
ously activates the ERK/MAPK pathway by interacting 
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with phospholipase D (35). This forms a positive feedback 
mechanism that maintains high levels of c‑Myc in cancer 
cells (34). Recent studies have revealed that although ARF6 
does not directly regulate lipid peroxidation, it can alter the 
sensitivity of cancer cells to oxidative stress, rendering them 
less sensitive to ferroptosis induced by RSL3 and erastin, and 
thereby participating in the development of drug resistance 
in cancer cells (36,37). ARF6 has been reported to inhibit 
the expression of acyl‑CoA synthetase long‑chain family 
member 4 (ACSL4) (36) and GPX4 (37) at the transcriptional 
level, allowing pancreatic and gastric cancer cells to develop 
tolerance to tabine analogues. 

Yes‑associated protein (YAP) can be activated by the 
ERK/MAPK pathway and plays a dual role in ferroptosis. 
YAP is a key effector of the Hippo pathway and is frequently 
dysregulated in human cancers. Aberrantly activated YAP 
has emerged as a key driver of tumorigenesis, chemoresis‑
tance and tumour metastasis (38). YAP is a co‑transcription 
factor that interacts with DNA‑binding transcription factors 
to regulate diverse cellular behaviours (39). Recent studies 
have revealed that YAP is located downstream of the MAPK 
pathway and that ERK1/2/5 (40‑42), p38 (41), mechanistic 
target of rapamycin (mTOR)C2 (43) and c‑Myc (44) can 
activate YAP in a non‑Hippo pathway‑dependent manner. 
Notably, the reciprocal upregulation of c‑Myc and YAP has 
been observed in hepatocellular carcinoma. In hepatocel‑
lular carcinoma cells, c‑Myc activates YAP transcription by 

interacting with hepatitis B X‑interacting protein (44), while 
YAP promotes c‑Myc transcription by binding to c‑Abl (45). 
Taken together, YAP and c‑Myc promote the development 
of hepatocellular carcinoma. However, its role in ferroptosis 
remains unclear. YAP enhances the binding of transcriptional 
enhanced associate domain (TEAD)4 to transferrin receptor 
protein (TFRC), ACSL4, and arachidonate lipoxygenase 
(ALOX)E3 (46‑48), thereby enhancing the sensitivity of cancer 
cells to ferroptosis, whereas the YAP‑TEAD complex inhibits 
the expression of threonine tyrosine kinase and TFRC via 
s‑phase kinase‑associated protein 2 (49), thereby protecting 
cancer cells from ferroptosis. Moreover, the YAP‑activating 
transcription factor (ATF)4 complex can bind to the SLC7A11 
promoter and promote its transcription, thereby promoting the 
resistance of hepatocellular carcinoma cells to sorafenib (50). 
These studies suggest that the role of YAP in ferroptosis is 
complex and may be related to the cancer cell type and genetic 
background, and that the role of YAP in ferroptosis requires 
further exploration.

CELF2 is a regulator of the MAPK signalling pathway. 
Based on the data from available studies, CELF2 may affect 
the MAPK pathway through both the human family with 
sequence similarity 198, member B (FAM198B) and nuclear 
factor of activated T‑cell c1 (NFATc1) pathways. FAM198B 
is an N‑linked glycoprotein with unknown functions that 
is localised to the Golgi membrane (51). CELF2 stabilises 
FAM198B mRNAs by binding to its AREs (AU/U‑rich 
elements) within the 3'‑UTR and then upregulates the expres‑
sion of FAM198B (52). FAM198B is downregulated in lung and 
ovarian adenocarcinomas and is associated with a poor patient 
prognosis (51,52). FAM198B also functions in the tumour 
microenvironment. For example, Zheng et al (53) observed 
that the expression level of FAM198B in macrophages of colon 
cancer tissues correlated with patient prognosis. FAM198B 
regulates M2 polarisation in macrophages and promotes colon 
cancer progression by targeting SMAD2 (53). Existing research 
demonstrates that FAM198B exerts its tumour‑suppressive 
effects mainly by inhibiting the ERK/MAPK pathway (51,52); 
however, the exact mechanisms involved remain elusive. The 
only factor that can be determined is that the inhibitory effect 
of FAM198B on the ERK/MAPK pathway depends on its 
three major glycosylation sites, namely, Asn98, Asn289 and 
Asn322, and that defects in the glycosylation sites would result 
in FAM198B being unable to inhibit the ERK/MAPK signal‑
ling pathway (51). 

NFATc1 is a major transcription factor involved in osteo‑
blast differentiation. Recent studies have demonstrated that it 
is upregulated in a variety of cancer types and mediates the 
malignant behaviour of cancer cells. The cancer‑promoting 
function of NFATc1 is largely dependent on c‑Myc expres‑
sion. In addition to directly binding to the TGFβ inhibitory 
element of the c‑Myc promoter (54), NFATc1 upregulates 
c‑Myc expression by activating the ERK1/2/p38 MAPK 
signalling pathway (55), thereby promoting the progression of 
ovarian (55), lung (56) and pancreatic (54) cancers. The knock‑
down of NFATc1 reduces ERK1/2 phosphorylation, whereas 
the pharmacological inhibition of ERK1/2 similarly impairs 
NFATc1 expression (57). NFATc1 and the ERK1/2 MAPK 
signalling pathway appear to have a mutually reinforcing 

Figure 1. CELF2 affects ferroptosis through the MAPK signalling pathway. 
CELF2, CUGBP, ELAV‑like family number 2; MAPK, mitogen‑activated 
protein kinase; NFATc1, nuclear factor of activated T‑cell c1; ERK, 
extracellular signal‑regulated kinase; FAM198B, family with sequence simi‑
larity 198, member B; FBW7, F‑box and WD repeat domain‑containing 7; 
PLD, phospholipase D; GLS, glutaminase; NR4A1, nuclear receptor 
subfamily 4 group A member 1; LSH, lymphoid specific helicase; WDR76, 
WD40‑repeat protein 76; NRF2, nuclear factor E2‑related factor 2; ARF6, 
ADP‑ribosylation factor 6; YAP, yes‑associated protein; SCD1, stearoyl‑CoA 
desaturase 1; ACSL4, acyl‑CoA synthetase long‑chain family member 4; 
ALOXE3, arachidonate lipoxygenase 3; TFRC, transferrin receptor protein; 
GPX4, glutathione peroxidase 4; SLC7A11, solute carrier family 7 member 11.
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relationship. The mechanisms through which NFATc1 regu‑
lates the MAPK signalling pathway remain unclear. One 
possible explanation is that NFATc1 maintains the activation of 
the MAPK signalling pathway by interacting with STAT3 and 
promoting the transcription of proteins upstream of the MAPK 
signalling pathway (58). CELF2 exerts tumour‑suppressive 
effects by regulating NFATc1 expression. A previous animal 
study discovered that tumour size and weight were substan‑
tially reduced in mice overexpressing CELF2, and that 
the overexpression of CELF2 was associated with reduced 
NFATc1 levels in tumour tissue (59). Furthermore, NFATc1 
overexpression significantly reversed the CELF2‑mediated 
reduction in the viability and invasive capacity of MCF‑7 
cells (59). Taken together, these results suggest that CELF2 
affects tumour progression via the NFATc1/MAPK pathway.

2. The PI3K/AKT signalling pathway is critical for the 
regulation of ferroptosis by CELF2 

The PI3K/AKT signalling pathway inhibits the ferroptosis 
process through multiple mechanisms. PI3K is a lipid kinase 
that phosphorylates the 3‑OH moiety of phosphatidylinositol 
in the plasma and cell membranes. There are several PI3K 
classes, among which, the most extensively studied is class I 
PI3K, whose activation is involved in a variety of biological 
behaviours in cancer cells. The main focus of the present review 
was PI3K signalling pathway. Class I PI3K converts phospha‑
tidylinositol‑3,4‑bisphosphate (PIP2) on the plasma membrane 
to phosphatidylinositol 3,4,5‑triphosphate (PIP3), which binds 
AKT and pyruvate dehydrogenase lipoamide kinase isozyme 
1 to PH domains and facilitates their interaction to phosphory‑
late and activate AKT (60,61). Activated AKT phosphorylates 
several downstream effectors, ultimately leading to cell 
growth, survival, and proliferation. The PI3K/AKT signalling 
pathway has been shown to promote tumour progression and 
drug resistance development by inhibiting ferroptosis (62,63). 
The role of CELF2 in the PI3K/AKT signalling pathway and 
its possible role in ferroptosis is illustrated in Fig. 2.

NRF2, a key antioxidant gene, is upregulated by the PI3K/AKT 
signalling pathway and confers ferroptosis resistance to 
cancer cells. NRF2 is a critical transcription factor that regu‑
lates antioxidant responses and plays a key role in preventing 
ferroptosis. In response to oxidative stress, the nuclear translo‑
cation of NRF2 is caused by the suppressed inhibitory effect of 
kelch‑like ECH‑associated protein 1 (Keap1) on NRF2. In the 
nucleus, NRF2 interacts with antioxidant response elements 
located in the mRNA promoter region, which encodes a subset 
of antioxidant genes, such as metallothionein‑1G, HO‑1, 
NAD(P)H:quinone oxidoreductase 1, ferritin heavy chain 
(FTH)1 and SLC7A11, ultimately activating and targeting gene 
transcription, thereby enhancing resistance to ferroptosis and 
promoting the development of drug resistance in cancer cells. 
The activation of the PI3K/AKT pathway induces the develop‑
ment of sorafenib resistance in cancer cells by upregulating 
NRF2 (64‑66). Indeed, the PI3K/AKT pathway can phosphor‑
ylate and inhibit glycogen synthase kinase‑3β (GSK3β), which 
attenuates the inhibitory effect of GSK3β on Fyn, which can 
phosphorylate the Tyr568 site of NRF2, leading to the nuclear 
export, ubiquitination and degradation of NRF2 (67‑69). 

mTOR is a major effector of the PI3K/AKT signalling 
pathway in the inhibition of ferroptosis. mTOR is a protein 
kinase that regulates cell growth, survival, metabolism and 
immunity, and is a major effector of the PI3K/AKT signal‑
ling pathway. Although mTOR can phosphorylate and activate 
p62, promoting the binding of p62 to Keap1 and upregulating 
NRF2 expression (70), its inhibitory effect on ferroptosis is not 
largely dependent on NRF2 (71). mTOR inhibits ferroptosis by 
directly upregulating GPX4 and SLC7A11 expression (72,73). 
In addition, mTOR upregulates sterol regulatory element 
binding protein‑1 (SREBP‑1) at both the transcriptional and 
post‑translational levels (74,75), and the overexpression of 
SREBP‑1 promotes resistance to ferroptosis through a pathway 
that affects lipid metabolism in cancer cells (71).

The PI3K/AKT pathway promotes hypoxia inducible 
factor‑1α (HIF‑1α) expression under normoxic conditions 
and consequently inhibits the onset of ferroptosis. HIF‑1α is 
another gene downstream of the PI3K/AKT/mTOR signal‑
ling pathway. The PI3K/AKT/mTOR pathway promotes the 
translation of HIF‑1α by regulating eukaryotic translation 
initiation factor 4E (eIF4E)‑binding protein 1 (eIF‑4EBP1), 
eIF‑4E and TRPV1‑ribosomal protein 70 S6 kinase (p70S6K) 
via phosphorylation (76,77). However, the regulation of 
HIF‑1α by the PI3K/AKT signalling pathway is cell‑specific 
and is influenced by environmental oxygenation. The inhibi‑
tion of the PI3K/AKT pathway significantly inhibits HIF‑1α 
accumulation under normoxic conditions, but not under 
hypoxic conditions (78,79). Under hypoxic conditions, the 
PI3K/AKT pathway plays a minimal role in regulating HIF‑1α. 
Additionally, the overexpression of HIF‑1α can promote AKT 
phosphorylation, which is dependent on the activation of 
autocrine growth factor genes, such as IGF‑II and TGF‑α by 
HIF‑1α (80). The positive feedback effects of the PI3K/AKT 

Figure 2. CELF2 affects ferroptosis through the PI3K/AKT signalling 
pathway. CELF2, CUGBP, ELAV‑like family number 2; HIF‑1α, hypoxia 
inducible factor‑1α; SLC7A11, solute carrier family 7 member 11; FTH1, 
ferritin heavy chain 1; HO‑1, heme oxygenase 1; NQO1, NAD(P)H:quinone 
oxidoreductase 1; MT1G, metallothionein 1G; SREBP‑1, sterol regula‑
tory element binding protein‑1; GPX4, glutathione peroxidase 4; eIF‑4, 
eukaryotic initiation factor‑4E; EBP1, eIF4E‑binding protein 1; p70S6K, 
TRPV1‑ribosomal protein 70 S6 kinase; mTOR, mechanistic target of 
rapamycin; GSK3β, glycogen synthase kinase 3β; PTEN, phosphatase and 
tensin homolog.
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pathway and HIF‑1α combine to promote cancer progres‑
sion (80). HIF‑1α has also been found to play an inhibitory role 
in ferroptosis. For example, under hypoxic conditions, HIF‑1α, 
which is highly expressed in gliomas and gastric cancer, 
promotes SLC7A11 expression by increasing the stability of 
SLC7A11 mRNA via the poly (methacrylic acid‑niclosamide) 
polymer/ELAV‑like RNA binding protein 1 pathway, thereby 
promoting resistance to ferroptosis and sulfasalazine (81,82). 
Moreover, HIF‑1α can also promote the production of NADPH 
from glucose into the pentose phosphate pathway to maintain 
intracellular redox homeostasis (83). 

CELF2 inhibits PI3K/AKT pathway activation via phospha‑
tidylinositol‑3,4,5‑trisphosphate‑dependent Rac exchange 
factor 2 (PREX2)/phosphatase and tensin homolog (PTEN). 
CELF2 influences tumour progression by affecting the 
PI3K/AKT signalling pathway (84,85). Indeed, the ability 
of CELF2 to bind to PREX2 and reduce the interaction of 
PREX2 with PTEN increases the activity of PTEN phos‑
phatase, which reverses the conversion of PIP2 to PIP3, 
thereby inhibiting activation of the PI3K/AKT signalling 
pathway (86,87). However, whether CELF2 influences 
ferroptosis through the PI3K/AKT signalling pathway 
requires further investigation.

3. CELF2 affects ferroptosis in cancer cells by promoting 
autophagy

The ferroptosis‑promoting effect of autophagy is depen‑
dent on a severe imbalance in the intracellular redox state. 
Ferroptosis is a form of autophagy‑dependent cell death (88,89). 
Autophagy was originally discovered as a cellular self‑defence 
mechanism capable of targeting damaged organelles or 
various harmful biomolecules, as well as invading pathogens, 
thereby enabling cells to survive a variety of stimuli in many 
cases (88,90). Excessive or uncontrolled autophagy can trigger 
autophagy‑dependent cell death (88,90).

NCOA4 mediates ferritinophagy and triggers mitochondrial 
autophagy. Recent studies have revealed that autophagy plays 
a crucial role in ferroptosis; for example, ferritinophagy, 
the degradation of ferritin by autophagy, is a main cause of 
cellular ferroptosis (91‑93). During ferritinophagy, FTH binds 
specifically to NCOA4 to form a complex and forms cohe‑
sions in response to interactions between NCOA4 protein 
molecules (94,95), which are then degraded by lysosomes 
via the macroautophagic (92,96) or macroautophagic (97‑99) 
pathways, releasing Fe2+ and causing ferroptosis. During this 
process, NCOA4 functions as an autophagic cargo receptor 
and is essential for ferritinophagy. Therefore, NCOA4 is a 
key target of ferritinophagy. In addition, NCOA4 has been 
reported to mediate mitochondrial autophagy in the context 
of iron homeostasis imbalance. For example, deferiprone, 
an iron chelator, causes cellular iron depletion that increases 
mitochondrial ferritin (FTMT) expression through the 
HIF‑1α/transcription factor specificity protein 1 axis and local‑
ises its precursor form to the outer mitochondrial membrane, 
whereas NCOA4 interacts with the precursor form of FTMT 
and triggers mitochondrial autophagy to inhibit hepatocellular 
carcinoma cell growth (100,101). 

The role of mitochondrial autophagy in ferroptosis is depen‑
dent on intracellular iron homeostasis and the redox status. 
The mitochondria play a critical role in ferroptosis. Ferroptosis 
is accompanied by mitochondrial dysfunction and the accu‑
mulation of mitochondrial ROS (mtROS). Mitochondria 
release mtROS into the cytoplasm to exacerbate their accu‑
mulation in the cytoplasm via several mechanisms (102), 
among which, mitochondrial autophagy may be a key 
mechanism (103‑105). The excessive accumulation of mtROS 
and its resultant mitochondrial dysfunction, manifested as 
mitochondrial depolarisation, has been well documented 
as a cause of mitochondrial autophagy (105‑107). Indeed, 
the excessive accumulation of mtROS and mitochondrial 
dysfunction can induce the activation of mitochondrial 
PTEN‑induced kinase 1 (PINK1) (108) and its localisation 
to the outer mitochondrial membrane (109,110), leading 
to PINK1‑mediated ubiquitin‑dependent mitochondrial 
autophagy. Moreover, mitochondrial DNA damage caused 
by the excessive accumulation of mtROS leads to an increase 
in intracytoplasmic mitochondrial DNA, which can trigger 
mitochondrial autophagy via the GCAS (cyclic GMP‑AMP 
synthase)‑STING1 (stimulator of interferon response cGAMP 
interactor 1) signalling pathway (111). Damaged mitochon‑
dria are enzymatically cleaved in endolysosomes, which is a 
cellular defence mechanism that removes dysfunctional mito‑
chondria, thereby preventing excessive ROS from damaging 
the cell. This also obscures the role of mitochondrial 
autophagy in tumour development. The analyses of public 
databases (112,113) have demonstrated that PINK1 expression 
is decreased in a variety of tumours and plays contradictory 
roles in various tumours and even in different cells. For 
example, in hepatocellular carcinoma, some studies have 
demonstrated a tumour‑suppressive effect of PINK1‑mediated 
mitochondrial autophagy (114,115), whereas other studies have 
revealed opposing results (113,116). These conflicting results 
indicate that mitochondrial autophagy may be influenced by 
certain factors that determine the ultimate effect of mitochon‑
drial autophagy on the cell, whether facilitated or inhibited. 

Endolysosomes are key sites for removing damaged 
organelles and abnormal proteins from cells. Endolysosomes 
contain significant amounts of iron and play a crucial role 
in maintaining cellular iron homeostasis (117,118). In acidic 
endolysosomes, iron is mainly present in the ferrous form and 
excessive iron content renders the endolysosomal membrane 
more susceptible to oxidative damage by ROS (117,119). It has 
been reported that in erastin‑ or RSL3‑induced ferroptosis, the 
ROS content of the endolysosome increases rapidly and leads 
to endolysosomal membrane permeabilization, resulting in the 
release of ROS into the cytoplasm, producing a cytoplasmic 
ROS burst and triggering ferroptosis (120,121). Moreover, 
excess levels of Fe2+ can also lead to changes in the endolyso‑
somal function and structure. For example, FAC, an iron agent, 
can significantly increase the number and surface area of 
endolysosomes and can lead to their dephosphorylation, which 
drives Fe2+ within endolysosomes into the cytoplasm via diva‑
lent metal transporter 1 and the related non‑selective two‑pore 
cation channels, thereby exacerbating cytoplasmic iron over‑
load and promoting ferroptosis (122,123). In summary, these 
findings illustrate that endolysosomes play a role in promoting 
ferroptosis in the context of iron and ROS overload. During 
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ferroptosis, ferritinophagy and mitochondrial autophagy 
provide large amounts of Fe2+ and ROS to endolysosomes, 
which causes endolysosomal dysfunction and exacerbates 
the ferroptosis‑promoting function of the endolysosome, 
which partially explains the conflicting roles of mitochondrial 
autophagy.

Therefore, the following conclusions can be inferred about 
autophagy and ferroptosis: During ferroptosis, autophagy 
is activated to eliminate excess Fe2+ and ROS from the cell; 
however, dysfunctional endolysosomes do not assist the cell 
to deal with the excess ROS and even leak iron and ROS from 
the lysosome, causing a burst of intracytoplasmic ROS and 
allowing ferroptosis to occur in cancer cells.

CELF2 can regulate the biological process of autophagy. 
CELF2, an RNA‑binding protein, can directly bind to the 
mRNA of autophagy‑related factors, allowing CELF2 to be 
directly associated with cellular autophagy. In colorectal 
cancer, the overexpression of CELF2 induced by radiotherapy 
is able to bind to Beclin1 and autophagy related gene (ATG)5/12 
mRNAs, increasing their half‑life and promoting the onset of 
autophagic cell death (124).

In addition to directly regulating autophagy‑related 
factors, CELF2 may indirectly regulate cellular autophagy 
via the MAPK and PI3K/AKT pathways. The p38/MAPK 
signalling pathway plays a dual role in autophagy. p38 can 
inhibit the activity of unc‑51 like autophagy activating 
kinase 1 (ULK1) (125,126), ATG5 (127), ATG8 (128) and 
mATG9 (129), thereby reducing autophagic flux; by contrast, 
p38 can also promote autophagy in some cases. For example, 
p38 has been found to promote autophagy through the heat 
shock protein 27/CREB pathway, which activates the transcrip‑
tion of ATG7 (130); the proteasome inhibitor MG231 is also 
able to induce LC3II production via the p38/GSK3β pathway, 
thereby activating autophagy (131). p38 also inhibits TP53 
ubiquitinated degradation via phosphorylation modifications, 
the latter activating the downstream DNA damage‑regulated 
autophagy modulator 1 gene, mediating autophagy induced 
by ROS accumulation (132). In the JNK/MAPK signalling 
pathway, activated JNK can enter the nucleus and promote the 
transcription of various autophagy regulators, such as LC3, 
Beclin1, Sestrin2 and ATG5/7 (133‑137). Simultaneously, 
JNK can also promote autophagy through non‑transcriptional 
mechanisms in some cases, such as through phosphorylation 
of BCL2. In addition, ERK1/2 and JNK, but not p38, can 
localise to the mitochondria, increasing the stability of PINK1 
and promoting mitochondrial autophagy (138,139). In recent 
years, researchers have found that the MAPK and PI3K/AKT 
pathways activate p62 via the NRF2‑Keap1 axis, which func‑
tions as an autophagic cargo receptor that binds to LC3 and 
promotes autophagosome formation (140). 

mTORC1, located downstream of the MAPK and 
PI3K/AKT pathways, is a key junction in the regulation of 
autophagy. mTORC1 is a critical inhibitor of autophagy, and 
available studies have shown that mTORC1 affects autophagy 
through several mechanisms. First, ULK1 is the primary 
downstream target of mTORC1 that can affect ULK1 activity 
through phosphorylation modifications and post‑translational 
pathways. Activated mTORC1 interacts with ULK1 and 
joins the ULK1‑ATG13‑FAK‑family interacting protein of 

200 kDa complex, whereas mTORC1 directly phosphorylates 
the Ser757 site in ULK1 (141,142). Ser757 is a key regulatory 
site of ULK1. The phosphorylation of ULK1 Ser757 not only 
prevents the activation of ULK1 by AMPK, which inhibits the 
phosphatase kinase activity of ULK1 (143), but also disrupts the 
interaction of ULK1 with ATG13, which helps localise ULK1 
to the detached membrane, thereby inhibiting the initiation of 
autophagy (125). Moreover, mTORC1 promotes the ubiquiti‑
nation of ULK1 by tumour necrosis factor receptor‑associated 
factor 6 by phosphorylating the Ser52 site of the activating 
molecule in Beclin1‑regulated autophagy protein 1, thereby 
reducing the stability of ULK1 (144). Second, activated 
mTORC1 phosphorylates the Ser113 and Ser120 (nuclear 
receptor binding factor 2 (NRBF2) sites. When mTORC1 
is inhibited, the dephosphorylated form of NRBF2 binds 
ATG14‑BECN1, facilitating the assembly of the Ptdlns3K 
complex and stimulating the production of Ptdlns3P on the 
isolated membrane, which can link to ULK1 and activate 
autophagy (145). Third, mTORC1 binds and phosphorylates 
the Ser498 site of the UV radiation resistance‑associated 
gene (UVRAG). Phosphorylated UVRAG is able to inhibit 
the activity of Vps34 via RUN domain Beclin 1‑interacting 
and cysteine‑rich containing protein, whereas its function 
to activate homotypic fusion and vacuole protein sorting is 
diminished, resulting in a decrease in ras‑like small GTPase 
superfamily member 7 activity, thereby inhibiting the initia‑
tion of autophagy and the maturation of autophagosomes and 
endosomes (146). Finally, mTORC1 can also reduce autoph‑
agic flux by phosphorylating autophagy regulators, such as 
death‑associated protein 1 (147) and p70S6K (148). 

The Wnt/β‑catenin signalling pathway has beeb found 
to be a negative regulator of autophagy. This pathway 
inhibits autophagosome maturation mainly by suppressing 
p62/SQSTM1 expression (149,150). Fan et al (151) found 
that miR‑363‑3p led to the activation of the Wnt/β‑catenin 
signalling pathway by targeting CELF2 and induced epithe‑
lial‑mesenchymal transition (EMT) in glioma cells. That study 
demonstrated for the first time that CELF2 may be located 
upstream of the Wnt/β‑catenin signalling pathway; however, 
it did not explain the specific regulatory mechanisms. The 
mechanisms through which CELF2 affects autophagy through 
the Wnt/β‑catenin signalling pathway require further investi‑
gation. The association between CELF2 and autophagy and its 
possible role in ferroptosis is illustrated in Fig. 3.

4. CELF2 may influence ferroptosis through the ERAD 
pathway

ER stress and ferroptosis. The ER is a crucial site for protein 
synthesis and processing, and its function is vulnerable to 
external factors. A variety of conditions, such as nutritional 
deprivation, hypoxia, viral infection, oxidative stress and 
calcium depletion can cause an imbalance in cellular compart‑
ment homeostasis and lead to ER stress, which is characterised 
by the accumulation of misfolded proteins within the ER 
lumen.

ER stress is also involved in ferroptosis. Increased 
acidity and viscosity within the ER have been reported in 
erastin‑induced ferroptosis, and the combination of erastin 
and dithiothreitol, an ER stress inducer, caused significant 
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increases in acidification and viscosity in the ER over a short 
period, suggesting the involvement of ER stress in the ferrop‑
tosis process (152,153). However, the contribution of ER stress 
to ferroptosis is so complex that it cannot be explained merely 
by changes in ER content. ER stress exerts varying, or even 
contrasting, effects on ferroptosis under different conditions. 
For example, in renal tubular epithelial cells (154) and hepa‑
tocytes (155), ER stress induced by cadmium exposure leads 
to ferritinophagy, whereas in lung cancer, ER stress caused by 
Ca2+ bursts can lead to the reprogramming of Ca2+ distribu‑
tion and mitochondrial dysfunction, facilitating the ferroptosis 
process through ROS production (156). Moreover, another 
study reported that the pharmacological inhibition or siRNA 
knockdown of zrt‑like, and Irt‑like protein family member 7 
induced ER stress by affecting zinc metabolism, which 
promoted the transcription of homocysteine‑responsive endo‑
plasmic reticulum‑resident ubiquitin‑like domain member 1 
and protected MDA‑MB‑231, RCC1 and HT1080 cells from 
ferroptosis damage through an unknown mechanism (157). 
The unfolded protein response (UPR), a signalling mechanism 
induced by ER stress aimed at resolving misfolded ER proteins 
and restoring ER homeostasis, is one of the most critical 
downstream pathways of ER stress and plays an unknown role 
in ferroptosis. Protein kinase R‑like endoplasmic reticulum 
kinase) and ATF6α, two major UPR effectors, have been found 
to play opposing roles in ferroptosis (158‑161). In summary, 
these studies collectively suggest that ER stress is involved in 
ferroptosis and that its function is influenced by a variety of 
factors.

The ERAD pathway may be involved in the process of 
ferroptosis. Similar to the UPR, ERAD is a key quality 
control mechanism in cells capable of degrading natural or 
misfolded proteins within the ER and maintaining ER homeo‑
stasis (162). The ERAD process is broadly divided into three 
stages. First, ERAD substrates are recognised by chaperone 
proteins or chaperone‑like lectins and are retained within the 

ER. Depending on their nature or sorting mechanisms within 
the ER, ERAD substrates are ubiquitinated by various E3 
ubiquitin‑linked enzymes and transported to the cytoplasm by 
p97/VCP proteins in an ATP‑dependent manner. Finally, the 
substrate proteins are degraded by the proteasome (163,164). 
This involves complex molecular mechanisms that will not 
be described herein, as they exceed the scope of the present 
review. During ER stress, both the UPR and ERAD are acti‑
vated and both mechanisms play a crucial role in restoring 
ER homeostasis. For example, the activation of the UPR 
promotes protein folding, while also increasing the expression 
of ERAD‑related proteins and promoting the role of ERAD in 
degrading misfolded proteins; by contrast, defects in ERAD 
can also lead to the accumulation of misfolded proteins 
within the ER, resulting in sustained ER stress, subsequently 
leading to cell death (165). Therefore, these two mechanisms 
have complementary, synergistic and irreplaceable functions. 
The ER and mitochondria are highly functionally associated; 
therefore, the status of the ERAD pathway also appears to 
be associated with mitochondrial function. Eeyarestatin I, 
an ERAD inhibitor, reportedly reorganises the overall mito‑
chondrial activity in HepG2 cells, resulting in mitochondrial 
dysfunction by elevating the intramitochondrial Ca2+ and ROS 
levels (166). In addition, the inhibition of the ERAD pathway 
leads to the accumulation of various substrate proteins on 
the ER membrane, such as sigma non‑opioid intracellular 
receptor 1 (SigmaR1) (167) and diacylglycerol o‑acyltrans‑
ferase 2 (168), and the excessive accumulation of these proteins 
can affect mitochondrial function through various pathways 
and may therefore be involved in the ferroptosis process (169).

In addition to resisting ER stress, ERAD maintains a 
basal state of activation under normal conditions and is 
involved in the degradation of normal proteins within the ER. 
A previous study identified SigmaR1 as an ERAD substrate 
in brown adipocytes (167). That study demonstrated that the 
knockdown of the Sel1L‑Hrd1 complex, the most conserved 
form of ERAD from yeast to humans, resulted in SigmaR1 

Figure 3. Possible association between CELF2 and autophagy and the promotion of ferroptosis. CELF2, CUGBP, ELAV‑like family number 2; mTOR, 
mechanistic target of rapamycin; MAPK, mitogen‑activated protein kinase; ATG, autophagy related gene; UVRAG, UV radiation resistance‑associated gene; 
ULK, unc‑51 like autophagy activating kinase; ROS, reactive oxygen species. 
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accumulation on ER membranes, which allowed the mito‑
chondria to fuse in response to cold stimulation and reduced 
the mitochondrial utilisation of lipid droplets. This phenom‑
enon was independent of ER stress (167). Of note, SigmaR1 
has also been found in various cancer cells (170‑172) and 
has been shown to function as an inhibitor of ferroptosis 
in hepatocellular carcinoma cells (173,174). Furthermore, 
cytochrome P450, an upstream regulator of ferroptosis (175), 
can be degraded as a substrate for ERAD (176). Therefore, 
the ERAD pathway may function as an upstream regulator 
of ferroptosis.

CELF2 affects the ERAD pathway by mediating the alterna‑
tive splicing of CD44. CD44 is a hyaluronan‑binding cell 
surface signal transduction receptor that plays a crucial role in 
the genesis, invasion and metastasis of a number of tumours, 
and is widely considered a marker of cancer stem cells. CD44 
contains two variable regions encoded by variable exons; there‑
fore, there are multiple isoforms of CD44, including standard 
CD44 (CD44s) and variant CD44 (CD44v). The dysregulation 
of alternative splicing frequently occurs in cancer, resulting 
in a shift from CD44s to CD44v, which can profoundly affect 
tumour biology (177). Lai et al (178) observed that CELF2, an 
important factor for mRNA alternative splicing, was involved 
in the alternative splicing of CD44 and led to a transition 
from CD44s to CD44v. Lai et al (178) also found that the 
role of CD44v in promoting pancreatic cancer development 
was dependent on the ERAD pathway, and that an inhibitor 
of the ERAD pathway was effective in reversing the effects 
of CD44 on cancer cells. Although the exact mechanisms of 
ERAD regulation by CD44 have not yet been elucidated, it 
is suggested that CELF2 functions as an upstream regulator 
of the ERAD pathway. The association between CELF2 and 
ERAD and their possible role in ferroptosis are illustrated 
in Fig. 4.

5. CELF2 activates the Wnt/β‑catenin pathway and 
promotes cancer cell resistance to ferroptosis 

Activation of the Wnt/β‑catenin signalling pathway inhibits 
ferroptosis. In the classical Wnt/β‑catenin signalling pathway, 
the Wnt protein binds to the Frizzled and low‑density lipo‑
protein receptor‑related protein 5/6 (LRP5/6) co‑receptors, 
thereby activating Dishevelled protein (DVL). This prevents 
adenomatous polyposis coli, axis inhibition protein (AXIN) 
and GSK3β from forming a destructive complex that prevents 
the phosphorylation and subsequent degradation of β‑catenin. 
The accumulated β‑catenin then translocates to the nucleus 
and activates downstream genes by binding to different 
co‑transcription factors to form transcriptional complexes. The 
Wnt/β‑catenin signalling pathway plays an inhibitory role in 
ferroptosis. β‑catenin translocated to the nucleus promotes the 
activation of ferroptosis regulatory genes, such as GPX4 (179), 
COX2 (182), SCD1 (181), peroxisome proliferator‑activated 
receptor‑γ coactivator 1‑α (181), matrix metalloprotein‑
ases (182) and c‑Myc (182,183), and promotes tolerance to 
platinum‑based chemotherapeutic agents through ferroptosis 
resistance in gastric (184) and ovarian (179) cancers and brain 
metastases from lung adenocarcinoma (185).

CELF2 affects the activation state of the Wnt/β‑catenin 
signalling pathway through multiple pathways. Fan et al (150) 
first identified an association between CELF2 and the 
Wnt/β‑catenin signalling pathway; however, its specific 
regulatory mechanisms require further exploration. Based on 
previous studies, it is suggested that several potential mecha‑
nisms may be involved in the regulation of the Wnt/β‑catenin 
pathway by CELF2.

The MAPK cascade, and PI3K/AKT and Wnt/β‑catenin 
signalling pathways crosstalk in a variety of tumours, and 
all three pathways play synergistic or alternative roles in 

Figure 4. CELF2 affects ferroptosis via ERAD. CELF2, CUGBP, ELAV‑like family number 2; ERAD, endoplasmic‑reticulum‑associated protein degrada‑
tion; UPR, unfolded protein response; ATF4, activating transcription factor 4; HSPA5, heat shock protein family A (Hsp70) member 5; GPX4, glutathione 
peroxidase 4; PERK, protein kinase R‑like endoplasmic reticulum kinase; ATF6α, activating transcription factor 6α; NRF2, nuclear factor E2‑related factor 2; 
HO‑1, heme oxygenase 1; SLC7A11, solute carrier family 7 member 11; DGAT2, diacylglycerol o‑acyltransferase 2; SigmaR1, sigma non‑opioid intracellular 
receptor 1; CYP450, cytochrome P450; ROS, reactive oxygen species.
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promoting tumour progression. The pro‑tumorigenic effects 
of the MAPK and PI3K/AKT pathways are partly dependent 
on the activation of the Wnt/β‑catenin signalling pathway. 
Thus, the MAPK and PI3K/AKT pathways may play regula‑
tory roles upstream of the Wnt/β‑catenin signalling pathway. 
As previously reported, p38, JNK and ERK1/2 are all able to 
phosphorylate the Ser1490 and Thr1572 sites of LRP6, which 
allows LRP6 to provide more AXIN1 and GSK3β binding 
sites, while isolating these two proteins from the β‑catenin 
destruction complex and thereby reducing the degradation of 
β‑catenin (186,187). Therefore, GSK3β is a critical regulatory 
target. AKT directly phosphorylates the Ser9 site of GSK3β to 
negatively regulate GSK3β activity, inhibit β‑catenin degra‑
dation and promote Wnt/β‑catenin pathway activation (188). 
In addition, β‑catenin is a direct target of the MAPK and 
PI3K/AKT pathways. (p21‑Activated kinase 1, located 
downstream of the PI3K/AKT and ERK/MAPK signalling 
pathways, activates the Wnt/β‑catenin pathway by directly 
phosphorylating β‑catenin and promoting its nuclear localiza‑
tion (189); ERK2 also promotes the nuclear translocation of 
β‑catenin by inhibiting the linkage of α‑catenin and β‑catenin 
through the phosphorylation of casein kinase 2α (190). 

As previously mentioned (149,150), the Wnt/β‑catenin 
pathway negatively regulates autophagy. In fact, the 
Wnt/β‑catenin pathway has a profound interaction with 
autophagy. The present review demonstrated that both DVL 
and β‑catenin can function as substrates for autophagy. For 
example, DVL can be ubiquitinated by Von Hippel‑Lindau 
protein and then degraded by autophagy through a p62‑medi‑
ated interaction with LC3 (191); β‑catenin is degraded 
by autophagy through interactions with LC3 under both 
nutrient‑dense and starvation conditions (150). Moreover, 
the inhibition of autophagy can alter the activation of the 
Wnt/β‑catenin signalling pathway (150,191). 

Taken together, these results suggest that CELF2 may 
affect the Wnt/β‑catenin signalling pathway via MAPK, 
PI3K/AKT and autophagy. The association between CELF2 
and the Wnt/β‑catenin pathway and its possible role in ferrop‑
tosis are illustrated in Fig. 5.

6. Conclusions and future perspectives

Ferroptosis is a novel form of cell death characterised by the 
excessive accumulation of intracellular lipid peroxide, which is 
dependent on an increase in intracellular iron‑dependent ROS. 
Ferroptosis involves a variety of factors, such as the GPX4 
antioxidant system, the ALOX and Ca2+‑independent phos‑
pholipase A2β pathways, DHODH and FSP1, and occurs under 
the combined regulatory effect of these factors. Moreover, the 
pro‑tumour effects of signalling pathways, such as MAPK, 
PI3K/AKT and Wnt/β‑catenin, are partly dependent on the 
resistance of cancer cells to ferroptosis. Ferroptosis plays a 
crucial role in the development of cancer cells and may serve 
as a mechanism for tumour therapy.

CELF2 contains three RNA recognition motifs, two at 
the N‑terminus and one at the C‑terminus, and a segment of a 
divergent structural domain that may mediate interactions with 
RNA (192). This determines the RNA‑binding properties of 
CELF2 (192). Indeed, CELF2 expression is reduced in a variety 
of cancers and is significantly associated with tumour stage and 

a poor prognosis of patient patients with various types of cancer, 
including in non‑small cell lung (87), colorectal (5,193), glio‑
blastoma (151), nasopharyngeal (194), gastric (195), breast (4), 
ovarian (52) and pancreatic cancers (178), and CELF2 may be 
a key locus for the action of various dysregulated miRNAs or 
lncRNAs (84,86,151,193‑195). The overexpression of CELF2 in 
these tumour cell lines has been reported to inhibit their biological 
behaviours, including proliferation, invasion, migration, EMT, 
and resistance to radio‑ and chemotherapy (7,85,124,193‑199), 
although the exact mechanisms involved remain unclear. The 
activation of MAPK or PI3K/AKT signalling pathways owing 
to the downregulation of CELF2 has been found to be sufficient 
for inducing proliferation, invasion and migration of cancer cells 
in a variety of tumours (84,86,87), but CELF2 may act through 
multiple mechanisms throughout tumour development. For 
example, in gliomas, the migration and invasion of cancer cells 
caused by CELF2 downregulation may be associated with the 
activation of EMT and Wnt/β‑catenin signalling pathways (151). 
In pancreatic cancer, the CELF2‑mediated CD44 alternative 
splicing affects apoptosis and cell stemness by regulating the 
ERAD signalling pathway (178). Furthermore, the downregula‑
tion of CELF2 confers chemoresistance to cancer cells through 
HO‑1‑ and COX‑2‑mediated cytoprotective effects (6,7). 
Thus, CELF2 appears to function as a key target in tumour 
development. The anticancer potential of CELF2 was initially 
demonstrated in several in vitro studies (7,52,200). Curcumin, 
a natural polyphenolic compound derived from turmeric, 
enhances the sensitivity of pancreatic and ovarian cancer cell 
lines to gemcitabine and cisplatin, respectively, by upregulating 
CELF2 (7,52,200). Although previous studies have identified 
the effects of CELF2 on the genes that regulate ferroptosis (6,7), 
the specific role it plays in ferroptosis remains unclear. 

Figure 5. CELF2 affects ferroptosis via the Wnt/β‑catenin pathway. CELF2, 
CUGBP, ELAV‑like family number 2; LRP6, low‑density lipoprotein 
receptor‑related protein 6; GSK3β, glycogen synthase kinase 3β; PAK1, 
p21‑activated kinase 1; CK2α, casein kinase 2α; SCD1, stearoyl‑CoA desatu‑
rase 1; GPX4, glutathione peroxidase 4; COX2, cyclooxygenase 2; PGC1α, 
peroxisome proliferator‑activated receptor‑γ coactivator 1‑α; MMPs, matrix 
metalloproteinases. 
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The present review summarised the downstream targets of 
CELF2 in detail and speculated on their role in ferroptosis in 
a continuous context, which also poses as a limitation of the 
present review. The present review identified several avenues 
for further research to improve the understanding of ferrop‑
tosis. Fig. 6 broadly illustrates that CELF2 affects ferroptosis 
through a variety of mechanisms. Overall, CELF2 can exert 
its oncogenic effects through multiple pathways that may be 
partly dependent on ferroptosis. 
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