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Abstract. Diabetes mellitus is a chronic metabolic disease 
commonly associated with complications such as cardiovas‑
cular disease, nephropathy and neuropathy, the incidence of 
which is increasing yearly. Transcription factor forkhead box 
M1 (FOXM1) serves an important role in development of 
diabetes and its complications. The present study aimed to 
review the association between FOXM1 with pathogenesis of 
diabetes and its complications. FOXM1 may be involved in 
development and progression of diabetes and its complications 
by regulating cell biological processes such as cell cycle, DNA 
damage repair, cell differentiation and epithelial‑mesenchymal 
transition. FOXM1 is involved in regulation of insulin secretion 
and insulin resistance, and FOXM1 affects insulin secretion 
by regulating expression of insulin‑related genes and signaling 
pathways; FOXM1 is involved in the inflammatory response in 
diabetes, and FOXM1 can regulate key genes associated with 
inflammatory response and immune cells, which in turn affects 
occurrence and development of the inflammatory response; 
finally, FOXM1 is involved in the regulation of diabetic 
complications such as cardiovascular disease, nephropathy 
and neuropathy. In summary, the transcription factor FOXM1 
serves an important role in development of diabetes and its 
complications. Future studies should explore the mechanism 
of FOXM1 in diabetes and find new targets of FOXM1 as a 
potential treatment for diabetes and its complications.
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1. Introduction

Diabetes mellitus (DM) is a common metabolic disease, and 
the number of people aged 20‑79 with diabetes is expected 
to increase to 642 million by 2040 (1). Patients with diabetes 
often exhibit complications, such as cardiovascular disease, 
neuropathy and retinopathy, which have impact patient life 
and health (2,3). Therefore, it is important to study the patho‑
genesis and treatment of diabetes and its complications (4‑6). 
The transcription factor forkhead box M1 (FOXM1) is widely 
present in a variety of cells and serves an important regula‑
tory role in biological processes such as cell cycle, DNA 
damage repair and cell differentiation  (7,8). FOXM1 also 
serves an important role in development of diabetes and its 
complications (9‑31). FOXM1 is involved in regulating the 
cell cycle, promoting cell proliferation, maintaining normal 
cellular differentiation and DNA damage repair (11,12,32). 
In addition, FOXM1 may be involved in regulating onset and 
progression of diabetic complications, such as cardiovascular 
disease and nephropathy (13,33). The present study aimed 
to review the role of FOXM1 in diabetic complications in 
terms of its expression, regulatory mechanism and function, 
and provide new ideas and approaches for the prevention 
and treatment of diabetes. Studies have shown that FOXM1 
is abnormally expressed in diabetic patients, especially in 
patients with diabetic foot ulcer (DFU) (9,10,15,31), cardio‑
vascular disease  (11,12), diabetic nephropathy (DN)  (14), 
neuropathy  (25,26) and erectile dysfunction (Fig.  1)  (30). 
The aforementioned studies suggest that FOXM1 may be 
involved in regulation of the development of diabetes and its 
complications. Studies have shown that multiple signaling 
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pathways and molecules regulate the expression and activity 
of FOXM1, such as YAP1/Akt/glycogen synthase kinase‑3 
(GSK3β)/FOXM1 (11), VEGF/FOXM1 (30), pituitary adenylate 
cyclase-activating polypeptide (PACAP)/FOXM1  (25,34), 
vasoactive intestinal polypeptide (VIP)/FOXM1  (25,35), 
IL‑6/STAT3/FOXM1  (26,27), PI3K/Akt/FOXM1  (36), 
Ras‑ERK/FOXM1 and JNK/p38MAPK/FOXM1  (7). 
Therefore, FOXM1 may be a key node in the regulation of 
these signaling pathways and molecules in diabetes and its 
complications. FOXM1 can regulate the expression of various 
genes, such as the cell cycle regulatory genes polo‑like Kinase 
1 (PLK1) and Centromere protein A (CENP‑A)  (18,29), 
DNA damage repair genes (Aurora kinase B, Baculoviral 
IAP Repeat‑Containing Protein  5, BUB1 mitotic check‑
point serine/threonine kinase B, centromere protein E, 
Signal STAT3)  (9) and apoptosis‑associated genes growth 
Arrest‑specific Transcripts (GAS5), TATA‑Box Binding 
Protein Associated Factor 15 (TAF15) and stromal cell derived 
factor 4 (SDF4) (31). In addition, some studies have found 
that FOXM1 may also regulate DM and its complications 
through the function of immune cells (including T and B cells, 
monocytes, macrophages, and dendritic cells) (9,10,37). Thus, 
FOXM1 may be involved in development of diabetes and its 
complications by regulating the expression of these genes.

In the present study, PubMed database was searched for 
‘FOXM1 and diabetes mellitus and its complications’ between 
2000 and 2023 (pubmed.ncbi.nlm.nih.gov/?term=FOXM1+ 
and+diabetes+mellitus+and+its+complications&filter=dates. 
2000%2F1%2F1‑2023). Results were mainly published in the 
past five years. The present study reviews the role and func‑
tion of FOXM1 in diabetes and its complications through 
gene expression and gene regulation. It was hypothesized 
that FOXM1 is involved in regulating insulin (INS) secretion 
and resistance, the inflammatory response and development 
and progression of complications in diabetes. Studies have 
confirmed that FOXM1 is a key regulator of the development 
of diabetes and its complications (9‑31).

2. FOXM1 in regulation of INS secretion and resistance

FOXM1 is a transcription factor, in islet cells FOXM1 is involved 
in the regulation of INS secretion (38,39) (Fig. 2). Studies have 
shown that in islet cells, FOXM1 regulates the expression of 
INS secretion‑related genes, or is regulated to promote INS 
synthesis and secretion, including INS, type 1 glucose trans‑
porter (GLUT1), GLUT2, INS‑like growth factor‑I (IGF‑I), 
leptin and adiponectin  (38‑40). Saavedra‑García  et  al  (41) 
confirmed that the FOXO3-FOXM1 axis regulates fatty acid 
metabolism. Studies have shown that glucokinase‑mediated 
glucose metabolism promotes adaptive β‑cell prolifera‑
tion‑induced INS synthesis and secretion via activation of the 
FOXM1/PLK1/CENP‑A pathway (18,25,29,36,37). Acetylcholine, 
PACAP and VIP promote adaptive β‑cell proliferation via 
upregulation of FOXM1 (25,42,43). STAT3/FOXM1/GLUT1 
pathway signaling regulates aerobic glycolysis and upregulation 
of GLUT expression promotes glucose‑stimulated INS secretion 
in human and mouse β‑cells (44,45). Glucagon‑like peptide‑1 
(GLP‑1) receptor agonists and dipeptidyl peptidase‑4 (DPP‑4) 
inhibitors potentially compensate for dysregulated β‑cell glucose 
metabolism (18).

In addition, FOXM1 is involved in regulation of INS 
resistance (IR). The causes of IR in obesity and type 2 DM 
(T2DM) are not limited to impaired INS signaling but also 
involve complex interactions of multiple metabolic pathways. 
Metabolites are regulated by modulating components of 
INS signaling pathways such as JAK2/STAT3, IKK/NF‑κB, 
JNK/p38MAPK and PI3K/AKT signaling pathways (46‑50). 
Zarrouki  et  al  (51) found that plasma FOXM1 levels are 
increased and positively correlated with IR. FOXM1 mediates 
multiple IR‑associated JAK2/STAT3, NF‑κB and PI3K/Akt 
pathways. FOXM1 expression could be regulated through 
the JAK2/STAT3 pathway  (52); upregulation of FOXM1 
increases NF‑κB expression  (53). FOXO3 and FOXM1 
forkhead box transcription factors downstream of PI3K/Akt 
and JNK/p38MAPK signaling cascades act downstream of 
PI3K/Akt and JNK/p38MAPK signaling cascades and are key 
for cell proliferation, differentiation, cell survival, senescence, 
DNA damage repair and cell cycle control (7).

FOXM1 can also influence the development and progres‑
sion of IR through pathways such as regulation of fatty acid 
metabolism and inflammatory responses. Elevated free fatty 
acid (FFA)‑induced lipotoxicity may play an important role in 
the pathogenesis of β‑cell IR (33,54,55). Mangiferin improves 
IR in HepG2 and C2C12 cells by increasing glucose consump‑
tion and promoting serum FFA oxidation via the PPARα 
pathway (56). Oxidative phosphorylation (OXPHOS) is linked 
to increased levels of reactive oxygen species (ROS), which 
are key signaling molecules; production of excess ROS can 
have deleterious effects, ultimately leading to cell death. By 
linking FOXM1‑dependent peroxiredoxin‑3 (Prx3) expres‑
sion and fatty acid oxidation‑mediated NADPH regeneration, 
Cancer stem cells (CSCs) with increased levels of OXPHOS 
maintain low ROS levels. FOXM1‑dependent ROS regulation 
is an intracellular resistance mechanism in cancer dry‑like 
cells (57). Nutritional overload triggers an uncontrolled inflam‑
matory response, leading to chronic low‑grade inflammation 
that promotes IR (58). In particular, overexpression of FOXM1 
inhibits the inflammatory response following myocardial 
infarction, thereby protecting the heart. Conversely, inhibition 
of FOXM1 activity abolishes the cardioprotective effect (59).

Taken together, FOXM1 serves an important role in the 
regulation of INS secretion and resistance and may be a poten‑
tial target for the treatment of diabetes.

3. FOXM1 in the inflammatory response in diabetes

FOXM1 is involved in regulating the inf lammatory 
response associated with diabetes. FOXM1 is involved in 
pathogenesis of diabetes by regulating the expression of 
inflammation‑associated mediators (IL‑1, IL‑6, TNF‑α) and 
cellular chemokines (monocyte Chemoattractant Protein‑1, 
C‑X3‑C motif chemokine ligand 1) are expressed and involved 
in the pathogenesis of diabetes (60‑63). In addition, FOXM1 
also regulates certain inflammation‑associated signaling path‑
ways, such as Wnt/β‑catenin (64), JAK/STAT (65), NF‑κB (66), 
SMAD3 (67) and P38MAPK (7) (Fig. 3). FOXM1 deubiquiti‑
nation could be induced through the Wnt/β‑catenin signaling 
pathway, stabilizing the structure and expression of FOXM1, 
thereby transporting β‑catenin into the nucleus and promoting 
the transcription of genes related to the biological behavior 
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of inflammation (68). FOXM1 activates the Wnt/β‑catenin 
via transcriptional regulation of multiple Wnt expression 
signaling pathways and promotes renal fibrosis (64). Silencing 
of FOXM1 prevents the effects of apoptosis, inflamma‑
tion, NF‑κB and JAK/STAT signaling pathway activation. 
Moreover, the expression of FOXM1 is positively correlated 
with the expression of p38MAPK and NF‑κB and induces 
expression of inflammatory factors and amplification of the 
inflammatory response cascade via the p38MAPK/NF‑κB 
signaling pathway (65). It has been proposed that FOXM1 can 
directly interact with Smad3 protein to promote Smad3 nuclear 
retention and bind to β‑catenin promoter sequence to promote 
fibrosis (69). microRNA‑4429 targeting FOXM1 can decrease 
expression of SMAD3 and impede cell proliferation, migra‑
tion, invasion and epithelial‑mesenchymal transition. High 
expression of FOXM1 increases secretion of T helper and 2 
cytokines and promotes inflammatory responses mediated by 
PI3K/AKT/GSK‑33 and p38MAPK signaling pathways. These 
findings suggest that FOXM1 serves an important regulatory 
role in the inflammatory response. Therefore, FOXM1 may be 
a potential target for diabetes therapy.

In DFUs, major transcriptional networks lead to decreased 
neutrophil and macrophage recruitment and a poorly 
controlled inflammatory response. The functions of transcrip‑
tion factors FOXM1 and STAT3 are required to activate and 
promote survival of immune cells, yet expression of transcrip‑
tion factors FOXM1 and STAT3 are suppressed in DFUs. 
Furthermore, inhibition of FOXM1 (streptozotocin‑induced 
and Leprdb mutant mice‑db/db) in a diabetic mouse model 
results in delayed diabetic wound healing and reduced neutro‑
phil and macrophage recruitment in vivo. This shows that a 
disordered and ineffective inflammatory response is a key 
factor in the pathogenesis of DFUs, which is facilitated by 
FOXM1‑mediated relaxation of neutrophil and macrophage 
recruitment, revealing a potential therapeutic strategy (9).

FOXM1 modulates the function of immune cells in 
diabetic patients, thereby influencing the extent and duration 

of the inflammatory response (9,37). Thus, FOXM1 may be 
a potential target for the treatment of diabetes and associated 
immune diseases. Future studies should explore the mecha‑
nism of FOXM1 action in immune cells in diabetic patients 
and develop FOXM1 inhibitors as novel drugs for the treat‑
ment of diabetes and associated immune diseases.

4. FOXM1 in regulating the development and progression 
of diabetic complications

FOXM1 serves an important role in the complications of DM. 
Persistent hyperglycemia, hyperinsulinemia and subsequent 
oxidative stress lead to diabetic complications, primarily 
classified as microvascular (nephropathy, retinopathy and 
neuropathy) and macrovascular (cardiomyopathy) complica‑
tions (70). Studies have shown that FOXM1 is abnormally 
expressed in diabetic patients with nephropathy, retinopathy, 
cardiovascular disease, DFU and tumors (9‑12,14,71). FOXM1 
is involved in the development and progression of complica‑
tions of diabetes via multiple pathways, including regulation 
of cell proliferation, apoptosis, inflammatory response, oxida‑
tive stress and angiogenesis. In DN renal tissue, FOXM1 is 
lowly expressed. FOXM1 overexpression improves renal 
function in mice, decreases pathological changes and 
increases the expression of the podocyte marker nephrin 
in renal tissue (14). In diabetic retinopathy (DR), FOXO1 is 
aberrantly expressed and the FOXM1/FOXO1 axis is involved 
in regulating development and progression of DR (72,73). 
In diabetic cardiovascular complications, FOXM1 is over‑
expressed in myocardial tissue in a hyperglycemic state, 
leading to increased cardiomyocyte hypertrophy and fibrotic 
response (11). Maternally imprinted gene (MEG3) promotes 
degradation of FOXM1 protein by promoting FOXM1 ubiqui‑
tination, thereby decreasing VEGF expression and ultimately 
regulating endothelial differentiation of bone marrow mesen‑
chymal stem cells (BM‑MSCs). MEG3/FOXM1 controls 
differentiation of BM‑MSCs to endothelial cells (ECs) (30). 
FOXM1 regulates ROS levels in neutrophils and inhibition 
of FOXM1 leads to an increase in ROS, resulting in neutro‑
phil extracellular trap (NET) formation, leading to tissue 
damage and impaired healing (10). Therefore, FOXM1 serves 
an important role in the complications of diabetes and may 
be a new target for the prevention and treatment of diabetic 
complications.

FOXM1 is involved in DN. DN is a renal microvascular 
complication caused by DM, characterized by proteinuria and 
progressive renal injury, and is a key contributor to end‑stage 
renal disease (74‑76). The most typical pathological changes 
in renal biopsies of patients with DN are glomerular lesions, 
primarily including diffuse and nodular thylakoid expansion 
and glomerular basement membrane thickening (77).

FOXM1‑activated sirtuin (SIRT)4 inhibits NF‑κB 
signaling and NLRP3 inflammatory vesicles to attenuate renal 
injury and podocyte apoptosis in diabetic kidney disease (14). 
The overexpression of FOXM1 improves renal function and 
decreases pathological changes in mice, and it increases the 
expression of the foot cell marker nephrin in kidney tissue. 
In in  vitro experiments, FOXM1 increases the viability 
and decreases pyroptosis of high Glucose‑treated MPC5 

Figure 1. Diabetic complications. Diabetes develops a variety of complications, 
including nephropathy, diabetic retinopathy, diabetic cardiovascular disease, 
diabetic erectile dysfunction, diabetic foot ulcers, and diabetic neuropathy.
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Figure 2. FOXM1/PLK1/CENP‑A pathway enhances adaptive β‑cell proliferation. Adaptive β‑cell proliferation contributes to the maintenance of functional 
β‑cell mass in mice and humans. Growth factor signaling regulates mitotic cell cycle progression via the FOXM1/PLK1/CENP‑A pathway, a critical compo‑
nent in the β‑cell adaptive response. FOXM1, forkhead box M1; PLK1, Polo‑like kinases; CENP‑A, centromere protein A.

Figure 3. FOXM1 is involved in regulation of diabetes‑related inflammatory responses. FOXM1 is involved in the pathogenesis of diabetes by regulating 
the expression of inflammation‑associated mediators IL‑1, IL‑6, TNF‑α, and cytokines MCP‑1, CCL2, and CX3CL1. In addition, FOXM1 regulates certain 
inflammation‑related signaling pathways, such as Wnt/β‑catenin, JAK/STAT, NF‑κB, TGF‑β1/Smad3, PI3K/AKT/mTOR and P38MAPK. FOXM1, forkhead 
box M1; MCP‑1, monocyte chemotactic protein‑1; CCL2, chemokine (C‑C motif) ligand 2; CX3CL1, C‑X3‑C motif chemokine ligand 1; Th, T helper.
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cells and increases the expression of the podocyte marker 
nephrin, while decreasing the expression of NLRP3 inflam‑
matory vesicles and cleaved caspase 1 associated with scorch 
death (14). In conclusion, FOXM1 alleviates renal injury and 
podocyte pyroptosis in patients with DN by transcriptionally 
activating SIRT4 and inhibiting the NF‑κB signaling pathway 
and NLRP3 inflammatory vesicles (Fig. 4).

Activation of the Wnt/β‑catenin pathway serves a key role 
in promoting renal fibrosis. The transcription factor FOXM1 is 
significantly increased in the kidney of patients with obstruc‑
tive kidney and fibrosis (64). FoxM1 is mainly distributed in 
the renal tubular epithelial cells. In renal tubular epithelial 
cells, overexpression of FoxM1 promotes the expression of 
eight Wnts, whereas knockdown of FoxM1 inhibits angio‑
tensin  II)‑induced expression of multiple Wnts, including 
Wnt1, Wnt2b and Wnt3, and FoxM1 regulates the transcription 
of Wnt1, Wnt2b, and Wnt3. Inhibition of FoxM1 downregu‑
lates expression of Wnts, ultimately leading to the reduction 
of renal fibrosis (64). These findings suggest that FoxM1 may 
be a key switch in activating the β‑catenin pathway and renal 
fibrosis (Fig. 4). Therefore, FoxM1 may be a potential thera‑
peutic target for the renal fibrosis (64).

Acute kidney injury (AKI) is characterized by sudden loss 
of renal function due to tubular epithelial damage. Renal tubular 

regeneration is essential to prevent progression of chronic 
kidney disease (78). Renal FoxM1 expression is increased in 
mice following renal ischemia/reperfusion (I/R)‑induced AKI. 
Thiostrepton targeting of FoxM1 decreases FoxM1‑regulated 
pro‑proliferative factors and cell proliferation in vitro, as well 
as tubular regeneration in mice following AKI, indicating 
FoxM1 is important for tubular regeneration after AKI (78). 
FOXM1 inhibits diabetic kidney injury and promotes tissue 
repair by regulating SIRT4 expression; FOXM1 activates 
β‑catenin, Cyclin D1 and c‑myc, and inhibits p21 and p27 
expression to induce tubular regeneration after AKI. In addi‑
tion, FOXM1, induced early in injury, is required for epithelial 
cell proliferation in  vitro, and is dependent on epidermal 
growth factor receptor (EGFR) stimulation (79).

FOXM1 regulates multiple signaling pathways and 
gene expression, including TGF‑β, Wnt/β‑catenin and 
NF‑κB (64,80,81), as well as cell cycle, apoptosis and oxida‑
tive stress (82,83). Thus, it affects the proliferation, apoptosis 
and differentiation of cells, including glomerular and tubular 
cells (81). Therefore, FOXM1 may be a new target for treat‑
ment of DN. Researchers are exploring the signaling pathways 
and mechanisms of action regulated by FOXM1, as well as 
potential FOXM1 application in DN diagnosis and treat‑
ment (64,80-83).

Figure 4. FOXM1 may be involved in diabetic nephropathy by regulating signaling pathways such as NF‑κB/NLRP3 and Wnt/β‑catenin. FOXM1 inhibits 
diabetic kidney injury by regulating expression of SIRT4 and promotes diabetic kidney tissue repair. FOXM1 activates β‑catenin, Cyclin D1 and c‑myc genes, 
inhibits the expression of p21 and p27 and induces metanephric tubule regeneration. FOXM1, forkhead box M1; SIRT4, sirtuin; IP, intraperitoneal; STZ, 
streptozotocin; I/R, ischemia reperfusion; AKI, Acute kidney injury.

https://www.spandidos-publications.com/10.3892/ijmm.2023.5304
https://www.spandidos-publications.com/10.3892/ijmm.2023.5304


ZHAO et al:  FOXM1 AND DIABETES AND ITS COMPLICATIONS6

FOXM1 may be involved in regulation of DR. Oxidative stress 
and inflammation are key causative factors for DR, which is 
the most common ocular complication of DM and the leading 
cause of visual impairment in working‑age people worldwide. 
FOXM1 regulates cell cycle, proliferation, apoptosis and 
metabolism by affecting the expression of microvascular cell 
inflammation (IL‑1β, IL‑6, TNF‑α and NF‑κB) and apoptosis 
genes (caspase‑3) and may be involved in the regulation of DR. 
INS blocking leads to elevated blood sugar levels and may 
lead to excess triggering of FOXM1, ultimately increasing the 
production of several apoptotic and inflammatory factors such 
as TNF‑α and NF‑κB, as well as ROS, which may also lead to 
DR (16,20,23,66).

FOXM1 can regulate the expression of retinopathy‑related 
genes such as VEGF and TGF‑β, thereby affecting the occur‑
rence and progression of DR (84‑87). Therefore, FOXM1 may 
serve an important role in the occurrence and development 
of DR. To the best of our knowledge, however, there are no 
studies on the regulatory role of FOXM1 in DR.

FOXM1 is involved in diabetic neuropathy. Diabetic 
neuropathy is a common complication that affects function of 
the nervous system, including sensory, motor and autonomic 
systems (42). By blocking the hepatic branch of the vagus nerve 
and inducing deletion or overexpression of hepatocyte‑specific 
FOXM1, it has been shown that vagal signaling is involved in 
the inhibition or rapid activation of the hepatocyte FOXM1 
pathway and affects hepatocyte proliferation following partial 
hepatectomy. Vagotomy increases postoperative mortality 
and replenishment of hepatic FOXM1 prevents this, which is 
a key mechanism to improve survival following liver injury. 
Notably, macrophages act as mediators of vagal signaling and 
acute activation of the FOXM1 pathway in hepatocytes (27). 
Acetylcholine secreted by the vagus nerve and IL‑6 secreted 
by macrophages are involved in the molecular mechanism 

of vagus‑macrophage‑hepatocyte transduction by which 
STAT3 is phosphorylated via the IL‑6 signaling pathway 
and phosphorylated STAT3 binds to the FOXM1 gene 
promoter, and the activated FOXM1 gene promotes hepato‑
cyte regeneration (27,88). Vagal signaling directly activates 
the FOXM1 pathway in pancreatic β cells, thus promoting 
compensatory proliferation (42,89). Unlike islet cells, which 
are abundantly distributed, vagus innervation is scarce in the 
liver and only visible around the portal vein area. Thus, vagal 
signaling‑mediated IL‑6 production in hepatic macrophages 
upregulates hepatocyte FOXM1, leading to liver regeneration 
and ensuring survival. This complex multi‑step mechanism of 
neuronal, immune and parenchymal cells allows emergency 
regenerative signals to be amplified and propagated through 
the organ, thus promoting rapid liver regeneration and ensuring 
systemic survival following severe liver injury  (27,88,89). 
Studies suggest that FOXM1 may be involved in development 
and progression of diabetic neuropathy through mechanisms 
such as regulation of neuronal apoptosis, oxidative stress and 
inflammation (27,42,88,89). However, more studies are needed 
to determine the exact role and mechanisms of FOXM1 in 
diabetic neuropathy.

FOXM1 is involved in diabetic cardiovascular disease. 
FOXM1 is involved in the development and progression of 
diabetic cardiovascular disease. During diabetes, sustained 
hyperglycemic stress in cardiac primary contractile cells and 
cardiomyocytes leads to increased apoptosis, which leads 
to cardiomyocyte hypertrophy and fibrosis  (90). Cardiac 
hypertrophy and fibrosis lead to structural and functional 
abnormalities (such as arrhythmia, heart failure and atrial 
fibrillation) that contribute to risk of heart failure. FOXM1 
is overexpressed in myocardial tissue during hyperglycemia, 
leading to increased cardiomyocyte hypertrophic and fibrotic 
responses (11) (Fig. 5). Under hyperglycemic stress, YAP1 

Figure 5. Schematic diagram of the signaling pathway of YAP1/FOXM1 activity in the induction of cardiomyocyte hypertrophy and fibrosis. Under hyperglycemia 
stress, YAP1 is activated in cardiomyocytes following reduced inactivating phosphorylation of YAP1. High glucose also increases activation of YAP1. Elevated 
YAP1 leads to increased AKT phosphorylation, thus promoting AKT activity. Increased AKT mediates inactivation of FOXM1. Upregulated YAP1 leads to 
aberrant FOXM1 accumulation within the cardiomyocyte. This elevated FOXM1 promotes pathological remodeling of cardiomyocytes, leading to cardiomyocyte 
hypertrophy and fibrosis. YAP, Yes‑associated protein 1; FOXM1, forkhead box M1; p, phosphorylated; BNP, brain natriuretic peptide; SMA, smooth muscle actin.
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in cardiomyocytes leads to elevated AKT phosphorylation 
by activating YAP1, and elevated AKT mediates loss of 
inhibitory regulation of FOXM1 by GSK3β inactivation. Thus, 
upregulated YAP1 leads to abnormal FOXM1 accumulation in 
cardiomyocytes. This elevated FOXM1 promotes pathological 
remodeling of cardiomyocytes, leading to cardiomyocyte 
hypertrophy and fibrosis. FOXM1 serves an important role 
in cardiovascular pathology (11). FOXM1 may promote the 
development of diabetic cardiovascular disease. Endothelial 
and smooth muscle cells mediate vascular remodeling via 
FoxM1 signaling interactions (91); FOXM1 promotes vascular 
endothelial cell and cardiomyocyte proliferation and neonatal 
heart regeneration (92). FOXM1 may also be involved in the 
development of diabetic cardiovascular disease. FOXM1 
can regulate cardiomyocyte proliferation and thus affect 
cardiomyocyte survival and function. During zebrafish heart 
regeneration following injury, Foxm1 is required in cardio‑
myocyte proliferation through transcriptional regulation of 
cell cycle genes (32). FOXM1 regulates biological processes 
such as cardiac fibrosis and inflammatory responses, accel‑
erating the deterioration of cardiac function (11). Previous 
studies have shown that FOXM1 serves a key role in inflam‑
mation and inflammatory cell recruitment (10,14,15). FOXM1 
regulates the expression of pro‑inflammatory cytokines and 
chemokines, including IL‑6, inducible nitric oxide synthase 
(INOS), Chemokine C‑C‑Motif Receptor 2 (CCR2) and CX3C 
chemokine receptor1 (CX3CR1) (93‑96).

ERK acts upstream of the FOXM1 transcription factor, 
which is a key downstream effector of the ERK pathway 
involved in the control of cycle progression and cell prolif‑
eration and activates it via phosphorylation and nuclear 

translocation. FOXM1 expression is induced by tissue damage 
and is decreased in senescent cells (97,98). Therefore, FOXM1 
is associated with the pathogenesis of atherosclerosis and may 
be involved in diabetic atherosclerosis (13).

Hyperglycemia, a feature of diabetes, can induce vascular 
complications by increasing endothelial cell apoptosis 
and limiting proliferation. The potential role of FoxM1 in 
high‑glucose‑induced EC injury, where FoxM1 protects EC 
from high‑glucose‑induced growth arrest and apoptosis by 
inhibiting ROS induced by regulation of the Akt and ERK 
pathways, may be a novel therapeutic target to treat EC 
dysfunction (12). Therefore, the role of FOXM1 in diabetic 
cardiovascular disease may serve as a targets and strategies 
for the prevention and treatment of diabetic cardiovascular 
disease.

FOXM1 is involved in DFU. DFU is a serious complication 
caused by DM, associated with decreased quality of life and 
high mortality, with deterioration leading to foot amputa‑
tion (99‑101). FOXM1 controls oxidative stress by inducing 
the expression of ROS (such as Superoxide dismutase 
(SOD2, glutathione peroxidase 4, Serine/threonine protein 
phosphatase, Glycerol phosphate dehydrogenase, Serine 
hydroxymethyltransferase 2 and Methylene tetrahydrofolate 
dehydrogenase 2) (57,102). The wound environment of DFU 
is accompanied by prolonged inflammation, leading to 
impaired wound healing. FOXM1 is lowly expressed in DFU 
rat wound tissue and its ability to enhance DFU macrophage 2 
(M2) polarization and trauma healing is enhanced; silencing 
FOXM1 reverses promotion of M2 polarization‑induced 
human dermal fibroblast proliferation and migration (Fig. 6). 

Figure 6. Molecular mechanisms of FOXM1‑mediated inflammatory factors (SEMA3C, STAT3, TNF) in undamaged oral mucosa, skin and DFUs models. 
FOXM1 activates transcription of SEMA3C, thus enhancing M2 polarization, which accelerates wound healing in DFU. FOXM1 demonstrates a similar 
wound‑activated signature of genes involved in differentiation, cytokines and intermediate filaments. Inhibition of FOXM1, STAT3 and TNFα regulators 
results in lack of immune‑cell activation, proliferation and survival in DFU, contributing to dysregulated inflammatory response and inhibition of wound 
healing. FOXM1, forkhead box M1; SEMA3C, semaphorin 3C; DFU, diabetic foot ulcer.
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Thus, targeting the transcription factor FOXM1 may provide 
a therapeutic target for promoting DFU wound healing (15).

In a diabetic mouse model of skin injury, inhibition of 
FOXM1 results in delayed wound closure and decreased 
recruitment of neutrophils and macrophages (9). FOXM1 is 
a regulator of neutrophil response during acute skin and oral 
mucosal wound healing in human DFU (9).

The FOXM1 signaling pathway regulates NET forma‑
tion during diabetic wound healing. FOXM1 is a regulator 
of NET formation by modulating ROS levels to promote 
neutrophil immune responses during wound healing (103,104). 
Furthermore, triggering receptor Expressed on Myeloid 
cells 1 (TREM1) is associated with FOXM1 during DFU 
wound healing, and TREM1 activation increases the recruit‑
ment of FOXM1‑positive neutrophils and enhances diabetic 
wound healing (10,105). FOXM1 is downregulated in DFU, 
resulting in decreased neutrophil response, suggesting that 
TREM1/FOXM1 is a key regulator of diabetic wound healing. 
TREM1 promotes wound healing by regulating Interlukin‑1β 
(IL1B), IL6, Cyclin Dependent Kinase 1 (CDK1), Amphiregulin 
(AREG), SOD2 and C‑X‑C motif chemokine 8 (CXCL8) 
which promote FOXM1 gene activation (10). TREM1/FOXM1 
promotes the recruitment of neutrophils, reverses the effects of 
diabetes, and promotes wound healing in vivo, suggesting that 
the FOXM1 pathway is a novel regulator of NET formation 
during diabetic wound healing and revealing a new therapeutic 
strategy to promote DFU healing (10).

The expression of FOXM1, GAS5 and SDF4 is decreased 
in the skin tissue of patients with DFU (31). High glucose 
stimulation induces endoplasmic reticulum stress and apop‑
tosis, which inhibits angiogenesis in Human umbilical vein 
endothelial cells (HUVECs), whereas FOXM1 overexpres‑
sion alleviates inhibition of angiogenesis. FOXM1 regulates 
GAS5 expression and knockdown of GAS5 reverses the 
effects of FOXM1 overexpression. FOXM1 inhibits 
endoplasmic reticulum stress and apoptosis and promotes 
angiogenesis by mediating the GAS5/TAF15/SDF4 axis 
generation, providing a novel molecular mechanism for the 
treatment of DFU (31).

FOXM1 is involved in diabetic patients with tumors. 
Epidemiological studies have shown that DM and hyper‑
glycemia are not only risk factors  (106), but also poor 
prognostic indicators for numerous types of cancer (such as 
kidney, oesophageal, colorectal, breast and bladder cancer, 
and leukaemia) (107,108). A previous study found that high 
glucose‑induced KKU‑213A and KKU‑213B cells exhibit high 
FOXM1 expression in a dose‑dependent manner (22).

Obesity and inflammation are associated with increased 
risk of hepatocellular carcinoma, which is the leading cause of 
cancer‑associated deaths worldwide. Tissue metalloproteinase 
inhibitor 3 (Timp3) deficiency during hepatocarcinogenesis in 
obesity is associated with decreased FoxM1 transcriptional 
activity via the H19/microRNA (miR)‑675/p53 pathway (109). 
Timp3 ablation leads to cell cycle perturbation by suppressing 
FoxM1 transcriptional activity through the H19/miR‑675/p53 
pathway  (109). Investigators have designed antitumor and 
antidiabetic drugs targeting FOXM1 (17,110).

Studies have identified that FOXM1 serves a key role in 
INS secretion and islet cell proliferation and thus FOXM1 

inhibitors may be useful in improving IR and glycemic cont
rol  (18,25,29,36,37,111,112). FOXM1 inhibitors include 
thiostrepton and siomycin A, which inhibit FOXM1 transcrip‑
tional activity in cellular and animal models (17,110). However, 
further studies are needed to validate the efficacy and safety of 
inhibitors for use in clinical therapy.

5. Conclusion

DM and its complications are a notable public health problem 
worldwide and impact quality of life and survival of patients. 
FOXM1 is an important transcription factor that has been 
shown to serve a key role in the development and progression 
of DM and its complications (9,10,15,31). The present study 
reviewed the role and function of FOXM1 in diabetes and its 
complications. FOXM1 serves an important role in INS secre‑
tion and resistance (112). FOXM1 can promote INS synthesis 
and secretion, while inhibiting IR. In addition, FOXM1 affects 
the balance of glucose metabolism by regulating expression 
of genes associated with glucose metabolism. Second, the 
role of FOXM1 in diabetic complications has also received 
attention. Studies have shown that FOXM1 can be involved in 
occurrence and development of diabetes‑associated complica‑
tions such as nephropathy, neuropathy, and retinopathy (9‑31). 
FOXM1 affects the occurrence and development of diabetic 
complications by regulating biological processes such as cell 
proliferation, apoptosis, and oxidative stress. Further research 
is needed to determine the specific regulatory mechanism of 
FOXM1, interaction with other transcription factors and the 
role of FOXM1 in different types and stages of diabetes. Future 
studies should investigate the role and function of FOXM1 in 
diabetes and its complications to provide novel approaches for 
the prevention and treatment of diabetes.

Despite need for effective treatments to cure diabetic 
complications such as DFU, no new Food and Drug 
Administration‑approved therapy has been effective since 
1998. The pathogenesis of diabetic complications involves 
intrinsic factors, such as neuropathy, vasculopathy, ischemia, 
infection, fibrosis and immune dysfunction. In conclusion, 
further development of drugs for the treatment of diabetes and 
its complications is required.
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