
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  52:  106,  2023

Abstract. The influence of heat shock proteins (HSPs) on 
protein quality control systems in cardiomyocytes is currently 
under investigation. The effect of HSPs on the regulated cell 
death of cardiomyocytes (CMCs) is of great importance, since 
they play a major role in the implementation of compensatory 
and adaptive mechanisms in the event of cardiac damage. 
HSPs mediate a number of mechanisms that activate the 
apoptotic cascade, playing both pro‑ and anti‑apoptotic roles 
depending on their location in the cell. Another type of cell 
death, autophagy, can in some cases lead to cell death, while 
in other situations it acts as a cell survival mechanism. The 
present review considered the characteristics of the expression 
of HSPs of different molecular weights in CMCs in myocar‑
dial damage caused by heart failure, as well as their role in the 
realization of certain types of regulated cell death.
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1. Introduction

The reliability of cellular protein composition is important 
for proper cellular function in various tissues, especially in 
the myocardium, as cardiac myocytes (CMCs) are terminally 
differentiated cells with very limited regenerative potential (1). 
At the same time, the metabolic demands of the heart require 
a tight control of protein quality (2). Cellular stress in the 
myocardium, which occurs during ischemia (3), hyperten‑
sion (4) and metabolic disorders including diabetes mellitus 
(DM) (5), can disrupt protein homeostasis and cause abnormal 
folding of cellular proteins. Intracellular accumulation of 
toxic, misfolded proteins and their aggregates may contribute 
to the development of heart failure (6). Cells have an innate 
mechanism for detecting protein misfolding, which they can 
use to repair or remove these proteins. This mechanism is 
called ‘protein quality control’ and involves three main path‑
ways (Fig. 1) (7,8). First, misfolded proteins are exposed to heat 
shock proteins (HSPs), which are characterized as molecular 
chaperones. If the chaperone system fails to refold denatured 
proteins, they are ubiquitinated by an activated second system 
and delivered to the proteasome mechanism for subsequent 
degradation. When these systems are disrupted or overloaded, 
such ubiquitinated proteins accumulate in agresomes, peri‑
nuclear structures which are ultimately utilized by autophagy, 
the third mechanism (9‑12).

HSPs are a family of conserved proteins that can contribute 
to proper protein folding, maintain protein stability and act as 
molecular chaperones to regulate cellular metabolism, tissue 
composition and other processes (13). HSPs are also called 
stress‑induced proteins because of their ability to stabilize 
and repair proteins during their synthesis in the cell under the 
action of unfavorable agents on the cell (14,15). Meanwhile, 
they are also involved in the modulation of inflammatory 
response, oxidative stress and metabolism (16‑18).

The effect of HSPs on the regulated cell death of CMCs 
is of great interest, as they contribute significantly to the 
implementation of compensatory and adaptive mechanisms, 
such as in the case of cardiac damage (19‑21). HSPs mediate 
a number of activation mechanisms of the apoptotic cascade, 
playing both pro‑ and anti‑apoptotic roles depending on their 
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cellular localization (22). In some cases, autophagy can lead to 
cell death, while in other cases it acts as a mechanism for their 
survival (23,24).

Despite the availability of numerous data, concerning the 
role of HSPs and factors involved in programmed cell death 
in response to pathological agents, there is currently no clear 
idea of their role in the pathogenesis of heart failure caused by 
various types of cardiovascular pathology.

2. The role of HSPs in the structural and metabolic changes 
of CMCs in various types of cardiovascular pathology

HSPs and inflammation. HSPs are involved in inflamma‑
tion, which mediates various pathological processes in the 
myocardium. Schroder and Tschopp (16) and other scientists 
paid special attention to the role of HSPs in the formation 
of intracellular platforms; inflammasomes, which are acti‑
vated by ‘danger’ signals and induce inflammatory caspases, 
mainly caspase‑1, which contributes to the production of 
pro‑inflammatory cytokine IL‑1β (25,26). A number of other 
cytokines from the family of pro‑inflammatory mediators 
are also related to these processes (27). TNF is associated 
with the induction of necrosis, cell damage and tearing of 
membrane molecules, membrane modularity (28,29). Some 
members of the HSP family support inflammasome activa‑
tion, while others inhibit it. In particular, HSP60 (Fig. 2) is 
required for the phosphorylation and nuclear localization 
of NF‑kB after stimulation by IL‑1β in microglia  (30). 
Knockdown of the HSP60 gene leads to inhibition of phos‑
phorylation of the p65 NF‑kB subunit and consequently to 
suppression of NF‑kB nuclear translocation. Presumably, 
HSP60 promotes p65 phosphorylation  (31). This activa‑
tion of the NF‑kB pathway leads to the overexpression of 
both pro‑IL‑1β and nucleotide‑binding oligomerization 
domain‑containing protein 3 (NLRP3), corresponding to 
the ‘priming’ step of NLRP3 inflammasome activation (32). 
HSP60 also induces mitochondrial damage, as evidenced by 
a decrease in their membrane potential after HSP60 over‑
expression and treatment with IL‑1β. This is accompanied 
by an increase in reactive oxygen species (ROS) production, 
which contributes to oxidative stress, which in turn activates 
the NLRP3 inflammasome (33).

HSPs and platelets, thrombosis. Platelets serve as regulators 
of hemostasis. Upon interaction with extracellular matrix 
proteins, such as collagen, platelets are activated, leading to 
shape change, secretion, filopodia formation and ultimately 
aggregation (34‑36). Platelet aggregation is largely mediated 
by activation of the platelet integrin αIIbβ3, which undergoes 
conformational changes in response to stimulation of soluble 
fibrinogen binding (37,38). The role of HSPs in the activa‑
tion of thrombus formation is of great interest, particularly 
in relation to the problem of preventing coronary artery 
thrombosis.

Rigg et al  (39) demonstrated the role of HSP70 in the 
modulation of integrin activation. The regulation of integrin 
and platelet conformational changes by molecular chaperones 
together with thiol isomerases has been suggested. The study 
demonstrated the importance of intracellular HSP70 in the 
regulation of integrin activation and platelet secretion, but 

the involvement of extracellular HSP70 in the modulation of 
platelet integrin activity and thrombus formation should also 
be considered (39). Activated HSP70 can be translocated to 
the cell surface and secreted by exosomes. In the extracellular 
space, HSP70 is able to bind Toll‑like and other receptors 
on monocytes, macrophages, dendritic cells, followed by 
activation of NFκB/MAP kinase pathways, initiating an 
inflammatory response in tissues (40‑42).

HSP and arterial hypertension (including in combination 
with DM). In a recent study by Blagonravov et al  (43), it 
was found that the production of HSPs can either increase 
or decrease under the action of various stress factors. In 
particular, the expression of HSP60 in CMCs of left ventric‑
ular (LV) myocardium decreased both during hemodynamic 
overload of the LV caused by hypertension and during meta‑
bolic disturbances in the myocardium associated with DM. 
Moreover, the combination of hypertension and DM was not 
associated with a synergistic negative effect on this process. 
On the contrary, a slightly less pronounced inhibition of 
HSP60 production was observed. Suppression of HSP60 
synthesis is most likely to be associated with energy depriva‑
tion due to LV overload and/or insulin‑dependent DM, since 
this protein is ATP‑dependent.

HSPs and metabolic syndrome. Metabolic syndrome is a 
risk factor for the development of heart failure and DM. The 
features of the metabolic syndrome are systemic inflamma‑
tion and oxidative stress, which can enhance the expression 
and release of HSP (44). HSPs play a role in cell signaling 
and regulation of cell metabolism in conditions of insulin 
resistance  (45). In obesity, an uncontrolled inf lamma‑
tory reaction and a disorder of the body's defense system 
play an important role in inhibiting the signaling cascade 
of insulin receptors and, as a consequence, a disorder of 
systemic metabolic homeostasis  (41). Regulation of HSP 
expression at the gene level is an important aspect of HSP72 
activity in metabolic syndrome. Overexpression of HSP72 
leads to an increase in the number of mitochondria in 
cells, the oxidative capacity and the sensitivity of cells to 
insulin (44,45). Similarly, lack of HSP72 expression results 
in mitochondrial dysfunction and insulin resistance (46,47). 
In addition to increasing HSP72 levels and consequently 
the ability to improve mitochondrial quality control, exer‑
cise also contributes to an increase in the expression of 
peroxisome proliferator‑activated receptor γ‑coactivator 1‑α 
(PGC1a) (48). PGC1a is the major transcriptional coactivator 
for mitochondrial formation (49). The upstream regulatory 
elements of the PPARGC1A gene were found to contain the 
heat shock element (HSE) binding sequence (50). This HSE 
sequence provides a docking site for the primary HSP tran‑
scription factor, heat shock factor 1 (HSF1) (51). Numerous 
HSF1 gene activation and knockdown experiments have 
convincingly demonstrated that HSF1 is the master regu‑
lator of mitochondrial biogenesis, enzymatic function and 
whole‑body metabolism (48). These data illustrate a coor‑
dination of HSF1 downstream targets (HSP1 and PGC1a) in 
the regulation of mitochondrial biogenesis, quality control 
and enzymatic function in metabolic demand and/or chronic 
disease (52).
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HSPs and myocardial ischemia. Elevated blood levels of HSPs 
have been found in patients with coronary artery disease (CAD), 
although the source of these proteins is still controversial (53). 
In general, the expression of HSPs appears to be increased 
in response to ischemia and their dysregulated production 
contributes to the development of cardiovascular disease (54‑57).

Extracellular HSP70 has been found to be an independent 
predictive marker of mortality in patients with progressive 
heart failure or sudden cardiac death (58‑60). Its role in the 
development of hypertension‑induced cardiac hypertrophy 
and myocardial fibrosis has also been demonstrated (61‑63). It 
is also notable that HSP70 is a ligand for damage‑associated 
molecular pattern receptors, which can induce inflammation 
in the myocardium (64,65).

The properties of extracellular HSP90 have been 
demonstrated in a study by Ranek et al (6) in the context of 

progressive LV hypertrophy. In pathological cardiac hyper‑
trophy, LV mass increases in parallel with extracellular matrix 
deposition, followed by fibrosis and heart failure (66‑68). The 
main mediator of this process is TGF‑β, which is secreted 
by CMCs and acts on collagen‑secreting fibroblasts (69‑71). 
Extracellular HSP90 appears to play some role in stabilizing 
the signal of TGF‑β by influencing the cascade of processes 
mediating TGF‑β induction (72‑74). Inhibition of extracel‑
lular HSP90 reduces collagen production and stimulation of 
the canonical TGF‑ß pathway (54,74). Since fibrosis is one of 
the major factors influencing the pathogenesis of a number of 
chronic cardiac diseases, including CAD and heart failure, 
targeting extracellular HSP90 can be considered an important 
point of application for therapeutic intervention with functions 
different from those characteristics of the intracellular pool of 
this particular HSP.

Figure 1. The PQC three main pathways. This system can be targeted to restore cell self‑renewal, enhancing the survival of CMCs. PQC, protein quality 
control; CMCs, cardiomyocytes; HSP heat shock protein.
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3. Features of the induction of small ATP‑independent 
HSPs in myocardial damage

Small HSPs are ATP‑independent proteins and represent 
the first line of defense in preventing intracellular protein 
aggregation under cellular stress when denaturation is highly 
activated (75,76). At the same time, high molecular weight 
HSPs, such as HSP60, HSP70 and HSP90, bind unfolded 
or misfolded proteins and promote their refolding using the 
energy of ATP hydrolysis (77‑79). Therefore, under cellular 
stress and energy deprivation, ATP‑independent small HSPs 
are able to rapidly and metabolically prevent protein aggrega‑
tion, maintain denaturing proteins in a folded state and inhibit 
the denaturation process until ATP‑dependent HSPs complete 
the refolding process (80‑82). If proper folding does not occur, 
small HSPs contribute to the clearance of denatured proteins 
by directing them to the pathway of degradation mechanisms 
(Fig. 3) (83‑85).

Currently, the role of HSPs in inflammation and their 
antioxidant capacity are of considerable interest, especially in 
the aspect of modulating the progression of atherosclerosis by 
altering its inflammatory mechanisms (86‑88).

HSPs are also activated in response to the appearance of 
oxidized low‑density lipoproteins and mediate an anti‑inflam‑
matory mechanism through the release of pro‑inflammatory 
IL‑10 as well as through the activation of NFκB (89‑91). The 
intracellular function of the HSP27 chaperone is regulated 
by phosphorylation and dephosphorylation in large aggre‑
gates that modulate the assembly of an ATP‑independent 
network. As a chaperone, HSP27 is involved in DNA stabi‑
lization, supports antioxidant responses and also acts as an 
anti‑apoptotic factor (92‑94). Extracellular release of HSP27 
from tissues where blood vessels are affected by atheroscle‑
rosis may result from cellular injury or occur in association 

with secretory lysosomes or exosomes. In its extracellular 
location, HSP27 binds to a variety of cell membrane recep‑
tors on endothelial and immunocompetent cells, including 
CD91, CD40, CD36, CD14, scavenger receptor A (SR‑A) and 
Toll‑like receptors (TLRs) (95,96). The recombinant receptor 
HSP27 induces TLR‑mediated NFκB activation with secretion 
of both pro‑ and anti‑inflammatory cytokines (55). According 
to the available data, HSP27 provides protection against the 
progression of atherosclerosis (22,97).

In a recently published study by Sklifasovskaya and 
Blagonravov  (98), the results of assessment of HSP10 and 
HSP27 expression in rat LV myocardium in hypertension, DM 
and their combination were presented. In case of combina‑
tion of hemodynamic overload and DM, small HSPs showed 
different expression levels in CMCs. This may be due to 
activation of different pathways of cell protection and damage. 
In particular, HSP27 expression increased only in arterial 
hypertension (AH) of longer duration, while the increase in 
HSP10 expression was observed in combined pathology. Thus, 
the levels of ATP‑independent HSP10 and HSP27 increase in 
certain types of myocardial alterations associated with energy 
deficit. Expression of HSP10 and HSP27 in CMCs changed 
inversely in AH of different duration, insulin‑dependent 
DM and their combination. Protein HSP27 may play a more 
important role in cardioprotection in long‑term hypertension 
and protein HSP10 in the case of the combination of AH and 
DM (98).

Induction of mitochondrial (mt) ROS during hypergly‑
cemia is a key event responsible for endothelial activation and 
damage (99). HSP22 has been shown to protect vascular endo‑
thelium from hyperglycemia‑induced damage by reducing 
mtROS production (100‑103). Yu et al (101) performed a series 
of studies using a high fat diet and a streptozotocin model 
to induce DM. They also exposed human umbilical vein 

Figure 2. The mechanism of HSP60 regulation endogenous IL‑1β by stimulating NLRP3 inflammasome activation. HSP heat shock protein NLRP3, nucleo‑
tide‑binding oligomerization domain‑containing protein 3; ROS, reactive oxygen species; DAMPs, damage‑associated molecular pattern receptors; PAMPs, 
pathogen associated molecular patterns; CASP, caspase.
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endothelial cells to a high concentration of glucose after over‑
expressing or silencing HSP22 to investigate the role of the 
latter. It was found that HSP22 significantly reduced endothelial 
cell activation and vascular lesions by inhibiting endothelial 
adhesion, suppressing mtROS‑mediated endothelial activa‑
tion and injury, abolishing a hyperglycemia‑induced increase 
in mtROS and also reducing cytokine secretion. In addition, 
HSP22 attenuated mtROS and mitochondrial dysfunction in 
hyperglycemia‑stimulated endothelial cells (101).

4. The role of HSPs in regulated cell death

The role of HSPs in autophagy. An important role in the process 
of autophagy is its regulation by HSPs (104‑106). During heat 
shock, HSP production and autophagy activation are reactions 
aimed at maintaining the quality of cellular proteins and they 
complement each other under cellular stress (107,108). Heat 
stress can lead to protein aggregation and contribute to the 
development of dysfunction of individual elements of the 
intracellular environment (10,109‑111). Insufficient autophagy 
or partial degradation of damaged organelles leads to the 
generation of ROS and the loss of the major functions of lyso‑
somes, resulting in cell death (112‑114). In addition, inhibition 
of autophagy has been observed during the development of 
myocardial hypertrophy in response to deletion of the Atg5 
gene in mouse CMCs (115).

In the case of cardiovascular pathology, cellular stress 
may also be due to cardiac overload associated with increased 
resistance to cardiac output caused by hypertension or aortic 
stenosis. An increase in the autophagic flux of CMCs occurs 
in association with their hypertrophy (116,117). Myocardial 
ischemia is associated with a transient increase in autophagic 
flux, which, however, decreases over time and falls below 

normal baseline levels (19,118‑120). In a model of acute focal 
LV ischemia, it was shown that the content of Beclin‑1 in the 
CMC cytoplasm was significantly increased on day 1 and 
later, on days 3 and 5, it gradually decreased but remained 
above the control level (20). In ischemia, the intensification of 
CMC autophagy is aimed at replenishing metabolic substrates 
and removing damaged organelles (121‑123). Nutrient deple‑
tion stimulates AMP‑activated protein kinase, which in turn 
inhibits mTOR, thereby removing the main inhibitory factor in 
this process (124‑126). In this context, autophagy is considered 
to be an adaptive response to ischemic injury with cardiopro‑
tective effects. Thus, targeted activation of autophagy may be 
a potential therapeutic approach to heat stress‑induced cardio‑
vascular dysfunction (23).

A study showed that HSPB6 regulates the ubiquitination and 
proteasomal degradation of BECN1. This effect appears to be 
mediated by a direct interaction of HSPB6 with BECN1 (127). 
These ideas concerning the role of HSPB6 in autophagy were 
generated in the context of the description of a novel human 
mutation in the gene encoding HSPB6 (HSPB6S10F) identi‑
fied in patients with dilated cardiomyopathy (DCM) (128,129). 
Negative effects of HSPB6S10F were associated with autophagy 
dysregulation. It is known that constitutive autophagy in the 
heart under basal conditions is a homeostatic mechanism 
aimed at maintaining myocyte size, structure and function 
of the heart (130). It has also been found that the activity of 
autophagy was significantly reduced in CMCs with the muta‑
tion of the HSPB6S10F gene, as evidenced by the decreased 
number of autophagosomes and inhibition of autophagic flux. 
Under these conditions, the rate of CMC apoptosis increases 
and hypertrophic remodeling develops, ultimately contributing 
to the progression of heart failure  (127). Similar negative 
effects were associated with a decrease in the interaction of 

Figure 3. Role of sHSPs and ATP‑dependent HSPs in the PQC regulation. sHSP, small HSP; HSP heat shock protein; PQC, protein quality control.
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mutant HSPB6S10F with Beclin1 (BECN1), leading to BECN1 
ubiquitation and its degradation by the proteasome. As a result, 
autophagy flux is significantly suppressed and CMC apoptosis 
is enhanced. Conversely, overexpression of wild‑type HSPB6 
(HSPB6 WT) contributed to increased BECN1 levels and also 
competitively repressed BECN1 binding to Bcl2, thereby stim‑
ulating autophagy (127). These data reveal a novel regulatory 
mechanism by which HSPB6 promotes cell survival through its 
interaction with BECN1.

Depending on the specific cellular conditions, autophagy 
can both protect cells from death and act as a means of cellular 
self‑destruction  (131,132). The protective mechanism of 
autophagy is implemented as follows: Organelles and/or parts 
of the cytoplasm are engulfed by double‑membrane autoph‑
agic vacuoles, resulting in the physiological utilization of old 
or damaged organelles  (133,134). This provides cells with 
metabolic substrates to meet energy demands during cellular 
stress (135,136). However, the accumulation of these vacuoles 
and further activation of the autophagic pathway represents an 
alternative mechanism of cell death by atrophy and functional 
collapse (type II cell death) (137‑139). Autophagy can also 
activate apoptotic (type I) or necrotic (type III) cell death 
programs by activating common regulators such as Bcl‑2 
family proteins (140,141).

In a recently published study by Blagonravov et al (142), 
the role of BECN1‑dependent autophagy was evaluated in 
hypertension, DM and their combination. The activation of 
Bax and Bcl‑2 was also examined. It was shown that chronic 
hypertensive overload of the LV is associated with a decrease 
in the rate of CMC autophagy. In isolated DM and its combi‑
nation with hypertension, the opposite effect was observed, 
which was manifested as a significant increase in the basal 
level of BECN1‑dependent autophagy. In the light of the 
concept of protein quality control, this phenomenon can be 
considered as a mechanism for the survival of damaged cells. 
In hypertension and isolated DM, there is an induction of the 
apoptotic cascade in LV CMCs, as indicated by an increase 
in Bax expression and a decrease in the Bcl‑2/Bax ratio. At 
the same time, in the combined pathology, the level of Bax 
does not increase as significantly as in the other groups, but 
it remains higher than in the control group. The level of Bcl‑2 
was also significantly increased and the Bcl‑2/Bax ratio tended 
to increase, but remained below the control. This indicates a 
decrease of the apoptotic cascade in the comorbid pathology 
compared to isolated hypertension and DM (142,143).

According to the results obtained by Blagonravov et al (43), 
it is possible to reveal the role of HSP60 and its co‑chaperone 
expression in DM. In particular, the level of BECN1 was 
increased in the DM group relative to HSP60/HSP10 and in 
the combined hypertension and DM group, the HSP60/HSP10 
chaperone complex and BECN1 protein were expressed at the 
same level.

This fact indicates that the activation of these proteins 
plays a maladaptive role in the activity of CMCs, which can 
serve as an important marker for assessing the progression of 
vascular damage in this type of pathology. A decrease in the 
expression of the HSP60/HSP10 complex relative to Bax was 
also found in all the pathological models studied, while this 
difference was less pronounced in the combined hypertension 
with DM group (43,98,143).

Thus, a decrease in the production of HSP60 can be 
considered as one of the pathophysiological mechanisms 
of LV myocardial damage caused by hypertension and/or 
DM. In the mentioned study, the expression of HSP27 in LV 
myocardium was also evaluated. In the group with longer 
duration of hypertension (SHR rats aged 57 weeks), the ratio 
of Bax and Bcl‑2 was the most pronounced, while the level of 
HSP27 was also the highest in all groups, which may indicate 
the activation of protein defense mechanisms directed to Bax 
binding (43,98,143).

It can be concluded that the role of HSP in autophagy 
regulation and modulation of the apoptotic cascade requires 
further investigation.

The role of HSP in apoptosis. Apoptosis, or programmed 
cell death, is characterized by the activation of the caspase 
cascade: ‘Initiator’ caspases induce a chain reaction of specific 
‘effector’ caspases (144‑146). These, in turn, are cleaved and 
thus activate each other. There are two main pathways of 
initiator caspase activation (147,148). The extrinsic pathway 
is associated with ‘death receptors’ on the cell surface, while 
the intrinsic pathway is induced by pro‑apoptotic factors such 
as cytochrome c released from mitochondria. Cytochrome c, 
which binds to apoptotic protease activating factor 1 (Apaf‑1) 
and pro‑caspase‑9, forms an apoptosome that stimulates the 
activation of caspase‑9, which then activates the ‘effector’ 
caspase‑3 and initiates the apoptotic protease cascade (149,150).

HSPs have a wide range of functions in apoptotic processes. 
Most of them are aimed at their suppression (151,152). Notably, 
the same cellular stress signals that induce apoptosis also 
stimulate HSP synthesis and release. However, when HSP 
production is increased, apoptosis is inhibited due to the 
suppression of pro‑apoptotic factors such as р53, Bax, Bid, 
Akt, Apaf‑1 and other members of the Bcl‑2 family (Fig. 4). 
HSPs promote cell survival by protecting cells from changes 
in cellular redox homeostasis and stabilizing the cytoskel‑
eton (152). In addition, HSPs can directly inhibit several steps 

Figure 4. The role of HSPs in suppression of pro‑apoptotic factors and 
inhibition of the apoptotic protease cascade. HSP heat shock protein; CASP, 
caspase; Apaf1, apoptotic protease activating factor 1.
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of the apoptotic pathway (153). HSPs also inhibit the release of 
pro‑apoptotic molecules from mitochondria, thereby reducing 
caspase activation (151,154‑156).

During the execution of the apoptotic cascade and 
under ATP deprivation, HSP60 protects mitochondrial 
proteins, facilitates their folding and prevents their degrada‑
tion (157,158). In particular, when the Hsp60 gene is deleted 
in CMCs of young mice, HSP60‑dependent mitochondrial 
proteins are degraded by LONP1 and mitochondrial dysfunc‑
tion develops, which is one of the mechanisms of DCM and 
heart failure (159). Cytosolic HSP60 co‑localizes with Bax 
and plays an anti‑apoptotic role in cardiac myocytes. Loss of 
cytosolic HSP60 induces mitochondrial Bax translocation, 
cytochrome c release and caspase‑3 activation, leading to 
apoptotic cell death (30). In addition, hypoxia triggers apop‑
tosis by inducing dissociation of the HSP60‑Bax complex 
through translocation of cytosolic HSP60 to the membrane 
and Bax to the mitochondria (160).

It is also worth considering the possibility of increasing the 
level of Bcl‑2 in cells and reducing the activation of the apop‑
totic cascade by HSPB1. Tian et al (161) showed that HSP27 
can attenuate oxidative stress‑induced apoptosis in endothe‑
lial cells by increasing the level of Bcl‑2 and decreasing the 
content of cleaved caspase‑3 and Bax. In addition, under ER 
stress, HSP27 promotes ERK‑mediated phosphorylation and 
Bim degradation by inhibiting the mechanisms of the intrinsic 
pathway of apoptosis initiation (162). HSP27 can also directly 
bind to cytochrome c in the cytosol, inhibiting apoptosome 
formation and interfering with downstream caspase activation. 
HSP27 can also suppress apoptosis by inhibiting mitochon‑
drial Smac release and subsequent activation of the descending 
caspase cascade  (161). The anti‑apoptotic properties of 
HSP27 are attributed to its direct interaction with caspase‑3. 
HSP27 binds to the pro‑domain of caspase‑3 and inhibits its 
proteolytic activation (161,163).

The role of HSP70 in the initiation of the apoptotic cascade 
has also been demonstrated in a model of myocardial isch‑
emia/reperfusion injury (164‑166). Overexpression of HSP70 in 
the myocardium and endothelium has a cardio‑protective effect 
and increases myocardial injury tolerance. These mechanisms 
are associated with inhibition of apoptosis and oxidative stress 
and improvement of endothelial function (60,167). Myocardial 
HSP70 activates mitochondrial superoxide dismutase 
Mn‑SOD and inhibits nuclear translocation of phosphorylated 
eukaryotic elongation factor 2 and apoptosis inducing factor, 
resulting in improvement of mitochondrial function and 
suppression of apoptosis (168,169). In addition, an increase 
in mitochondrial aldehyde dehydrogenase 2 activity trig‑
gers the accumulation of 4‑hydroxynonenal during ischemic 
myocardial injury, which initiates pro‑apoptotic signaling by 
reducing HSP70 and activating the JNK/p53 pathway. This 
mechanism ultimately contributes to the development of heart 
failure, whereas the aforementioned process can be reversed 
by overexpression of HSP70 (170). It has also been shown that 
intracellular HSP70 has a cardioprotective effect, whereas 
extracellular HSP70 appears to be pro‑apoptotic (171).

Thus, cytosolic HSPs protect the myocardium from isch‑
emia/reperfusion injury by inhibiting the activation of the 
apoptotic cascade in CMCs. In particular, the intracellular 
or extracellular location of HSPs is very important for their 

function in myocardial infarction or ischemia‑reperfusion. 
Intracellular HSPs have cardio‑protective properties, whereas 
extracellular HSPs exhibit cardio‑toxic effects during isch‑
emia‑reperfusion.

5. Conclusions and perspectives

HSPs are an important component of the protein quality 
control system in the cell, both under normal and pathological 
conditions. They ensure the correct assembly of a number of 
intracellular proteins and regulate a significant part of the 
synthesis processes. Insufficient or excessive production of 
HSPs leads to disruption of cell homeostasis and may also 
contribute to the activation of cellular stress. This can result 
in endoplasmic reticulum damage, mitochondrial dysregula‑
tion and modulation of regulated (programmed) cell death, 
including apoptosis and autophagic flux.

Numerous studies (6,21,41,43,44,56‑64) confirm a signifi‑
cant increase or decrease in myocardial HSP production in a 
variety of cardiac diseases, heat stress and metabolic disorders. 
Recently, the possibility of inducing HSPs to protect myocar‑
dial cells during oxidative stress caused by energy deprivation 
has been widely discussed. This approach is considered as a 
therapeutic method in the treatment of cardiovascular diseases 
of various origins, including DM.

Understanding the mechanisms of action of HSPs in the 
cardiovascular system can serve as a basis for the development 
of new methods of pharmacotherapy of cardiac pathology.
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