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Abstract. The intricate nature of Alzheimer's disease (Ad) 
pathogenesis poses a persistent obstacle to drug development. In 
recent times, neuroinflammation has emerged as a crucial patho‑
genic mechanism of AD, and the targeting of inflammation has 
become a viable approach for the prevention and management of 
Ad. The present study conducted a comprehensive review of the 
literature between October 2012 and October 2022, identifying 
a total of 96 references, encompassing 91 distinct pharmaceu‑
ticals that have been investigated for their potential impact on 
AD by inhibiting neuroinflammation. Research has shown that 
pharmaceuticals have the potential to ameliorate Ad by reducing 
neuroinflammation mainly through regulating inflammatory 
signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, 
STAT3, cREB, PI3K/Akt, Nrf2 and their respective signaling 
pathways. Among them, tanshinone IIA has been extensively 
studied for its anti‑inflammatory effects, which have shown signif‑
icant pharmacological properties and can be applied clinically. 
Thus, it may hold promise as an effective drug for the treatment 
of AD. The present review elucidated the inflammatory signaling 

pathways of pharmaceuticals that have been investigated for 
their therapeutic efficacy in AD and elucidates their underlying 
mechanisms. This underscores the auspicious potential of phar‑
maceuticals in ameliorating AD by impeding neuroinflammation.
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1. Introduction

Ad is a common neurodegenerative disorder characterized 
by gradual cognitive decline, memory loss, and behavioral 
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changes (1). Ad is mainly characterized by the accumulation 
of extracellular amyloid β (Aβ), which forms senile plaques, 
and intracellular hyperphosphorylated tau, which binds to 
microtubules and leads to the development of neurofibrillary 
tangles (2). The disease is becoming increasingly prevalent, 
with projections estimating a global population of 115 million 
patients with Ad by 2050 (3). With a growing aging popula‑
tion, the management of Ad is becoming increasingly critical.

The pathogenesis of Ad is multifactorial and involves a 
number of hypotheses, including the cholinergic theory, the 
amyloid cascade theory, the oxidative stress theory, the tau 
protein hypothesis and the neuroinflammation hypothesis (4). 
Evidence supports the neuroinflammation as a crucial factor 
in the development of AD (5,6). Neuroinflammation (7‑9) is 
present in the majority of patients with Ad (10) and animal 
models (11), particularly in the cerebral cortex and hippo‑
campus (12,13). Elevated levels of inflammatory factors 
and increased activation of microglia around senile plaques 
observed in patients with Ad further support this hypoth‑
esis (14). In addition, whole‑genome studies of post‑mortem 
brain samples from patients with Ad have shown upregulation 
of inflammation‑related genes and significant downregulation 
of anti‑inflammatory molecules (15). Activated microglia, 
responding to Aβ (16), demonstrate a significant inflamma‑
tory response highly correlated with the severity of Ad (17). 
Taken together, these findings suggest that neuroinflammatory 
responses mediated by microglial cell activation may play a 
central role in the pathogenesis of Ad.

Under normal circumstances, highly active microglia 
cells efficiently monitor the entire brain in real time (18), 
detecting abnormalities such as pathogens and cellular 
debris (19,20) and providing essential support to maintain 
optimal brain function (21). However, when the brain is 
exposed to abnormal conditions, microglia become acti‑
vated and switch to a transforming state, migrating towards 
the site of injury to remove pathogens, cellular debris and 
degenerated cells (22). depending on their activation state 
and environmental stimuli, microglia cells can be classified 
as either the pro‑inflammatory M1 type or the anti‑inflam‑
matory M2 type (23). In the early stages of Ad, microglia 
play a crucial role in maintaining a dynamic balance of 
amyloid protein in the brain by engulfing and clearing excess 
Aβ, thereby helping to delay disease progression. However, 
as the disease progresses, excessive accumulation of Aβ 
can lead to overactivation of microglia cells, causing them 
to adopt a pro‑inflammatory M1 type (24). In the central 
nervous system (cNS), activated microglia are the primary 
source of inflammatory molecules, such as cytokines, 
chemokines, neurotransmitters, reactive oxygen species 
(ROS) and nitric oxide (NO) (25). Inflammatory molecules 
trigger a positive feedback mechanism that activates more 
microglia and thus further exacerbating the neuroinflam‑
matory response (25,26). As a result, secreted inflammatory 
mediators facilitate the migration of monocytes and lympho‑
cytes to the site of inflammation, where they penetrate the 
blood‑brain barrier (BBB), exacerbating CNS inflammation 
and leading to sustained neuronal damage (27), ultimately 
culminating in cognitive decline. Several inhibitors, drugs 
and their active ingredients can exert an anti‑neuroinflamma‑
tory effects, with different drugs acting via single or multiple 

signaling pathways. Therefore, it is essential to consolidate 
research findings to identify potential drug candidates for the 
prevention and treatment of Ad.

Neuroinflammation is a critical factor and even a core 
event in the pathogenesis of Ad (17,28). Microglia, as the 
primary immune cells in brain tissue, play an essential role 
in neuroinflammation through multiple targets and signaling 
pathways. Therefore, the development of drugs or inhibitors 
that target microglia could alleviate neuroinflammation, which 
could have a positive effect on both the prevention and treat‑
ment of Ad. The present study conducted a literature search 
using keywords the ‘inhibitors’, ‘microglia’, ‘inflammation’ 
and ‘Alzheimer's disease’ in PubMed between 2012 and 
2022 to comprehensively review the major signaling path‑
ways involved in microglia activation and the ways in which 
drugs exert anti‑neuroinflammatory effects by targeting these 
pathways. Out of the 327 articles retrieved, 35 were excluded, 
including reviews, commentaries, retractions, or unavailability 
online. Also excluded were 201 articles that did not involve 
signaling pathways. Finally, 96 references were included. In 
addition, ‘medicine’ and ‘drugs’ were added as keywords to 
the search to further identify promising drug candidates for 
Ad prevention.

2. NF‑κB and MAPK signaling pathways

NF‑κB (nuclear factor‑kappa‑B). The NF‑κB signaling 
pathway is a complex protein interaction network (29) that 
plays a critical role in regulating gene expression in response 
to various stimuli, including pro‑inflammatory signals (30). In 
most cell types, NF‑κB is activated by the classical pathway, 
which involves a dimer composed of p50 and p65 subunits (31). 
In the inactive state, the NF‑κB/IκB dimer is inhibited by IκB 
and remains sequestered in the cytoplasm (32,33). Upon acti‑
vation of the NF‑κB/IκB dimer by pro‑inflammatory signals, 
IκB kinase (IKK) phosphorylates IκB, leading to its degrada‑
tion. This allows NF‑κB to dissociate from the complex, enter 
the nucleus, and activate the transcription of cytokines and 
adhesion molecules (34‑36), contributing to the pathogenesis 
of neuroinflammatory diseases such as AD.

NF‑κB is widely expressed in brain tissue and plays a crit‑
ical regulatory role in various target genes within the cNS. Its 
regulatory scope encompasses oxidative stress, neuroinflam‑
mation and microglia activation (31). In particular, excessive 
activation of NF‑κB has been implicated in the neuropatholog‑
ical features of AD. Multiple studies have identified increased 
activation of NF‑κB in the brains of patients with Ad (31,37), 
particularly in the most affected brain regions (38‑40). 
Additionally, the activation of NF‑κB by Aβ leads to further 
production of Aβ, exacerbating the pathology of Ad (41,42). 
Moreover, NF‑κB not only acts downstream of tau but also 
seems to directly mediate its cognitive toxicity (43). This 
increased dNA‑binding activity of NF‑κB leads to aggravated 
oxidative stress, which exacerbates neurotoxicity. In addi‑
tion, downstream pro‑inflammatory mediators are activated, 
thereby affecting neuronal function (44,45). Above all, activa‑
tion of glial cells via the NF‑κB pathway serves as a critical link 
in the neuroinflammatory response (46), further amplifying 
neuroinflammation and worsening AD pathology (47,48). As 
such, modulation of the NF‑κB signaling pathway in microglia 
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may represent a promising new approach to the prevention and 
treatment of Ad.

Studies have shown that certain compounds found in tradi‑
tional chinese herbal medicine possess the capacity to inhibit 
NF‑κB activation and exert anti‑inflammatory effects. Rutin, a 
natural flavonoid glycoside with anti‑inflammatory and antiox‑
idant properties (49), is a promising neuroprotective agent for 
neurodegenerative diseases (50). A recent study has revealed 
that treatment with Rutin can reduce NF‑κB activation in the 
Tau‑P301S mouse, resulting in lower levels of IL‑1 and TNF‑α 
in brain tissue, thereby counteracting neuroinflammation (51). 
Results consistent with in vivo findings were also observed in 
microglia induced with tau oligomers (51). Similarly, piper‑
longumine, an alkaloid amide from Piper longum, was found 
to be neuroprotective effects (52) against lipopolysaccharide 
(LPS)‑induced neuroinflammation by inhibiting the NF‑κB 
pathway and reducing the expression of key pro‑inflammatory 
mediators such as cyclooxygenase‑2 (cOX‑2), inducible nitric 
oxide synthase (iNOS), TNF‑α, IL‑1β, and IL‑6. Thus, these 
compounds show therapeutic potential for the treatment 
of neuroinflammatory disorders by modulating the NF‑κB 
signaling pathway in microglia (53). Bee venom, which 
contains various peptides, enzymes, and biogenic amines, has 
been shown to be effective in the treatment of diseases such as 
arthritis, rheumatism and cancer (54). A study has highlighted 
its potential for treating Ad by inhibiting the expression of 
neuroinflammatory proteins such as β‑site amyloid precursor 
protein cleaving enzyme 1 (BAcE1), cOX‑2, iNOS, glial 
fibrillary acidic protein (GFAP), and ionized calcium binding 
adaptor molecule 1, in vitro and in vivo, through inactivation 
of the NF‑κB pathway, resulting in a reduction in LPS‑induced 
memory impairment (55). Punicalagin, a polyphenol sourced 
from pomegranate fruit, has antioxidant, anti‑proliferative and 
anti‑inflammatory properties (56). It has been shown to bind 
directly to NF‑κB, impede IκB degradation and prevent the 
nuclear translocation of p50 and p65, thereby inhibiting the 
production of ROS, NO, TNF‑α and IL‑1β in LPS‑induced 
BV‑2 microglia (57). Similarly, tenuifolin, a valuable neuro‑
protective compound extracted from Polygala tenuifolia 
Willd, can block the activation of the NF‑κB pathway and 
subsequently improve cognitive impairment symptoms in 
Ad (58). Piperine, a crystalline alkaloid extracted from pepper, 
has several properties such as anticarcinogenic, stimulatory, 
anti‑inflammatory and antiulcer activities (59). Furthermore, 
piperine derivatives, such as (2E,4E)‑5‑(benzo[d][1,3]dioxo
l‑5‑yl)‑N‑[4‑(hydroxymethyl) phenyl] penta‑2,4‑dienamide 
(D4) have demonstrated anti‑neuroinflammatory effects (60) 
by inhibiting the translocation of NF‑κB and suppressing the 
expression of iNOS and the secretion of NO, TNF‑α, and 
IL‑1β in LPS‑induced human microglia clone 3. In addition, 
an in silico study showed excellent d4 bioavailability after 
oral administration (61). Bupleurum falcatum L. (BF) is a 
traditional oriental medicine commonly used in the treat‑
ment of chronic hepatitis and autoimmune diseases (62). It 
has been demonstrated that the ethanol extract of BF (BFE) 
can inhibit the expression of pro‑inflammatory genes and 
NF‑κB p65/RELA mRNA in BV2 microglia that have been 
activated with LPS. This suggests that NF‑κB is a molecular 
target of BFE (63). In addition, BFE has been shown to inhibit 
the activation of microglia in the hippocampus and substantia 

nigra of LPS‑treated mice (63), suggesting its potential as 
a treatment for Ad. Similarly, macasiamenene F (MF), a 
compound extracted from Macaranga siamensis S. J. davies 
(Euphorbiaceae), has also been shown to have promising 
potential in the treatment of neuroinflammatory responses. 
MF treatment significantly suppresses NF‑κB activity and 
TNF‑α expression in LPS‑induced human monocytes (64), 
and similar responses may occur in microglia of brain given 
their phenotypic similarity. Miconazole (McZ) is an azole 
drug commonly used as an antifungal agent that can cross 
the BBB and exhibits neuroprotective effects (64,65). McZ 
can reduce the expression of ionized calcium binding adaptor 
molecule 1 (Iba‑1) reactive cells and downregulate the expres‑
sion of GFAP, Iba‑1, and cOX‑2 in the hippocampus by 
inhibiting the NF‑κB signaling pathway in a mouse model of 
Aβ1‑42‑induced memory impairment. This anti‑inflammatory 
effect of MCZ was further confirmed in an LPS‑induced BV2 
microglia model (66).

Several drugs have been developed to target specific 
components of the body and exert anti‑neuroinflammatory 
effects by inhibiting NF‑κB (67‑70). Among these, Ld55, 
a resveratrol analogue, is widely used as a novel inhibitor 
of NF‑κB activation (71). A study has shown that dietary 
supplementation with Ld55 can effectively suppress the 
activation of microglia in transgenic amyloid‑β protein/prese‑
nilin‑1 (APP/PS1) mice, diminish the density of Aβ plaques 
in the brain and notably reduce them by 2‑15 times in the 
hippocampal region. These findings suggest that Ld55 
may provide some relief from the burden of Aβ plaques 
and neuroinflammation in Ad models (67). Additionally, 
glucocorticoid‑induced leucine zipper (GILZ), which func‑
tions as a transcriptional regulatory protein, has the ability to 
impede the activity of NF‑κB (72,73). A small molecule GILZ 
analogue, GA, was found to inhibit the levels of NF‑κB p65 
in the brains of 5XFAd (familial Alzheimer's disease) mice. 
Furthermore, GA can downregulate the expression of inflam‑
matory factors while hindering the proliferation and activation 
of hippocampal microglia (68). consequently, this leads to the 
suppression of neuroinflammation. Chitinase‑3 like‑protein‑1 
(cHI3L1) is a secreted, inflammatory glycoprotein that is 
expressed in a number of chronic neuroinflammatory diseases 
including Ad, making it a potential biomarker for Ad diag‑
nosis (74). Conversely, CHI3L1 deficiency has been shown to 
attenuate microglia‑mediated inflammation and inhibit the 
progression of Ad (75,76). Study has shown that the cHI3L1 
inhibitor, K284‑6111, can suppress NF‑κB activation and the 
expression of related inflammatory factors in Ad animal 
models following intracerebroventricular infusion of Aβ1‑42 
and in LPS‑induced BV‑2 microglia cells (69). Furthermore, 
the anti‑neuroinflammatory effects of K284‑6111 are also 
observed in a Tg2576 mouse model and in Aβ‑induced BV2 
microglia, implicating the extracellular signal‑regulated 
kinases (ERK)‑mediated pentraxin 3 and NF‑κB path‑
ways (16). dL0410, an acetylcholinesterase (AchE) inhibitor, 
has been shown to suppress the receptor for advanced glyca‑
tion end products (RAGE)/NF‑κB signaling pathway, resulting 
in inhibition of d‑galactose‑induced microglia activation. 
This results in the downregulation of cOX2 and iNOS expres‑
sion, ultimately suppressing inflammation in the cortex and 
hippocampus of the brain (70).
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Toll‑like receptors (TLRs) are essential pattern recognition 
receptors in the immune and inflammatory responses, with 
TLR4 being highly expressed on microglia (77). However, 
excessive activation of TLRs can initiate a cascade of events, 
leading to activation of NF‑κB in the brain, resulting in the 
synthesis and release of various inflammatory mediators that 
contribute to neuronal damage (78,79). Therefore, targeting 
the TLR/NF‑κB pathway may prove beneficial in the treat‑
ment of Ad. Several studies have illustrated that natural 
compounds can reduce neuroinflammation by inhibiting the 
TLR4/NF‑κB pathway (80‑82). One such compound is epigal‑
locatechin‑3‑gallate (EGcG), a polyphenol found in green 
tea that has been extensively studied for its neuroprotective 
effects (83). EGcG is known to suppress the activation of both 
classical NOd‑like receptor thermal protein domain associated 
protein 3 (NLRP3) inflammasomes and caspase‑11‑mediated 
non‑classical inflammasomes via the TLR4/NF‑κB pathway, 
thereby effectively exerting its anti‑inflammatory proper‑
ties (80). Genistein (Gen), a compound derived from Soybean 
isoflavone (SIF) (84), has been shown to improve memory 
abilities in patients with AD and to attenuate inflammation 
in Aβ25‑35‑induced BV‑2 microglia through inhibition of the 
TLR4/NF‑κB signaling pathway. These findings suggest that 
a diet rich in plant‑derived Gen may be beneficial in reducing 
the risk of AD by alleviating inflammation (81). In addition, 
oxysophoridine extracted from Sophora alopecuroides L. 
seeds (85,86) was found to downregulate the expression of 
TNF‑α and IL‑1β in Aβ‑induced BV‑2 cells, with therapeutic 
effects comparable to those of the TLR4 inhibitor TAK‑242. 
These results demonstrate the promising anti‑neuroinflamma‑
tory properties of oxysophoridine (82). The initial interaction 
between cd14 and TLR4 is a crucial step in the activation of 
neuroinflammatory signals induced by LPS (87). A study has 
identified a novel biphenyl compound, called Protosappanin A 
(PTA), derived from Caesalpinia sappan L., which effectively 
inhibits neuroinflammation in vitro (88). PTA achieves this 
by disrupting the cd14‑TLR4 interaction in BV‑2 microglia 
that are stimulated by LPS, thereby inhibiting the NF‑κB 
signaling pathway (88). Similarly, resveratrol, a natural 
neuroprotectant agent, has been shown to significantly reduce 
microglia‑mediated neuroinflammation (89). Oral administra‑
tion of resveratrol to APP/PS1 mice significantly reduced the 
number of activated microglia around amyloid plaques (90). 
Further in vitro research revealed that resveratrol's mechanism 
of action involves disruption of TLR4 oligomerization to atten‑
uate the TLR4/NF‑κB/STAT signaling pathway, ultimately 
leading to a reduction in TNF‑α and IL‑6 production (90).

Upon activation, TLR4 recruits the adaptor myeloid 
differentiation factor 88 (Myd88), which initiates downstream 
activation of the transcription factor NF‑κB (91). certain active 
compounds in some traditional chinese medicines have been 
found to interfere with this pathway and exert anti‑neuroin‑
flammatory effects. For example, Icariside II (ICS II), an active 
component of Epimedium, has been shown to have multiple 
pharmacological activities, including anti‑inflammatory, anti‑
cancer and anti‑aging (92,93). In an LPS‑induced Sd rat model 
of neuroinflammation, ICS II demonstrated potent anti‑inflam‑
matory effects by reducing the expression of the microglia 
marker Iba‑1 and downregulating related pro‑inflammatory 
cytokine proteins by intervening in the TLR4/Myd88/NF‑κB 

pathway (94). Similarly, dL0410 is a dual inhibitor of both 
AchE and butyrylcholinesterase with a unique structural scaf‑
fold (95). This compound has been shown to improve memory 
when administered with Aβ1‑42 and scopolamine administra‑
tion (96), as well as cognitive impairment when administered 
with D‑galactose. It holds significant potential as a therapeutic 
agent for Ad by inhibiting the TLR4‑mediated/Myd88/NF‑κB 
signaling pathway and reducing pro‑inflammatory cytokines 
(such as TNF, IL‑1 and IL‑6), while increasing the anti‑inflam‑
matory cytokine IL‑10 to combat neuroinflammation (97). 
ATP50‑3 is a purified product that is extracted from crude 
polysaccharides obtained from the traditional chinese medicine 
Acorus tatarinowii (98,99). In vitro study has shown that it 
effectively inhibits the activation of NF‑κB and the expression 
of TLR4, Myd88, phosphorylated (p)‑PI3K (phosphoinositide 
3‑kinase), p‑Akt (p‑, phosphorylated), and inflammatory 
mediators in LPS‑induced BV2 cells (100). Moreover, its 
anti‑inflammatory efficacy is further enhanced by the TLR4 
inhibitor TAK242 and the PI3K inhibitor LY294002, suggesting 
that its neuroprotective effects against neuroinflammation are 
due to the regulation of the TLR4/Myd88/NF‑κB and PI3K/Akt 
signaling pathways (100). Another natural compound, dihydro‑
myricetin (dHM) from Ampelopsis grossedentata, has also 
been found to exhibit promising anti‑inflammatory effects (101) 
and is being considered as a potential treatment for Ad. In an 
LPS‑induced inflammation model of BV‑2 microglia, DHM 
was found to downregulate pro‑inflammatory cytokine mRNA 
expression by inhibiting TLR4 and Myd88 expression, and 
activation of the NF‑кB pathway induced by LPS (102). These 
results strongly suggest that DHM exerts anti‑inflammatory 
effects through inhibition of the TLR4/MyD88/NF‑кB signaling 
pathway (102). GX‑50, a compound derived from Sichuan 
pepper, exhibits promising anti‑inflammatory and AD thera‑
peutic effects (103). Research has shown that GX‑50 effectively 
inhibits Aβ‑induced TLR4 activation, preventing the recruitment 
of Myd88 and TNF receptor associated factor 6. This ultimately 
suppresses the NF‑κB and MAPK signaling pathways, demon‑
strating potent anti‑inflammatory activity (104). Wd repeat 
and FYVE domain‑containing 1 (WdFY1), a pivotal adaptor 
molecule in the TLR3/TLR4 signaling pathway, facilitates the 
recruitment of the downstream molecule TRIF found on intra‑
cellular vesicles, leading to a pro‑inflammatory effect (105,106). 
Forsythoside B (FTS‑B), a phenylethanoid glycoside derived 
from Forsythiae fructus, has been found to possess significant 
anti‑inflammatory properties and exhibit neuroprotective 
benefits in AD (107). In vivo study has revealed that FTS‑B 
can ameliorate cognitive impairment, mitigate pathological 
changes and decrease the production of pro‑inflammatory cyto‑
kines in mice with AD (108). Consistent with these findings, 
FTS‑B has been shown to suppress the inflammatory response 
of LPS‑induced BV‑2 microglia and hippocampal HT22 cells 
in vitro by blocking the WdFY1/TLR3/NF‑κB signaling 
pathway (108).

Tanshinone IIA (Tan IIA) is a lipophilic diterpenoid 
compound derived from Salvia miltiorrhiza Bunge with 
significant anti‑inflammatory and antioxidant properties (109), 
making it beneficial in attenuating the progression of AD. 
Research has demonstrated that Tan IIA can effectively inter‑
vene in Ad mouse models induced by the injection of Aβ1‑42 
into the hippocampal region. It inhibits the expression of 
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pro‑inflammatory cytokines such as IL‑1β and IL‑6, reduces the 
number of microglia, lowers levels of complement molecules 
and improves local brain tissue inflammation (110). Similar 
findings were observed in AD models induced by Aβ, where 
Tan IIA was found to downregulate NF‑κB p65 levels, thus 
inhibiting neuroinflammation (111,112). RAGE is implicated 
in Aβ‑induced neuroinflammation and Tan IIA was also found 
to improve cognitive impairment and neuroinflammation by 
inhibiting RAGE/NF‑κB signaling pathway, which is known to 
be involved in Aβ‑induced neuroinflammation (113). Evidence 
suggests that Tan IIA provides significant anti‑inflammatory 
benefits, leading to cognitive improvement and neuroprotec‑
tion in the presence of Ad. However, the clinical application 
of Tan IIA is limited due to its poor water solubility and 
short half‑life (114,115). To address this issue, scientists have 
discovered that using chitosan as a carrier for loading Tan IIA 
(cS@TanIIA) can protect Caenorhabditis elegans from Ad 
damage (116). The chitosan coating effectively enhances the 
protective effect of Tan IIA against Ad by increasing its 
solubility. As a result of this improvement, Tan IIA has great 
potential for clinical application.

Adiponectin (APN) is an adipokine that is produced by 
adipocytes that binds to the AdipoR1 and AdipoR2 recep‑
tors (117). In aged mice, chronic deficiency of APN has been 

associated with cognitive impairment and the development of 
Ad‑like symptoms (118). It has also been revealed that APN 
deficiency exacerbates microglia activation and neuroinflam‑
mation in APN 5XFAd mice (119). Pre‑treatment with APN 
can inhibit the release of TNFα and IL‑1β in AβO‑induced BV2 
cells by activating the AdipoR1/Adenosine 5'‑monophosphate 
(AMP)‑activated protein kinase (AMPK)/NF‑κB signaling 
pathway, thereby ameliorating neuroinflammation (120). This 
research highlights the potential therapeutic benefits of APN 
in the prevention and treatment of Ad (Fig. 1 and Table I).

Mitogen‑activated protein kinase (MAPK). It is widely 
recognized that MAPKs, which include p38 MAPK, ERK, 
and c‑Jun NH2‑terminal kinases (JNK), as well as their 
isoforms (121), play a critical role in the regulation of various 
biological processes, including proliferation, differentiation, 
apoptosis and inflammation in mammalian cells (122). The 
MAPK signaling cascade comprises a MAPKK kinase, a 
MAPK kinase, and a MAP kinase (123) that respond to both 
internal and external stimuli, such as growth factors, cyto‑
kines, oxidation, and endoplasmic reticulum stress. Activation 
of the MAPK signaling pathway has been observed in the 
brains of patients with Ad (124,125) and animal models (126). 
In vitro studies have shown that stimulation of Aβ induces the 
activation of this pathway in glial cell cultures, indicating its 

Figure 1. NF‑κB signaling pathway and targets of inhibitors against neuroinflammation in AD. 1, rutin; 2, piperlongumine; 3, bee venom; 4, punicalagin; 5, 
tenuifolin; 6, d4 (a novel piperine derivative); 7, ethanol extract of Bupleurum falcatum; 8, macasiamenene F; 9, miconazole; 10, Ld55; 11, the p65 binding 
domain of glucocorticoid‑induced leucine zipper; 12, K284‑6111; 13, epigallocatechin‑3‑gallate; 14, genistein; 15, oxysophoridine; 16, dihydromyricetin; 17, 
Gx‑50; 18, protosappanin A; 19, icariside II; 20, ATP50‑3; 21, dL0410; 22, tanshinone IIA; 23, APN; Aβ, amyloid β; LPS, lipopolysaccharide; d‑gal, 
d‑galactose; RAGE, receptor for advanced glycation end products; TLRs, Toll‑like receptors; AMPK, adenosine 5'‑monophosphate‑activated protein kinase; 
Myd88, myeloid differentiation factor 88; TRAF6, TNF receptor associated factor 6; NEMO, NF‑κB essential modulator; IKK, IκB kinase.
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Table I. drugs that prevent and treat Alzheimer's disease through the NF‑κB signaling pathway.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Sun et al, 2021 Rutin/‑ Tau‑ Tau oligomers‑ In vivo: ↓: Tau aggregation, NF‑κB (51)
  P301S induced 100 mg/kg‑ tau‑mediated
  mice primary 30 days cytotoxicity, IL‑1β,
   microglia In vitro: TNF‑α, tau
    8 µM‑24 h oligomer‑induced
     toxicity, tau
     pathology, GFAP,
     Iba‑1, IKK‑β,
     p‑P65/P65, synapse
     loss, microglial
     synapse engulfment
     ↑: microglial
     engulfment of
     extracellular tau,
     PP2A
Gu et al, 2018 PL/Piper LPS‑ LPS‑induced In vivo: ↓: Aβ1‑42, activities NF‑κB (53)
 longum  induced BV2 cells 1.5,3 mg/kg; of β‑secretase and
  IcR  7 days γ‑secretase, APP,
  mice  In vitro: BAcE1, cOX‑2,
    0.5, 1, iNOS, GFAP, Iba‑1,
    2.5 µM; NF‑κB translocation,
    18 h phosphorylated‑IκB,
     TNF‑α, IL‑1β, IL‑6
     ↑: neuronal survival
Gu et al, 2015 BV/Bee LPS‑ LPS‑induced In vivo: ↓: Aβ1‑42,  NF‑κB (55)
  induced BV2 cells 0.8, β‑secretase and 
  IcR  1.6 µg/kg; γ‑secretase, APP, 
  mice  7 days BAcE1, cOX‑2,
    In vitro: iNOS, GFAP, Iba‑1,
    0.5, 1, 2 µg/ neuronal death,
    ml; 48 h NF‑κB translocation,
     p‑IκB
Kim et al, 2017 PUN/ LPS‑ LPS‑induced In vivo: ↓: Aβ1‑42, BAcE1, NF‑κB (57)
 pomegranate  induced BV2 cells 1.5 mg/kg; GFAP, Iba‑1, TNF‑α,
  IcR  7 days IL‑1β, IL‑6, MdA,
  mice  In vitro: ROS (H2O2), cOX‑2,
    10, 20, iNOS, NF‑κB
    50 µM; translocation, p‑IκB,
    24 h NF‑κB dNA binding
     activity
     ↑: GSH/GSSG
chen et al, 2020 TEN/ ‑ Aβ42‑induced In vitro: ↓: TNF‑α, IL‑1β, NF‑κB (58)
 Polygala  BV2 cells 1, 5, IL‑6, cOX‑2, iNOS,
 tenuifolia   10 µM; NF‑κB
 Willd   24 h translocation
Shahbazi et al, d4/black ‑ LPS‑induced In vitro: ↓: NO, iNOS, NF‑κB (61)
2020 and white  human 0.86 µM; TNF‑α, IL‑1β,
 pepper  microglia 24 h PPAR‑γ, IKK‑α,
   clone 3   IkB‑α, NF‑kB p65 
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Table I. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Park et al, 2015 BFE/BF LPS‑ LPS‑induced In vivo: ↓: NO, iNOS, NF‑κB (63)
  induced BV2 cells 30 mg/kg; TNF‑α, IL‑1β,
  c57BL/  3 days IL‑6, NF‑κB p65/
  6 mice  In vitro RELA, GFAP, Iba‑1
    10 µg/ml;
    4 h
Leláková et al, MF/ ‑ LPS‑induced In vitro: ↓: TNF‑α, IL‑1β, NF‑κB (64)
2020 Macaranga  THP‑1 and 1 µmol/l; NF‑кB, AP‑1,
 siamensis ‑ THP‑1‑XBlue™ 18 h degradation of IкBα
   ‑Md2‑cd14
   human mono‑
   cytes, BV2
   mouse micro‑
   glia, and an
   ex vivo model
   of brain‑sorted
   mouse
   microglia
Yeo et al, 2020 miconazole LPS‑ LPS‑induced In vivo: ↓: TNF‑α, IL‑1β, NF‑κB (66)
 (McZ)/‑ induced BV2 cells 40 mg/kg; IL‑6, cOX‑2, iNOS,
  c57BL  7/14 days GFAP, Iba‑1, NO,
  6/N  In vitro: p‑IκB, NF‑κB
  mice  1.25, 2.5, 5, translocation
  Aβ1–42‑  10 µM; 24 h
  induced
  mice
  with
  Ad
Solberg et al, Ld55/‑ AβPP/ ‑ In vitro: a ↓: Aβ plaques, NF‑κB (67)
2014  PS‑1  diet contain‑ activated microglia
  transgenic  ing 100 ppm
  mice with  Ld55;
  Ad  12 months
Lindsay et al, GA/GILZ 5XFAd ‑ In vivo: ↓: Aβ plaque NF‑κB (68)
2021  mice  100 µl GA; burden, NF‑κB p65,
    alternate IL‑1β, IL‑12, IL‑6,
    days for IFN‑γ, GFAP, Iba‑1,
    6 weeks cd14, TLR‑2, TLR‑4
choi et al, 2018 K284‑6111/‑ Aβ1‑42‑ LPS‑induced In vivo: ↓: cHI3L1, iNOS, inactivation (69)
  induced BV2 cells 3 mg/kg; GFAP, Iba‑1, TNF‑α, of NF‑κB‑
  mice with  4 weeks IL‑1β, IL‑6, Aβ1‑42, mediated
  Ad  In vitro: APP, BAcE1, c99, cHI3L1
    0.5, 1, p‑IκB, NF‑κB
    2 µM; 24 h translocation
Ham et al, 2020  Tg2576 Aβ‑induced In vivo:  ↓: Aβ1‑42, Aβ1‑40, ERK‑ (16)
  mice BV2 cells 3 mg/kg; APP, BAcE1, mediated
    4 weeks  β‑secretase, cOX‑2, PTX3
    In vitro: 0.5, iNOS, GFAP, Iba‑1, and
    1, 2 µM; cd86, p‑IκBα, NF‑κB
    24 h p‑ERK1/2, p‑JNK,
     cHI3L1, PTX3
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Table I. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Lian et al, 2017 dL0410/‑ d‑gal‑ ‑ In vivo: 1, 3, ↓: AchE activity, RAGE/ (70)
  induced  10 mg/kg; AGEs, MdA, NF‑κB
  IcR  4 weeks mitochondria
  mice   structure, Iba‑1,
     GFAP, RAGE, 
     p‑P65, cOX2, iNOS,
     p‑JNK, cleaved
     caspase 3, cleaved
     PARP
     ↑: Ach level, TEAcl,
     activities of catalase,
     GPx, SOd, OPR, the
     number of synapses
Zhong et al, EGcG/green APP/ LPS‑induced In vivo: ↓: caspase‑1 p20, TLR4/ (80)
2019 tea PS1 BV2 cells 2 mg/kg; NLRP3, caspase‑11 NF‑κB
  double Aβ1‑42‑ 4 weeks p26, TLR4, p‑IKK/ 
  trans‑ induced In vitro: IKK, p‑NF‑κB/
  genic primary 10 µM; 1 h NF‑κB, Iba‑1, IL‑1β,
  mice microglia  IL‑18
  with
  Ad
Zhou et al, 2014 Gen/SIF ‑ Aβ25–35‑ In vitro: ↓: IL‑1β, iNOS, TLR4/ (81)
   induced BV2 12.5, 25, 50, TLR4, NF‑κB p65, NF‑κB
   cells 100, NF‑κB p50, dNA‑
    200 µM; binding activity of
    26 h NF‑κB
     ↑: cell viability,
     IL‑10
chen et al, 2021 Oxysophori‑ ‑ Aβ1‑42‑ In vitro: 0, ↓: MdA, TNF‑α, TLR4/ (82)
 dine/Sophora  induced BV2 2.5, 5, 10, 20, IL‑1β, TLR4, NF‑κB
 alopecu‑  cells 40 µM; 48 h Myd88, NF‑κB
 roides L.    p65
 seeds    ↑: activities of GPx,
     cAT, and SOd
Zeng et al, 2012 PTA/ ‑ LPS‑induced In vitro: 5, ↓: Total ROS, gp91 cd14/TL (88)
 Caesalpinia  BV2 cells 10, 25, phox, MdA, iNOS, R4‑
 sappan L.   50 µM; NO, Nitrotyrosine, dependent
    10 min Iba‑1, p‑NF‑κB p65 NF‑κB
     on serine‑536, p65
     and p50 transloca‑
     tions, IKKα/β,
     p‑IκB, the interaction
     of TLR4 with
     Myd88, IRAK1 and
     TRAF6, interaction
     of LPS with TLR4
     ↑: synapse
     remodeling
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Table I. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

capiralla et al, Resveratrol/ APP/ LPS‑induced In vivo: ↓: IL‑6, M‑cSF, TLR4/ (90)
2012 red wines PS1 BV2 cells 350 mg/kg; McP‑1, McP‑5, NF‑κB/
  double  15 weeks cd54, IL‑1ra, IL‑27, STAT
  trans‑  In vitro: TNF‑α, p‑Akt,
  genic  100 mM; cOX‑2, iNOS,
  mice  30 min STAT1, STAT3,
  with   TLR4, Iba‑1
  Ad
Zhou et al, 2019 IcS II/ LPS‑ ‑ In vivo: 3, ↓: neuronal changes, TLR4/ (94)
 Epimedium induced  10 mg/kg; neuronal degenera‑ Myd88/
 brevicornum Sd rats  7 days tion, GFAP, Iba‑1, NF‑κB
 Maxim    cOX‑2, IL‑1β,
     TNF‑α, TLR4,
     Myd88, TRAF6,
     p‑NF‑κB 
     ↑: IκB‑α degradation
Zhang et al, dL0410/‑ d‑gal‑ LPS‑induced In vivo: 1,3, ↓: MdA,AGEs, TLR4/ (97)
2021  induced BV2 cells 10 mg/kg‑ SOd1, SOd2, Iba‑1, Myd88/
  Sd rats  8 weeks GFAP, TNF‑α, NF‑κB
    In vitro: IL‑1β, IL‑6, cOX2,
    1‑30 µM‑2 h iNOS, TLR,
     Myd88, p‑IκBα
     and NF‑κB p65,
     NF‑κB
     translocationp65,
     NO, TRAF6,
     p‑IKKα/β, p‑IκBα
     ↑: PSd95, IL‑10,
     claudin‑1, claudin‑5,
     occludin, cX43,
     ZO‑1
Zhong et al, ATP50‑3/ ‑ LPS‑induced In vitro: ↓: TNF‑α, IL‑1β, TLR4‑ (100)
2020 Acorus  BV2 cells 2.5,5, IL‑6, cOX‑2, iNOS, mediated
 tatarinowii   10 µM‑2 h cd11b, TLR4, Myd88/
     Myd88, IKKα/β, NF‑κB
     IκBα, NF‑κB p65, and PI3K/
     PI3K, Akt Akt
Jing et al, 2019 dHM/ ‑ LPS‑induced In vitro: 20, ↓: TNF‑α, IL‑1β, TLR4/ (102)
 Ampelopsis  BV2 cells 40, 80, IL‑6, cOX‑2, iNOS, Myd88/
 grosseden‑   100 mg/l; p‑p65, p‑IкBα, NF‑κB
 tata   48 h TLR4, Myd88
     ↑: BV‑2 microglia
     viability
Shi et al, 2016 Gx‑50/ APP‑Tg Aβ42‑induced In vivo: ↓: TNF‑α, IL‑1β, NO, TLR4‑ (104)
 Sichuan mice BV2 cells and 1 mg/kg; PGE2, iNOS, cOX2, mediated
 pepper  primary 2 months p‑IκB, NF‑κB NF‑κB
   microglia In vitro: translocation,  and
    1 µM; p‑ERK1/2, MAPK
    30 min p‑p38, p‑JNK,
     TLR4, Myd88,
     TRAF6
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Table I. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Kong et al, 2020 FTS‑B/ APP/ LPS‑induced In vivo: 10 , ↓: Aβ deposition, WdFY1/ (108)
 Forsythiae PS1 BV2 cells 40 mg/kg; JIP3, p‑JNK/JNK, TLR3/
 fructus double  36 days p‑APP/APP, Aβ, NF‑κB
  trans‑  In vitro: 1, TNF‑α, IL‑1β, IL‑6,
  genic  2.5 µM; 3  h IL‑8, IL‑12, ELKS,
  mice   p‑IKK (α+β),
  with   p‑IκBα, p‑NF‑κB
  Ad   (Ser536), Iba1,
     GFAP, NO, iNOS,
     apoptosis rate of the
     HT22 cells
     ↑: TLR3, p‑IRF3/
     IRF3, IFN‑β,
     WdFY1, p‑IRF3,
     cell viability
Lu et al, 2016 Tan IIA/ Aβ1‑42‑ ‑ In vivo: ↓: A β, IL‑1β, IL‑6, ‑ (110)
 Salvia induced  8 mg/kg; GFAP, cd11b, c1q,
 miltiorrhiza Ad rats  30 days c3c, c3d
Li et al, 2015  Aβ‑ ‑ In vivo: ↓: iNOS, MMP‑2, NF‑κB (351)
  induced  50 mg/kg; NF‑κB p65
  Ad rats  15 days
Maione et al,  Aβ1‑42‑ ‑ In vivo: 1, 3, ↓: GFAP, S100β, NF‑κB (112)
2018  induced  10 mg/kg; cOX‑2, NF‑κB p65
  mice  21 days
  with
  Ad 
ding et al, 2020  APP/ Aβ1‑42‑ In vivo: 5, ↓: Loss of Syn and RAGE/ (113)
  PS1 induced BV2 20 mg/kg; PSd‑95, Aβ1‑40, NF‑κB
  double cells 30 days Aβ1‑42, the number
  trans‑  In vitro: 1, of activated
  genic  10 µM; microglia, Iba‑1,
  mice  30 min GFAP, TNF‑α, IL‑6,
  with   IL‑1β, expression of
  Ad   RAGE, p‑IκBα,
     NF‑κB p65
Jian et al, 2019 APN/‑ 5XFAd AβO‑ In vitro: ↓: TNF‑α, IL‑1β,  AdipoR1‑ (120)
  mice induced BV2 10 µg/ml‑ p‑NF‑κB p65S536, AMPK‑
  APN‑/‑ cells 2 h NF‑κB p65, NF‑κB
  5XFAd   Aβ plaques
  mice   ↑: p‑AMPKT172,
     GFAP, Iba1

PL, piperlongumine; BV, bee venom; PUN, punicalagin; TEN, Tenuifolin; d4, a novel piperine derivative; BFE, ethanol extract of BF; BF, 
Bupleurum falcatum L.; MF, macasiamenene F; McZ, miconazole; GA, the p65 binding domain of GILZ; GILZ, glucocorticoid induced 
leucine zipper; K284‑6111, 2‑({3‑[2‑(1‑cyclohexen‑1‑yl)ethyl]‑6,7‑dimethoxy‑4‑oxo‑3,4‑dihydro‑2‑quinazolinyl}sulfanyl)‑N‑(4‑ethylphenyl)
butanamide; EGCG, epigallocatechin‑3‑gallate; Gen, genistein; SIF, Soybean isoflavone; PTA, protosappanin A; ICS II, icariside II; DHM, 
dihydromyricetin; FTS‑B, forsythoside B; Tan IIA, tanshinone IIA; APN, Adiponectin; p‑ phosphorylated; Ad, Alzheimer's disease; Aβ, 
amyloid β; APP/PS1, amyloid‑β protein/presenilin‑1; 5XFAd, 5X familial Alzheimer's disease; AchE, acetylcholinesterase; APN, Adiponectin; 
AMPK, Adenosine 5'‑monophosphate (AMP)‑activated protein kinase; BAcE1, β‑site amyloid precursor protein cleaving enzyme 1; cOX‑2, 
cyclooxygenase‑2; CHI3L1, chitinase‑3 like‑protein‑1; ERK, extracellular signal‑regulated kinases; GFAP, glial fibrillary acidic protein; IKK, 
IκB kinase; IL, interleukin; iNOS, inducible nitric oxide synthase; IFN‑γ, interferon‑γ; JNK, c‑Jun NH2‑terminal kinases; LPS, lipopolysaccha‑
ride; Myd88, myeloid differentiation factor 88; MAPK, mitogen‑activated protein kinase; NLRP3, NOd‑like receptor thermal protein domain 
associated protein 3; NO, nitric oxide; PTA, protosappanin A; PI3K, phosphoinositide 3‑kinase; PPARs, peroxisome proliferator‑activated 
receptors; RAGE, receptor for advanced glycation end products; ROS, reactive oxygen species; TLRs, Toll‑like receptors; WdFY1, Wd 
repeat and FYVE domain‑containing 1; NF‑κB, nuclear factor‑kappa‑B; Iba‑1, ionized calcium binding adaptor molecule 1; STAT3, signal 
transducers and activators of transcription 3; AP‑1, activator protein 1; PGE2, prostaglandin E2.
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involvement in the development of Ad (127‑129). Inhibition of 
tau kinases, such as p38 MAPK, has been shown to improve 
cognitive deficits and reduce tau pathology in Ad (130). 
Furthermore, blocking the ERK pathway can reverse mito‑
chondrial dysfunction in AD (131,132), while specific JNK 
inhibitors can enhance synaptic function (133). Of note, the 
MAPK signaling pathway can also regulate the neuroinflam‑
matory response of microglia. Aβ‑induced production of 
inflammatory cytokines and ROS can activate this pathway, 
leading to more severe inflammation. A number of in vitro 
experiments have demonstrated that inhibition of the MAPK 
signaling pathway can suppress neuroinflammation in BV2 
microglia (134,135), highlighting its potential as an effective 
strategy for treating Ad (Fig. 2 and Table II).

P38 MAPK. P38, a member of the P38 MAPK subfamily, 
has been found to be activated in both Ad brain tissue 
samples (136) and animal models (126) of Ad. Additionally, 

study has shown that the absence of P38 MAPK attenuates 
amyloid‑like pathology in AD models (137). Specifically, P38α 
MAPK is thought to play a crucial role in the dysregulation 
of microglia and neuroinflammation during AD progression, 
making it a recognized target for Ad treatment (130,138,139). 
Thus, targeting P38α MAPK may offer a promising thera‑
peutic strategy to address the underlying neuroinflammatory 
processes in Ad.

Several inhibitors of the p38α MAPK signaling pathway, 
including natural product extracts, and organic compounds, 
have shown promise in reducing neuroinflammation and 
treating Ad. Both preclinical and clinical trials have 
evaluated the pharmacological effects of these inhibitors 
in the brain. Selective p38α MAPK inhibitors, such as 
MW01‑2‑069A‑SRM (140) and MW181 (141), which are 
able to penetrate the BBB, have demonstrated potent inhibi‑
tory effects on neuroinflammation. Additionally, VX‑745, a 

Figure 2. MAPK signaling pathway and targets of inhibitors against neuroinflammation in AD. AD, Alzheimer's disease; 1, MW01‑2‑069A‑SRM; 2, MW181; 
3, MMI‑0100; 4, methanol extracts of Piper sarmentosum roots; 5, EGB761; 6, cryptolepine; 7, VB‑037; 8, dexmedetomidine; 9, Hominis placenta; 10. BJe; 
11, diammonium glycyrrhizinate; 12, tripterygium glycosides; 13, LX007; 14, pseudane‑VII; 15, sorbinil and zopolrestat; 16, Artemisiae Iwayomogii Herba; 
17, tectorigenin; 18, circumdatin d; 19, 1‑O‑acetylbritannilactone; 20, Ganoderma lucidum extract GLE; 21, Atractylodis Rhizoma Alba ethanolic extract; 
22, ulmoidol; Aβ, amyloid β; LPS, lipopolysaccharide; TLRs, Toll‑like receptors; Myd88, myeloid differentiation factor 88; IKK, IκB kinase; JNK, c‑Jun 
NH2‑terminal kinases; MK2, MAPK‑activated protein kinase II; AP‑1, activator protein 1.
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Table II. drugs that prevent and treat Alzheimer's disease through the MAPK signaling pathway.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Munoz et al, MW01‑2‑ Aβ1‑42‑ ‑ In vivo: ↓: IL‑1β, TNFα, p38 (140)
2007 069A‑SRM/‑ induced  2.5 mg/kg; S100B MAPK
  mice  two weeks
  with
  Ad
Maphis et al, MW181/‑ hTau cx3cr1‑/‑cM‑ In vivo: ↓: p‑tau, p‑p38α p38 (141)
2016  mice induced 1 mg/kg; MAPK (T180/Y182), MAPK
  LPS‑ primary 14 days tau (AT8 site),
  induced neurons and In vitro:  p‑pATF2(T71),
  MK2‑/‑ microglia 2 µM; pATF2, pMK2,
  mice  30 min IFNγ, IL‑1β, IL‑6,
     TNFα, p38α MAPK
     ↑:synaptophysin,
     YM1,ARG1
Alam et al, 2015 VX‑745/‑ Tg2576 ‑ In vivo: ↓: amyloid plaque, p38 (143)
  mice  0.5, 1.5, IL‑1β MAPK
    4.5  mg/kg; ↑: PSd95
    2 weeks
Jiang et al, 2019 MMI‑0100/‑ Aβ1‑42‑ LPS‑induced In vivo: ↓: cd11b, GFAP, p38 (147)
  induced BV2 cells 2 µl; the IL‑6, IL‑1β, TNF‑α, MAPK/
  mice  lateral iNOS, p‑MK2 MK2
  with  ventricle;
  Ad  0.5 µl/cA1
    side; 15 min
    25 nmol;
    10 µl;
    intranasal
    infusion;
    1 min
    In vitro:10‑5‑
    10‑8 M; 24 h
chan et al, 2019 RMEOH/PS ‑ Aβ‑induced In vitro: ↓: IL‑1β, IL‑6, p38 (151)
   BV2 cells 6.25 µg/ml; TNF‑α, NO, p38α MAPK
    4 h MAPK
Meng et al, 2019 EGB 761/ ‑ Aβ1‑42‑induced In vitro: ↓: NF‑κB transloca‑ p38 (153)
 Ginkgo  BV2 cells 10, tion, IL‑1β, TNF‑α, MAPK
 biloba   90 µg/ml; p38 MAPK
    12 h
Olajide et al, cryptole‑ ‑ LPS‑induced In vitro: ↓: TNF‑α, IL‑6, NF‑κB (157)
2013 pine/  primary 2.5, 5 µM; IL‑1β, PGE2, cOX2, and p38
 Cryptolepis  microglia and 30 min mPGES‑1, iNOS, MAPK
 sanguino‑  BV2 cells  NO, p‑p38 MAPK,
 lenta    MAPKAPK2,
     NF‑κB p65
     translocation
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Table II. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

chiu et al, 2019 VB‑037/ ‑ LPS/IFN‑γ‑ In vitro: ↓: Aβ aggregation, P38, JNK (155)
 quinoline  induced BV2 10  µM; 8 h ROS, NO, Iba1,
 compounds  cells  AchE, caspase1, 
   Aβ‑GFP SH‑  IL‑1β, JNK, Jun
   SY5Y cells  proto‑oncogene, AP‑1
     transcription, JUN
     ↑: HSP27, cell
     viability
Ho et al, 2020 AZd6244/‑ ‑ acrolein‑ In vitro: ↓: p‑ERK, TNF‑α, MEK‑ (163)
   induced BV2 10 µM; 16 h cOX‑II, HO‑1 ERK
   cells
Qiu et al, 2020 dexmedeto‑ ‑ LPS‑induced In vitro: ↓: NO, morpholo‑ ERK (164)
 midine/‑  BV2 cells 1, 5, 10 µM; gical changes in
    0, 6, 12, 24 h BV2 cells, TNF‑α,
     iNOS, p‑ERK1/2
     ↑: IL‑10, cd206,
     microglial M2
     polarization
Lee et al, 2013 HP/placenta ‑ LPS‑induced In vitro: ↓: p‑JNK, p‑ERK, JNK and (166)
   BV2 cells 50 µM; 2 h p‑AKT, iNOS, NO, ERK
     cOX2
currò et al, 2016 BJe/ ‑ Aβ1–42‑induced In vitro: ↓: IL‑6, IL‑1β, MAPK/ (168)
 Bergamot  THP‑1 cells 0.05, p‑p54, ERK 1/2, AP‑1
 juice   0.1 mg/ml; p46 JNK, AP‑1
    16 h dNA binding activity
Tang et al, 2021 TGs/‑ Aβ25‑35‑ Aβ25‑35‑induced In vivo: ↓: Aβ25‑35, p‑Tau, NF‑κB (172)
  induced Pc12 cells 0.25 mg/ cd11b, p‑IκBα, and
  mice  10 g.d; p‑P38, caspase‑1, MAPK
  with  28 days cOX2, iNOS, IL‑1β,
  Ad  In vitro: TNF‑α, NO
    25 µg/l; ↑: The neuron
    24 h number
cao et al, 2018 LX007/‑ ‑ LPS‑induced In vitro: 10, ↓: NO, iNOS, NF‑κB (173)
   primary 20, 30 µM; PGE2, cOX‑2, and
   microglia 1 h  IL‑1β, IL‑6, TNF‑α, MAPK
     p‑ERK1/2, JNK,
     p38, p‑IκBα, IκBα
     degradation, p65 
Kim et al, 2018 Pseudane‑ ‑ LPS‑induced In vitro: 0.5, ↓: iNOS, cOX‑2, NF‑κB (174)
 VII/Pseudo‑  BV2 cells 1, 2.5, IL‑1β, p‑p65, ERK, and
 alteromonas   5 µM; 2 h p38 MAPK, JNK1/2, MAPK
 sp.M2    Iba‑1
Zhao et al, 2013 dG/GA Aβ1‑42‑ Aβ1‑42‑induced In vivo: ↓: TNF‑α, cOX‑2, MAPK (175)
  induced BV2 cells 10 mg/kg; iNOS, IL‑1β, and
  mice  14 days cOX‑2, iNOS, NF‑κB
  with  In vitro: GFAP, Iba‑1, p65
  Ad  0.001 mg/ml; translocation, p‑ERK,
    1 h JNK, p38
     ↑: IL‑10



ZHENG et al:  INFLAMMATORY SIGNALING PATHWAYS OF ALZHEIMER'S dISEASE ANd ITS TREATMENTS14

Table II. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Song et al, 2017 Sor and Zol/‑ ‑ Aβ1‑42‑ In vitro: ↓: TNF‑α, IL‑1β, ROS/ (177)
   induced BV2 20 µM; 1 h IL‑6, NF‑κB p65 PKc‑dep‑
   cells  translocation, endent
     p‑IKKβ, p‑IκB,  NF‑κB
     p‑NF‑κB, p‑JNK, and
     p‑p38, p‑ERK, ROS, MAPK
     p‑PKcα/β, PKcδ,
     PKcζ/λ, PKcmu
     subtypes
Ju et al, 2021 AIH/‑ LPS‑ LPS‑induced In vivo: 10, ↓: NO, iNOS, cOX2, NF‑κB (180)
  induced BV2 cells 30, 100 mg/ TNF‑α, IL‑6, p‑p65, and
  c57BL  kg; 14 days p‑p38, p‑JNK, MAPK
  6J mice  In vitro: 1, NLRP3, Iba‑1
    10, 100 µg/
    ml; 24 h
Hilliard et al, GLE/ ‑ LPS‑induced In vitro: ↓: G‑cSF, IL1α, NF‑κB (181)
2020 Ganoderma  BV2 cells 0.5 mg/ml; McP‑5, MIP3, and
 lucidum   1 h RANTES, cHUK, MAPK
     NFκB1/p50, IKBKE
Jeong et al, 2019 ARAE/ARA ‑ LPS‑induced In vitro: 10, ↓: NO, TNF‑α, IL‑6, NF‑κB (134)
   BV2 cells 50, 100 µg/ IL‑1β, iNOS, and
    ml; 18 h cOX‑2, HO‑1, MAPK
     NF‑κB p65
     translocation,
     p‑IκBα, IκBα
     degradation,
     p‑ERK, p‑p38,
     p‑JNK
Tang et al, 2021 ABL/Inula ‑ LPS‑induced In vitro: 1, ↓: NO, TNF‑α, TLR4‑ (185)
 britannica L.  BV2 cells 3, 10 µM;  PGE2, iNOS, cd14, mediated
    24 h NF‑κB p65, IRAK1, NF‑κB
     p‑p38 and
     ↑: HO‑1, Arg‑1, MAPK
     IL‑10
Han et al, 2021 ULM/ ‑ LPS‑induced In vitro: 1, ↓: TNF‑α, IL‑1β, TLR4‑ (188)
 Eucommia  BV2 cells 3, 10 µM;  IL‑6, PGE2, cOX‑2, mediated
 ulmoides   24 h iNOS, p‑IκBα, NF‑κB
 Oliv    p‑p38, p‑ERK,  and
     p‑JNK, cd14, TLR4, MAPK
     Md2, Myd88,
     TRAF6, TAK1
Zhang et al, 2020 circumdatin d/ c4176 LPS‑induced In vivo: 50, ↓: NO, AchE, TLR4‑ (189)
 Aspergillus nema‑ BV2 cells 100, TNF‑α, IL‑1β, mediated
 ochraceus todes and primary 200 µM; iNOS, cOX‑2,  NF‑κB,
    microglia 16 h neuron death, TLR4, MAPK
    In vitro: 10, Myd88, NF‑κB p65, andJAK/
    20, 50 µM; p‑IKK, p‑IκB,  STAT
    6 h p‑MAPK, p‑STAT3, 
     STAT3 translocation,
     p‑JAK2
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small molecule inhibitor of p38α MAPK, has emerged as a 
promising candidate for anti‑inflammatory therapy and is 
currently undergoing pilot trials for the treatment of rheuma‑
toid arthritis (142). Notably, preclinical studies have revealed 
that VX‑745 exerts its anti‑neuroinflammatory effects by 
selectively targeting of p38α MAPK, resulting in a reduc‑
tion of IL‑1β levels in the hippocampus of aged rats (143). 
This finding highlights the potential utility of VX‑745 as a 
therapeutic strategy for neurological disorders character‑
ized by neuroinflammation (143). MAPK‑activated protein 
kinase II (MK2), a downstream kinase of p38 MAPK (144), 
is activated and upregulated in Ad mouse models and is 
associated with Aβ deposition, microglia activation, and the 
upregulation of pro‑inflammatory cytokines (145). Targeting 
MK2 may be a promising therapeutic strategy for Ad. 
MMI‑0100, a cell‑penetrating peptide inhibitor of MK2 with 
anti‑inflammatory activity (146), has been shown to inhibit 
LPS‑induced microglia activation and significantly reduce 
pro‑inflammatory cytokine production in mice by inhibiting 
MK2 phosphorylation (147). Furthermore, intranasal adminis‑
tration of MMI‑0100 can overcome the challenge of failed Ad 
treatments with large molecule protein or peptide drugs due to 
its ability to penetrate the BBB (148,149).

Piper sarmentosum Roxb. (PS) is a medicinal plant (150) 
that has been the subject of recent research investigating poten‑
tial therapeutic applications in neuroinflammatory diseases. 
In vitro experiments have demonstrated that pre‑treatment 
of BV2 microglia with methanol extracts of PS roots results 
in a significant reduction in Aβ‑induced expression of proin‑
flammatory cytokine mRNA and protein, thereby exerting 
neuroprotective effects, which is associated with the regulation 

of phosphorylation of p38α MAPK in microglia (151). These 
findings suggest that PS represents a promising option for the 
management of neuroinflammatory conditions. Derived from 
Ginkgo biloba leaves, EGb761 has been extensively studied 
for its potential in ameliorating cognitive impairment and 
Ad (152). In a cellular model of BV‑2 microglia stimulated 
by Aβ1‑42, EGb761 intervention effectively attenuated the 
concentration‑dependent production of TNF‑α and IL‑1β 
and simultaneously downregulated their respective mRNA 
expressions (153). Additionally, the inhibition of p38 MAPK 
phosphorylation induced by Aβ was found to be selectively 
achieved by EGb761, while it had no significant impact on 
the expression of ERK and JNK. These results suggest that 
the anti‑inflammatory mechanism of EGb761 may be due 
to the selective modulation of the p38 MAPK signaling 
pathway (153).

Quinoline, a heterocyclic aromatic organic compound, 
has attracted considerable attention for its antibacterial 
properties (154) and its ability to inhibit amyloid aggrega‑
tion (155,156). consequently, this framework is widely utilized 
in the research and design of innovative anti‑inflammatory 
drugs. cryptolepine, an indoloquinoline alkaloid isolated from 
Cryptolepis sanguinolenta, has demonstrated the ability to 
suppress LPS‑induced microglia inflammation by selectively 
targeting the NF‑κB and p38 MAPK signaling pathways (157). 
Similarly, VB‑037 (155), a quinoline compound, has been 
shown to effectively mitigate BV‑2 microglial activation 
induced by LPS/interferon‑γ (IFN‑γ). This attenuation is 
achieved by inhibiting caspase 1 activation, IL‑1β expression 
and P38 phosphorylation, as well as by affecting the JNK, 
Jun oncogene and Jun signaling pathways. These findings 

Table II. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Lim et al, 2018 TEc/ LPS‑ LPS‑induced In vivo: 5, ↓: NO, PGE2, iNOS, TLR4‑ (192)
 Pueraria induced BV2 cells 10 mg/kg; cOX‑2, TNF‑α, Myd88‑
 thunbergiana IcR  5 days IL‑6, NF‑κB p65, mediated
 Benth mice  In vitro: p‑ERK, p‑JNK, inhibition
    12.5, 25, Iba‑1, TLR4, of ERK/
    50, 100 µM; Myd88 JNK and
    24 h  NF‑κB

RMEOH, methanol extracts of PS roots; PS, Piper sarmentosum Roxb; HP, Hominis placenta; TGs, Tripterygium glycosides; LX007, 
4‑[(5‑bromo‑3‑chloro‑2‑hydroxybenzyl) amino]‑2‑hydroxybenzoic acid; dG, diammonium glycyrrhizinate; GA, glycyrrhizin acid; Sor, 
sorbinil; Zol, zopolrestat; AIH, Artemisiae Iwayomogii Herba; GLE, Ganoderma lucidum extract; ARAE, ARA ethanolic extract; ARA, 
Atractylodis Rhizoma Alba; ABL, 1‑O‑acetylbritannilactone; ULM, ulmoidol; TEc, tectorigenin; Ad, Alzheimer's disease; Aβ, amyloid β; 
AChE, acetylcholinesterase; COX‑2, cyclooxygenase‑2; ERK, extracellular signal‑regulated kinases; GFAP, glial fibrillary acidic protein; HO‑1, 
Haem oxygenase‑1; IKK, IκB kinase; IL, interleukin; iNOS, inducible nitric oxide synthase; IFN‑γ, interferon‑γ; JNK, c‑Jun NH2‑terminal 
kinases; JAK2, Janus kinase 2; LPS, lipopolysaccharide; Myd88, myeloid differentiation factor 88; MAPK, mitogen‑activated protein kinase; 
MAPKKK, MAPKK kinase; MK2, MAPK‑activated protein kinase II; MEK, mitogen‑activated extracellular signal‑regulated kinase; NLRP3, 
NOd‑like receptor thermal protein domain associated protein 3; NO, nitric oxide; PKc, protein kinase c; PKA, protein kinase A; ROS, 
reactive oxygen species; TLRs, Toll‑like receptors; p‑, phosphorylated; NF‑κB, nuclear factor‑kappa‑B; Iba‑1, ionized calcium binding adaptor 
molecule 1; STAT3, signal transducers and activators of transcription 3; AP‑1, activator protein 1; PGE2, prostaglandin E2.
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substantiate that VB‑037 selectively regulates the P38 and 
JNK/MAPK signaling pathways, ameliorating neuronal 
damage and neuroinflammation and thereby altering the 
progression of Ad. The multifaceted mechanism of quinoline 
derivatives offers several opportunities for the development of 
Ad therapeutics (155,157).

ERK and JNK. The ERK/MAPK pathway and the 
JNK/MAPK pathway (155), which utilize ERK and JNK as 
their final kinases, respectively, are essential subsets of the 
MAPK signaling cascade that regulate neuronal develop‑
ment (158,159). However, dysregulation of these pathways 
can lead to developmental abnormalities and behavioral defi‑
cits (158,160). Notably, chronic activation of these pathways 
has been observed in the hippocampus of transgenic Ad 
mouse models overexpressing Aβ (161) and in patients with 
Ad, where elevated brain levels of p‑ERK have been positively 
correlated with disease progression (162). This underscores 
its importance in Ad pathogenesis and supports the idea 
that drugs targeting ERK represent a promising therapeutic 
approach for managing Ad.

Numerous inhibitors of the MEK (mitogen‑activated extra‑
cellular signal‑regulated kinase)/ERK signaling pathway, both 
natural product extracts, and organic compounds, have displayed 
potential in reducing neuroinflammation and treating Ad. 
Recent study has highlighted the efficacy of AZD6244 (163), 
an oral MEK1/2 inhibitor, in suppressing acrolein‑induced 
neuroinf lammation by modulating of the MEK/ERK 
signaling pathway in BV‑2 cells, leading to its neuroprotec‑
tive effects (163). Similarly, dexmedetomidine (164), an α2 
adrenergic receptor agonist with sedative, analgesic and anxio‑
lytic properties, was found to upregulate anti‑inflammatory 
cytokines and M2 phenotype markers, while downregulating 
pro‑inflammatory cytokines, M1 phenotype markers, and 
p‑ERK1/2 in LPS‑stimulated BV2 microglia. This effect has 
been shown to be reversed by LM22B‑10, an ERK agonist, 
supporting the notion that dexmedetomidine promotes M2 
polarization in microglia through modulation of the ERK 
signaling pathway, ultimately exerting its anti‑inflammatory 
properties (164). Hominis placenta (HP) is a dried placental 
extract from pregnant women after delivery that has been shown 
to promote neural regeneration (165). Lee et al (166) demon‑
strated that pre‑treatment with HP significantly inhibited the 
expression of iNOS and cOX2 in LPS‑induced BV2 cells. This 
anti‑inflammatory effect was achieved, at least in part, through 
the inhibition of the ERK pathway and the phosphorylation of 
JNK and ERK. In addition, Bergamot juice (BJ) was found to 
have antibacterial properties and to exert anti‑inflammatory 
effects (167) through its flavonoid component (BJe) (168), 
which was shown to partly affect the ERK signaling pathway. 
The critical role of monocytic cells in neuroinflammation 
has been underlined by their ability to cross the BBB and 
differentiate into microglia in the brain parenchyma (169,170). 
In this context, a research team found that pretreatment with 
BJe resulted in a concentration‑dependent reduction in the 
upregulation of pro‑inflammatory cytokine expression and a 
decrease in the phosphorylation levels of JNK and ERK1/2 
in Aβ1‑42‑induced THP‑1 monocytic cells. This effect was 
associated with the disruption of dNA‑binding activity of 
AP‑1 (activator protein 1) and the MAPK/AP‑1 pathway, 
thereby counteracting the pro‑inflammatory activation 

of monocytic/microglia induced by Aβ and exerting an 
anti‑neuroinflammatory effect (168).

NF‑κB and MAPK. The NF‑κB and MAPK signaling path‑
ways have emerged as key regulators of pro‑inflammatory 
mediator expression and NLRP3 inflammasome formation, 
both of which play a role in neuroinflammation. Therefore, 
targeting these signaling pathways represents a potential 
therapeutic approach to alleviate neuroinflammation. Notably, 
specific inhibitors or drugs have been found to exhibit dual 
targeting of both NF‑κB and MAPK signaling pathways, 
which may provide a more robust anti‑neuroinflammatory 
effect. This highlights the possibility of developing a combina‑
tion therapy targeting multiple pathways for the treatment of 
neuroinflammation.

Several synthetic drugs or inhibitors have been discov‑
ered that have anti‑neuroinflammatory effects by targeting 
the signaling pathways of NF‑κB and MAPK. For example, 
Tripterygium (TG), a non‑steroidal immunosuppressant, 
has been shown to have anti‑inflammatory, anti‑tumor and 
immunosuppressive properties (171). Research suggests that 
TG can alleviate neuroinflammation by inhibiting the NF‑κB 
and MAPK signaling pathways, thereby reducing the expres‑
sion of Aβ25‑35, p‑Tau, CD11b and various pro‑inflammatory 
cytokines in an Ad model. This implies the feasibility of 
TG intervention in Ad pathology (172). A compound called 
4‑[(5‑bromo‑3‑chloro‑2‑hydroxybenzyl) amino]‑2‑hydroxy‑
benzoic acid (LX007) (173) has been identified as a potent 
mitigator of microglia‑induced inflammatory responses. 
LX007 has demonstrated a significant anti‑inflammatory 
activity in LPS‑stimulated primary microglia inflamma‑
tion models by inhibiting the phosphorylation of MAPK 
and NF‑κB p65 nuclear translocation, effectively inhibiting 
NO and prostaglandin E2 (PGE2) production and reducing 
pro‑inflammatory cytokine gene and protein expression (173). 
These findings imply that LX007 may be a potential drug for 
treating inflammatory reactions. Pseudane‑VII, a secondary 
metabolite derived from Pseudoalteromonas sp. M2, has 
been shown to possess anti‑inflammatory activity (173) by 
inhibiting the phosphorylation of p38, ERK1/2, JNK1/2 and 
NF‑κB. Similarly, diammonium glycyrrhizinate (dG), the 
salt form of glycyrrhizin acid (174), has been found to play a 
critical role in inhibiting Aβ1‑42‑induced neuroinflammation by 
regulating the MAPK and NF‑κB pathways (174). An in vivo 
study has revealed that dG can alleviate memory impairment 
in mice, inhibit activation of microglia in the hippocampus 
and reduce the expression and production of pro‑inflammatory 
mediators (175). Further investigation has revealed that the 
anti‑inflammatory effect of DG involves inhibiting the trans‑
location of NF‑κB p65 to the nucleus, as well as reducing the 
phosphorylation levels of ERK, JNK and p38 MAPK (175). 
It is notably that aldose reductase inhibitors (ARIs) exert 
their effects by regulating the ROS/protein kinase c 
(PKc)‑dependent NF‑κB and MAPK signaling pathways. 
Aldose reductase (AR), a rate‑limiting enzyme in the polyol 
pathway of glucose metabolism, is a molecular target in various 
inflammatory diseases (176). An in vitro study was conducted 
to investigate the effects of typical ARIs, sorbinil (Sor) and 
zopolrestat (Zol) (177), on Aβ1‑42‑induced BV‑2 microglia. 
The results demonstrated that both Sor and Zol significantly 
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inhibited TNF‑α secretion, downregulated the expression of 
pro‑inflammatory genes and proteins via interference with 
the NF‑κB and MAPK pathways, in addition to inhibiting 
the phosphorylation of several PKc subtypes (177). Notably, 
this inhibition of PKc was demonstrated to be mediated by 
reducing intracellular ROS generation (178). Taken together, 
these findings suggest that the anti‑neuroinflammatory effects 
of ARIs are, at least in part, ROS/PKc dependent (177). 
However, further in vivo studies are necessary to confirm the 
efficacy and safety of ARIs, as well as to explore their poten‑
tial for treating neurodegenerative diseases.

Traditional medicines, natural products, and their deriva‑
tives have demonstrated promising therapeutic properties for 
the treatment of neuroinflammation. Artemisiae Iwayomogii 
Herba (AIH), a traditional herb (179) utilized for the treatment 
of inflammatory conditions, was found to inhibit LPS‑induced 
neuroinflammation in BV‑2 microglia and mice brains (180). 
This effect was achieved by reducing NO production and 
the expression of pro‑inflammatory mediators, as well 
preventing the formation of the NLRP3 inflammasome (180). 
The anti‑inflammatory effect of AIH is associated with the 
regulation of the NF‑κB and MAPK signaling pathways (180). 
Similarly, Ganoderma lucidum extract (GLE) (181) has 
been shown to possess neuroprotective properties (182) 
and has exhibited efficacy in the treatment of inflammatory 
diseases (183). Pretreatment with GLE downregulates the 
expression of pro‑inflammatory genes in LPS‑stimulated 
BV‑2 microglia by modulating NF‑kB and MAPK signaling 
pathways, thereby exerting an anti‑neuroinflammatory 
effect (181). Atractylodis Rhizoma Alba (ARA) ethanolic 
extract (ARAE) (134) was also found to have anti‑neuro‑
inflammatory effects in an in vitro inflammatory model, 
associated with the inhibition of the NF‑κB and MAPK 
signaling pathways (184). ARAE significantly decreased the 
production of NO and inflammatory cytokines and inhibited 
the expression of iNOS and cOX‑2. Further analysis indicated 
that the anti‑inflammatory effects of ARAE were mainly 
due to inhibition of IκBα degradation, phosphorylation, and 
NF‑κB p65 nuclear translocation, suggesting a multi‑pathway 
approach to reducing neuroinflammation (134). Similarly, 
1‑O‑acetylbritannilactone (also termed Inulicin; ABL), a 
natural product derived from Inula britannica L. (185) and its 
derivative ‘compound 15’ were found to inhibit neuroinflam‑
mation in LPS‑induced BV‑2 microglia. compound 15 was 
found to block NF‑κB translocation, reduce cd14 genera‑
tion by TLR4 in a dose‑dependent manner, and significantly 
inhibit p38 MAPK phosphorylation, thereby downregulating 
the p38 MAPK inflammatory signaling pathway. Moreover, 
compound 15 was found to convert BV‑2 microglia from 
M1 to M2 phenotypes, further enhancing its ability to 
inhibit neuroinflammation (185). Eucommia ulmoides Oliver 
(du Zhong) is a renowned traditional chinese medicine 
containing therapeutic chemical compounds for a variety of 
diseases (186,187). Its active compounds possess anti‑neuroin‑
flammatory properties, with ulmoidol (ULM) (188) exhibiting 
the most potent anti‑inflammatory activity. By interfering 
with TLR4 signaling, ULM inhibits downstream NF‑κB and 
MAPK pathways, downregulates pro‑inflammatory cyto‑
kine expression and production in LPS‑induced BV‑2 cells, 
thereby exerting its anti‑neuroinflammatory effects (188). 

Another active compound, circumdatin d, extracted from 
Aspergillus ochraceus, possesses dual activity in inhibiting 
AChE and promoting anti‑inflammatory reactions (189). It 
significantly inhibits NO production, TNF‑α, and IL‑1β release, 
and reduces iNOS and cOX‑2 expression in LPS‑induced 
BV‑2 cells by inhibiting TLR4‑mediated NF‑κB, MAPK, and 
JAK/STAT inflammatory signaling pathways. Tectorigenin 
(TEc), an active ingredient in a number of traditional medi‑
cines with anti‑tumor (190) and antibacterial effects (191), can 
also be used to treat neuroinflammation. In in vitro experi‑
ments, TEc not only reduces NF‑κB p65 subunit levels but 
also inhibits ERK and JNK phosphorylation (192). Notably, 
TEc pre‑treatment inhibited TLR4, Myd88, and LPS‑induced 
pro‑inflammatory cytokine expression both in vivo and in vitro, 
indicating that its anti‑inflammatory mechanisms are closely 
related to TLR4‑Myd88‑mediated inhibition of MAPK and 
NF‑κB (192). These findings suggest that traditional Chinese 
herbal ingredients may be effective in treating neuroinflamma‑
tory diseases by inhibiting TLR4 signaling and downstream 
inflammatory pathways. Further studies are needed to explore 
their potential clinical applications and mechanisms of action 
in vivo. In summary, traditional medicines, natural products, 
and their derivatives have shown promise in targeting both 
NF‑κB and MAPK signaling pathways and represent a prom‑
ising therapeutic approach for managing Ad.

3. NLRP3 inflammasome

The NLRP3 inflammasome is a multi‑protein complex 
consisting of the regulatory subunit NLRP3, the adaptor 
protein apoptosis‑associated speck‑like protein (ASc) and 
the effector cysteine protease caspase‑1 (192) that plays a 
central role in sterile inflammatory diseases by regulating 
the cleavage of IL‑1β precursor (193). The inflammasome 
requires two signals for activation: The first signal triggers 
the synthesis of IL‑1β precursor and other inflammasome 
components such as NLRP3 and caspase‑1; the second signal 
leads to the assembly of the NLRP3 inflammasome, activa‑
tion of caspase‑1, and secretion of IL‑1β (194). However, 
dysregulated signal transduction or excessive activation of the 
NLRP3 inflammasome can lead to a chronic inflammatory 
environment that promotes the pathogenesis and progression 
of various diseases, including Ad (195). Activated NLRP3 
inflammasomes have been observed in the brains of patients 
with Ad and are closely associated with microglia. Study has 
shown that NLRP3 inflammasomes affect Aβ pathology and 
behavioral deficits in animal models of AD by modulating the 
phenotype and function of microglia (196). Notably, Aβ can 
also activate the NLRP3 inflammasome, leading to the release 
of proinflammatory cytokines such as IL‑1β by microglia, 
contributing to neuroinflammation in Ad (197). Thus, the 
NLRP3 inflammasome is a crucial target in AD and drugs that 
inhibit its activation through the inhibition of molecule forma‑
tion, silencing of upstream signals, or direct/indirect inhibition 
of inflammasome complex formation may prove beneficial.

Inhibitors targeting the NLRP3 inflammasome have shown 
efficacy in suppressing neuroinflammation and hold promise 
as potential candidates for the prevention and treatment of Ad. 
Among these inhibitors, dapansutrile (OLT1177) (198), a novel 
oral agent that selectively targets the NLRP3 inflammasome, 
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has demonstrated the ability to block caspase‑1 activation 
and IL‑1β maturation and release. OLT1177 is currently in 
clinical trials for inflammatory diseases and has been shown 
to be well tolerated in humans (199,200). A study using a 
APP/PS1 mouse model demonstrated that OLT1177 treat‑
ment can reduce microglia activation and the number of Aβ 
plaques in the cortex (198). An in vitro study also suggested 
that OLT1177 treatment can significantly reduce the release 
of pro‑inflammatory cytokines and improve the inflammatory 
status of microglia (198). Similarly, Mcc950 (201), a small 
molecule inhibitor specific for the NLRP3 inflammasome that 
contains a diarylsulfonylurea structure, has shown promise 
as a potential treatment for Ad. Mcc950 has been found to 
improve cognitive impairment and reduce Aβ accumulation 
and microglia activation in the APP/PS1 mouse model (201). 
An in vitro study has shown that Mcc950 can inhibit NLRP3 
inflammasome activation and IL‑1β release while promoting 
the phagocytic effect of Aβ in microglia (201). Similar results 
were observed in middle‑aged APPNL‑F/NL‑F mice, where 
MCC950 blocked the NLRP3 inflammasome and attenuated 
the reactive response of microglia induced by AβO, leading 
to improvements in memory impairment (202). Additionally, 
a lead compound, Jc124 (203), based on sulfonamide‑type 
NLRP3 inhibitors, has recently shown beneficial effects in the 
prevention of Ad. Jc124 has been found to reduce Aβ plaques 
and microglia activation in the brains of APP/PS1 mice and 
has demonstrated certain anti‑inflammatory properties (203).

In addition to specific inhibitors that target the NLRP3 
inflammasome, certain herbal extracts exhibit anti‑inflam‑
matory effects on this pathway. Ginkgolide B (GB) (204), a 
plant ester derived from Ginkgo biloba, has been shown to 
possess anti‑inflammatory, antioxidant and anti‑apoptotic 
properties, as well as potent neuroprotective effects (205,206). 
In an in vitro study, GB treatment prevented Ad pathological 
processes and suppressed neuroinflammation in Aβ1‑42‑induced 
BV2 microglia by inhibiting NLRP3 inflammasome activation 
and promoting M2 polarization (204). Paeoniflorin (PF) (207), 
a natural neuroprotectant from Paeonia lactiflora Pall, has 
shown significant therapeutic effects in experimental models 
of Parkinson's disease (208) and stroke (209). Research 
has shown that PF significantly reduces the protein levels 
of the pro‑inflammatory cytokines TNF‑α and IL‑1β in 
APP/PS1 mice while increasing the anti‑inflammatory cyto‑
kines IL‑10 and IL‑4. Its pharmacological effects are achieved 
by enhancing the activity of AKT, inhibiting the activation of 
glycogen synthase kinase‑3β (GSK‑3β) and NF‑κB p65, and 
thereby reducing the NLRP3 expression levels (207).

controlling the activity of various kinases that regulate 
NLRP3 inflammasome activity is another promising way to 
suppress neuroinflammation by inhibiting NLRP3 inflam‑
masome activation. One such enzyme is hematopoietic cell 
kinase (HCK), which is involved in a number of inflammatory 
responses (210). It is suggested that HcK is an upstream regu‑
lator of the NLRP3 inflammasome and that the use of an HCK 
inhibitor [A419259 (211), a Src family kinase‑specific inhibitor] 
can reduce NLRP3 inflammasome‑mediated inflammation in 
microglia. Further mechanistic studies have shown that the 
absence of HcK and inhibition of HcK kinase activity directly 
affects NLRP3 function by inhibiting ASc oligomerization 
and inflammasome assembly. In vivo experiments confirm 

that A419259 intervention can alleviate inflammation in a 
mouse model of LPS‑induced inflammation (211). Therefore, 
A419259 may therefore be a promising drug candidate for the 
treatment of diseases associated with NLRP3 inflammasome 
activation, such as Ad.

Targeting the initial signal for NLRP3 inflammasome acti‑
vation has emerged as an effective strategy for the treatment of 
neuroinflammation. TAK‑242 (212), a cyclohexene derivative, 
is a specific small molecule inhibitor of TLR4 that is capable 
of crossing the BBB and exerting neuroprotective effects (213). 
This effect may be mediated through the modulation of the 
TLR4/Myd88/NF‑κB/NLRP3 signaling pathway. TAK‑242 
can reduce TLR4 expression and attenuate inflammatory 
cytokine production in microglia from mice with Ad carrying 
APP/PS1 mutations (212). As a result, there is a significant 
decrease in pro‑inflammatory M1‑type markers, such as 
iNOS and TNFα, while M2‑type markers, including Trem‑2 
and Arg‑1 are increased (212). Further investigation has also 
demonstrated that TAK‑242 treatment can improve the upreg‑
ulation of inflammatory cytokines, as well as MyD88, NF‑κB 
p65 and NLRP3 (212). Similarly, the TLR4‑specific inhibitor, 
CLI‑095 (214), exerts similar anti‑inflammatory effects on 
LPS/Aβ1‑42‑induced BV‑2 cells and primary microglia by 
ameliorating neuroinflammation through the TLR4/NLRP3 
pathway (214).

Activation of the second signal of the inflammasome is 
a mechanism by which certain drugs, such as Pterostilbene 
and lignin‑amides Datura metel seeds (LdS), can inhibit 
neuroinflammation. Pterostilbene, a natural compound with 
neuroprotective properties (215), has been found to inhibit 
Aβ1‑42‑induced NO production, iNOS mRNA and protein 
expression in BV‑2 cells, while also reducing the expression 
and secretion of inflammatory factors (216). Moreover, pteros‑
tilbene can deactivate the NLRP3/caspase‑1 inflammasome 
activated by Aβ1‑42, demonstrating its anti‑inflammatory effects. 
The caspase‑1 inhibitor, Z‑YVAd‑FMK, effectively reduces 
Aβ1‑42‑induced neuroinflammation in BV‑2 cells, providing 
further support for this hypothesis (216). In addition to pteros‑
tilbene, LDS is also able to ameliorate neuroinflammation 
through the NLRP3/caspase‑1 pathway. Wang et al (217) found 
that LDS had anti‑inflammatory activity in LPS‑induced BV2 
cells. Additionally, PPSR (PEG‑PEI/siROcK2), a synthetic 
molecule used in gene therapy for Ad, was found to inhibit 
the increase in IL‑1β induced by LPS/Aβ in primary microglia 
through the NLRP3/caspase‑1 pathway, thus exhibiting 
anti‑inflammatory effects (218). However, the specific mecha‑
nism through which PPSR regulates the NLRP3/caspase‑1 
pathway remains to be elucidated and requires further inves‑
tigation (219).

Gasdermin d (GSdMd) plays a crucial role in pyroptosis, 
whereby intracellular inflammasomes trigger caspase‑1‑medi‑
ated cleavage of the effector protein GSdMd to form 
p30‑GSdMd, resulting in the formation of cell membrane 
pores and release the inflammatory factors (220). Recently, two 
novel GSdMd cleavage inhibitors, Sulfa‑4 and Sulfa‑22 (221), 
were shown to effectively attenuate neuroinflammation and 
prevent Ad by disrupting the NLRP3/caspase‑1/GSdMd 
classical pyroptosis pathway. The investigation demonstrated 
that the administration of Sulfa‑4 and Sulfa‑22 inhibited the 
activation of microglia in the brains of APP/PS1 mice, reduced 
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the expression of inflammatory factors and suppressed the 
production of p30‑GSDMD and upstream NLRP3 inflamma‑
some and caspase‑1 proteins. Furthermore, the study revealed 
the specific binding relationship between Sulfa‑4 and Sulfa‑22 
and the GSdMd protein, establishing a valuable basis for the 
development of drugs to target neuroinflammation in AD (221).

donepezil is a commonly used AchE inhibitor for the treat‑
ment of Ad (222). There is evidence that cognitive function, 
activities of daily living and overall clinical status, as assessed 
by healthcare professionals, improve slightly in individuals 
with Ad who are treated with donepezil. In addition, the use of 
donepezil does not appear to significantly increase or decrease 
healthcare costs compared with placebo. However, it is impor‑
tant to note that withdrawal rates and adverse events tended to 
be higher at higher doses (223,224). Recent study has demon‑
strated that donepezil can effectively inhibit LPS‑induced 
neuroinflammation by downregulating the mRNA levels of 
proinflammatory cytokines in BV2 cells (225). This effect can 
be attributed to the intervention of the MAPK/NLRP3/STAT3 
pathway. Furthermore, in LPS‑treated wild‑type mice, treat‑
ment with donepezil effectively reduced the activation and 
quantity of microglia, as well as the levels of proinflamma‑
tory cytokines (225). In addition, donepezil was also found to 
improve the neuroinflammation induced by Aβ stimulation in 
5XFAD mice (225). These findings are supported by the study 
by Kim et al (226), which demonstrated that donepezil directly 
inhibits AβO‑induced microglia activation by blocking the 
MAPK and NF‑κB signals, thereby improving neuroinflam‑
mation and mitigating memory impairment.

AMPK is a vital molecule that plays a critical role in 
regulating energy metabolism and mitochondrial func‑
tion (226). Mitochondrial dynamics are primarily controlled 
by mitosis (227), which promotes the expression of phos‑
phate and tensin homolog deleted on chromosome 10 
(PTEN)‑induced kinase 1 (PINK1) on the damaged outer 
mitochondrial membrane. This, in turn, elevates the activity 
of the E3 ubiquitin ligase Parkin, modulating the autophagic 
process (228). Tetrahydroxy stilbene glycoside (TSG) (229), 
the major bioactive component of traditional chinese medi‑
cine Polygoni multiflori Radix, exhibits potent antioxidant and 
anti‑atherosclerotic properties (230) and has demonstrated a 
neuroprotective in repairing brain injury (231). A recent study 
has found that TSG can attenuate the LPS‑induced inflamma‑
tory response in microglia by inhibiting the NLRP3 signaling 
pathway while promoting the autophagic process mediated 
by the AMPK/PINK1/Parkin pathway (229). Notably, the 
neuroprotective effect of TSG is abolished in PINK1 or Parkin 
knockout models, underscoring the critical role of inhibition 
of NLRP3 activation through the AMPK/PINK1/Parkin 
signaling pathway for TSG to exert its neuroprotective 
effects (229).

In addition, RhoA, a member of the Rho family of 
GTPases, forms the RhoA/ROcK signaling pathway with 
the downstream effector Rho‑dependent coiled‑coil kinase 
(ROcK) (232). Activation of this pathway can further activate 
NLRP3, leading to neuroinflammation (233) and increased Aβ 
production (234) through APP cleavage‑dependent secretion, 
contributing to Aβ‑induced neurotoxicity. The RhoA/ROcK 
signaling pathway also affects the phagocytic function (235) 
of microglia and neuroinflammatory responses (236), as well 

as interactions with Aβ and microglia (237). A recent study has 
demonstrated that small molecule inhibitors, such as Fasudil 
and Y27632, can alleviate Ad pathogenesis by suppressing the 
RhoA/ROcK/NLRP3 signaling pathway, thereby reducing 
LPS‑induced inflammatory responses (238).

In summary, targeting the NLRP3 inflammasome has 
the potential to provide a multitude of effective therapeutic 
avenues for managing neuroinflammation in AD (Fig. 3 and 
Table III).

4. PPAR

Peroxisome proliferator‑activated receptors (PPARs) 
comprise three distinct forms, including PPARα, PPARβ/δ 
and PPARγ (239), with a large body of literature focusing 
on PPARγ (240‑243). These receptors play a significant role 
in regulating energy homeostasis and metabolism (244) 
throughout the body (245). In the brain, PPARs are widely 
distributed in cognitive centers such as the prefrontal cortex 
and hippocampus, which are vulnerable to neurodegenera‑
tion in Ad (246). despite low baseline expression of PPARγ 
in the brain, it has been observed to increase in response to 
Ad pathology (247). Studies have shown that PPARγ agonists 
not only improve cognitive function in patients with Ad and 
animal models (248,249), but also reduce Aβ levels (250). 
Furthermore, PPARγ is highly expressed in microglia (251) 
and its activation induces microglia to adopt an anti‑inflam‑
matory phenotype, thereby suppressing neuroinflammatory 
responses (252,253). These findings highlight PPARγ as an 
attractive therapeutic target for the treatment of Ad, with the 
potential to ameliorate disease pathology.

Current research has demonstrated the anti‑inflammatory 
effects of PPARγ agonists, particularly pioglitazone (PIO), in 
various mouse models of Ad. Berberine (BBR), an alkaloid 
extracted from coptidis Rhizoma (254) with similar binding 
affinity to the PPARγ protein as PIO, has potentially overlap‑
ping effects (255). BBR has been found to partially improve 
neuroinflammation by reducing IL‑6 and TNF‑α levels in 
LPS‑induced BV‑2 cells, indicating a potential preventive or 
delayed onset of early Ad (255). Rice bran extract (RBE), a 
novel PPARγ regulator that enhances cognitive function in 
rats (256), also exerts anti‑inflammatory effects by regulating 
microglia phenotype in LPS‑induced mice (257). RBE and PIO 
can both regulate microglia M1 to M2 phenotype, significantly 
reducing the expression of NF‑κB and pro‑inflammatory 
microglia markers (cd45), while increasing the expression 
of anti‑inflammatory microglia markers and PPARγ (257). 
Additionally, RBE can reduce Aβ42 deposition and p‑tau protein 
levels, thereby effectively ameliorating Ad pathology (257).

Ad is known to be closely associated with the activation of 
inflammation, which can be exacerbated by obesity and exac‑
erbate cognitive impairment (258). Malva parviflora extract 
(MpHE), with its hypoglycemic, anti‑inflammatory and anti‑
oxidant properties (258,259), has demonstrated the ability to 
improve the adverse effects of a high‑fat diet in an Ad mouse 
model through a PPARγ‑dependent mechanism. MpHE not 
only improved spatial learning deficits and reduced insoluble 
Aβ peptides in the hippocampus of lean and obese 5XFAd 
mice but also inhibited the accumulation of small glial cells 
around Aβ plaques and the conversion to a pro‑inflammatory 



ZHENG et al:  INFLAMMATORY SIGNALING PATHWAYS OF ALZHEIMER'S dISEASE ANd ITS TREATMENTS20

M1 phenotype while promoting phagocytic capacity (260). 
Rescue of the phagocytic capacity of microglial cells by MpHE 
was achieved through a PPARγ/cd36‑dependent mecha‑
nism (260). Angiotensin II receptor blockers (ARBs), used 
to treat metabolic disorders, have been found to ameliorate 
inflammation in several brain disorders by blocking angio‑
tensin II type 1 receptors and activating PPARγ, thus exerting 
a neuroprotective effect (261,262). clinical trials have shown 
that ARBs have a positive effect on cognitive decline (263). In 
addition, it has been shown that telmisartan, a typical ARB, 
can ameliorate AβO‑induced inflammation in microglia (264). 
Telmisartan (264) has been shown to decrease the expression 
of the pro‑inflammatory cytokine IL‑1β, while increasing 
the expression of PTEN, a key lipid and protein phosphatase, 
and the anti‑inflammatory cytokine IL‑10. Furthermore, 
Telmisartan has also been shown to inhibit the activity of 
NF‑κB, a key transcription factor involved in inflamma‑
tion and its upstream regulators Akt and ERK (264). These 
anti‑inflammatory effects of telmisartan have been found 
to be PPARγ dependent, with the PPARγ inhibitor GW9662 
blocking the expression of PTEN (264). Taken together, telmis‑
artan ameliorates AβO‑induced microglial inflammation via 
the PPARγ/PTEN pathways. Other compounds with potential 
therapeutic benefit in AD through anti‑inflammatory mecha‑
nisms include Bis (ethylmaltolato) oxidovanadium (BEOV) 
and platycodigenin. BEOV (265) has demonstrated the ability 

to reduce levels of pro‑inflammatory cytokines and interfere 
with NF‑κB signaling in Aβ‑stimulated BV2 microglia and 
the hippocampus of APP/PS1 mice, and its effects have been 
found to be PPARγ dependent. Platycodigenin (266), a triter‑
penoid compound found mainly in Platycodon grandifloras, 
demonstrates neuroprotective and anti‑inflammatory activity. 
Study reveals that platycodigenin can inhibit the secretion of 
pro‑inflammatory cytokines in Aβ‑stimulated BV‑2 microglia 
and induce M1‑type microglia to polarize towards the M2 
type (266). Their anti‑neuroinflammatory effects have been 
attributed to the inhibition of p38 MAPK and NF‑κB p65 
signaling while activating PPARγ. Although PPAR‑γ agonists 
have shown promising anti‑inflammatory activity and their 
potential use in the treatment of Ad, long‑term use of these 
drugs often results in serious side effects, including congestive 
heart failure, oedema, and weight gain (267,268). Therefore, 
there is an urgent need to develop PPARγ‑targeting drugs with 
improved tolerability (Fig. 4 and Table IV).

5. STAT3

STATs are a group of potential transcription factors that are 
activated by cytokines and growth factors. When stimulated by 
LPS, IFN‑γ, and other cytokines, they can trigger inflammatory 
signals that translocate STATs from the cytoplasm to the nucleus 
and activate the expression of a number of pro‑inflammatory 

Figure 3. NLRP3 signaling pathway and targets of inhibitors against neuroinflammation in AD. NLRP3, NOD‑like receptor thermal protein domain associ‑
ated protein 3; AD, Alzheimer's disease; 1, dapansutrile; 2, JC124; 3, MCC950; 4, ginkgolide B; 5, paeoniflorin; 6, A419259; 7, TAK‑242; 8, CLI‑095; 
9, PEG‑PEI/short interfering ROcK2; 10, pterostilbene; 11, LdS; 12, sulfa‑4 and sulfa‑22; Aβ, amyloid β; LPS, lipopolysaccharide; TLRs, Toll‑like receptors; 
Myd88, myeloid differentiation factor 88.
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Table III. drugs that prevent and treat Ad through the NLRP3 signaling pathway.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Lonnemann et al, OLT1177/‑ APP/ LPS‑induced In vivo: ↓: cd68, TNF‑α, NLRP3 (198)
2020  PS1Δ primary 3.75, 7.5 g/ IL‑1β, IL‑6, NLRP3,
  E9 mice microglia kg; Iba‑1, the number
    3 months of plaques
    In vitro: 5,
    10 µM; 24 h
dempsey et al, Mcc950/‑ APP/ LPS+Aβ‑ In vivo: ↓: IL‑1β, LdH, NLRP3 (201)
2017  PS1 induced 10 mg/kg; caspase 1,
  double primary 3 months inflammasome
  transge‑ microglia In vitro: assembly, Aβ,
  nic Ad  100 nM; 5 h cd11b, cd68
  mice
Fekete et al,  AβO‑ ‑ In vivo: ↓:Iba1, cd11b, cd68, ‑ (202)
2019  induced  1 µg; cd80, cd86, RT1‑
  Ad rats  4 weeks Ec2, ccl2, cxcl10,
  APPNL‑   c3, cfb, NLR3, Il1b,
  F/NL‑F   Tnf, Il12b, Nos2,
  mice   cx3cl1, cd200,
     cd22, cx3cr1,
     cd200r, cd45
     ↑: Scn1,IL‑10
Kuwar et al, Jc124/‑ APP/PS1 ‑ In vivo: 50, ↓: Aβ, Iba1,  NLRP3 (203)
2021  double  100 mg/kg; HMGB1, GFAP, d1
  transge‑  3 months ↑: generation and
  nic mice   survival of new
  with   neurons, pre‑synaptic
  Ad    proteins, synapsin‑1,
     synaptophysin
Zhang et al, 2021 GB/Ginkgo ‑ Aβ1‑42‑induced In vitro: ↓: cytotoxic, NLRP3, NLRP3 (204)
 biloba  BV2 cells 100 µM; 2 h caspase‑1, IL‑1β, Aβ,
     cd16/32, iNOS
     ↑:cd206, Arg‑1,
     cd206
Zhang et al, 2015 PF/Paeonia APP/ ‑ In vivo: ↓: Aβ, GFAP, cd11b, NLRP3 (207)
  lactiflora  PS1  5 mg/kg; TNF‑α, IL‑1β,
 Pall double  4 weeks p‑NF‑κB p65,
  transge‑   p‑I‑κBa, NLRP3,
  nic   caspase‑1 p20
  mice   ↑: IL‑10, IL‑4, p‑
  with   AKT, p‑GSK3β‑
  Ad    pSer9
Kong et al, 2020 A419259/‑ LPS‑ LPS‑induced In vivo: ↓: caspase 1, IL‑1β, NLRP3 (211)
  induced primary 30 mg/kg; ASc, the interaction
  c57BL/ microglia 3 h between HcK and
  6J mice  In vitro: NLRP3, IL‑6, IL‑10
    1 µM; 1 h
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Table III. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

cui et al, 2020 TAK‑242/‑ APP/ Aβ‑induced In vivo: ↓: TLR4, cd11b, TLR4/ (212)
  PS1 BV2 cells 2 mg/kg; amoeboid microglial Myd88/
  double  28 days cells, iNOS, TNFα, NF‑κB/
  transge‑  In vitro: Myd88, NF‑κB p65, NLRP3
  nic  100 nM; 8 h NLRP3, Bax, iNOS
  mice   ↑: TREM‑2,Arg‑1
  with
  Ad
Liu et al, 2020 cLI‑095/‑ ‑ LPS + Aβ1−42‑ In vitro: ↓: NLRP3, ASc, TLR4/ (214)
   induced BV2 1 µM; 2 h caspase1 p10, IL‑1β, NLRP3
   cells and  Iba‑1, IL‑1β,
   primary  TNF‑α, iNOS, cox‑2
   microglia
Li et al, 2018 Pterostil‑ ‑ Aβ1–42‑induced In vitro: 5, ↓: NO, iNOS, IL‑6, NLRP3/ (216)
 bene/‑  BV2 cells 10 µM; 24 h IL‑1β, TNF‑α, caspase1
     NLRP3, caspase1
Wang et al, 2021 LdS/‑ ‑ LPS‑induced In vitro: ↓: iNOS, cOX‑2, NLRP3/ (217)
   BV2 cells 400, 200, NO, IL‑1β, TNFα, caspase1
    100 µg/ml; IL‑6, NLRP3, TLR4,
    12 h Myd88, caspase1,
     Iba1, Tau
Liu et al, 2022 PPSR/‑ ‑ LPS+Aβ42‑ In vitro: ↓: ROcK2, IL‑1β, NLRP3/ (219)
   induced transfection; NLRP3, pro‑ caspase1
   primary 6 h caspase‑1, 
   microglia  caspase‑1
Han et al, 2021 Sulfa‑4 and APP/ LPS+nigericin‑ In vivo:  ↓: LdH, PI uptake NLRP3/ (221)
 sulfa‑22/‑ PS1 induced BV2 5 mg/kg; rate, p30‑GSdMd, caspase1/
  double cells 14 days IL‑18, IL‑1β, TNF‑α, GSdMd
  transge‑  In vitro: NLRP3, caspase‑1,
  nic mice  Sulfa‑4 (Ic50 IBA‑1, cd11c
  with Ad  of 3 µM);
    4 h
    Sulfa‑22
    (Ic50 of
    5 µM); 4 h
Kim et al, 2021 donepezil/‑ LPS‑ LPS‑induced In vivo: 1 ↓: cOX‑2, IL‑1β, MAPK/ (225)
  induced BV2 cells mpk; IL‑6, iNOS, ROS, NLRP3/
  c57BL6/  3 days/ p‑AKTser473, STAT3
  J mice  2 weeks p‑AKTT308, p‑ERK,
  5XFAd  In vitro: p‑P38 T180/Y18,
  mice  50 µM; p‑NF‑kBSer536,
  APP/  23.5 h p‑STAT3 Ser727,
  PS1   NLRP3, pro‑IL‑1β,
  double   IL‑1β, Iba‑1,GFAP
  transgenic
  mice
  with Ad
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genes (269). Of the seven types of STAT proteins found in 
humans, STAT3 has been extensively studied for its involve‑
ment in acute stress responses, cell growth, differentiation, and 
immune reactions (270). Previous studies have demonstrated 
elevated activation of STAT3 in hippocampal slices in patients 
with Ad (271) and mouse models (272). Furthermore, STAT3 
plays a crucial role in regulating the reactivity of microglia 

and in mediating pro‑inflammatory responses, indicating 
a close functional interplay with microglia (273). Given the 
dependence of neuronal differentiation and cytokine signaling 
on STAT3, STAT3 phosphorylation is closely linked to cyto‑
kine secretion (274). Therefore, targeting the signal network 
that activates STAT3 may be an effective therapeutic strategy 
for the treatment of Ad (275).

Table III. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Kim et al, 2014  AβO‑ AβO1‑42‑ In vivo: ↓: NO, TNF‑α, MAPK (226)
  induced induced BV2 2 mg/kg; IL‑1β, PGE2, iNOS, and
  mice cells, rat 5 days cOX‑2, p38 MAPK, NF‑κB
  with primary In vitro: 0.1, NF‑κB p65 transloca‑ signaling
  Ad microglia and 1 µM; 24 h tion to nucleus,
   primary  Mac‑1, GFAP
   hippocampal  ↑:cell viability
   cells
Gao et al, 2020 TSG/ ‑ LPS‑induced In vitro: 1, ↓: TNF‑α, IL‑1β, IL‑ AMPK (229)
 Polygoni  BV2 cells 10 µM; 10, 18, iNOS, cOX‑2, related
 multiflori   100 nM; P62, p‑Drp1(S637), PINK1/
 Radix   24 h MFF, NLRP3, pro‑ Parkin/
     caspase‑1, cleaved NLRP3
     caspase‑1, IL‑1β/IL‑
     1F2, IL‑3, G‑cSF,
     GM‑cSF, IL‑5,
     ccL5/RANTES,
     ccL4/MIP1β, IL‑2,
     IL‑4, IL‑10, IFN‑γ,
     ccL5/RANTES,
     ccL4/MIP1β, IL‑2
     ↑: Lc3‑II/Lc3‑I,
     Parkin, PINK1,
     Beclin1, drp1, Mfn2
Zhang et al, Fasudil and ‑ LPS‑induced In vitro: ↓: cell migration, RhoA/ (238)
2019 Y27632/‑  BV2 cells Fasudil NLRP3, pro‑cASP1, ROcK/
    (50 µM), pro‑IL‑1β,IL‑1β NLRP3
    Y27632
    (10 µM);
    24 h

AD, Alzheimer's disease; OLT1177, dapansutrile; GB, ginkgolide B; PF, paeoniflorin; TAK‑242, ethyl (6R)‑6‑[N‑(2‑chloro‑4‑fluorophenyl) 
sulfamoyl] cyclohex‑1‑ene‑1‑carboxylate); LdS, lignin‑amides from datura metel seeds; PPSR, PEG‑PEI/siROcK2; TSG, tetrahydroxy 
stilbene glycoside; Aβ, amyloid β; APP/PS1, amyloid‑β protein/presenilin‑1; 5XFAd, 5X familial Alzheimer's disease; AMPK, Adenosine 
5'‑monophosphate (AMP)‑activated protein kinase; ASc, apoptosis‑associated speck‑like protein; cOX‑2, cyclooxygenase‑2; ERK, 
extracellular signal‑regulated kinases; GFAP, glial fibrillary acidic protein; GSDMD, gasdermin D; HCK, Hematopoietic cell kinase; IL, 
interleukin; iNOS, inducible nitric oxide synthase; IFN‑γ, interferon‑γ; LPS, lipopolysaccharide; Myd88, myeloid differentiation factor 88; 
MAPK, mitogen‑activated protein kinase; NLRP3, NOd‑like receptor thermal protein domain associated protein 3; NO, nitric oxide; PINK1, 
PTEN‑induced kinase 1; ROS, reactive oxygen species; ROcK, Rho‑dependent coiled‑coil kinase; TLRs, Toll‑like receptors; p‑phosphorylated; 
NF‑κB, nuclear factor‑kappa‑B; Iba‑1, ionized calcium binding adaptor molecule 1; STAT3, signal transducers and activators of transcription 3; 
AP‑1, activator protein 1; PGE2, prostaglandin E2.
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I t  h a s  b e e n  r e p o r t e d  t h a t  ( E ) ‑2 ,  4 ‑ b i s 
(p‑hydroxyphenyl)‑2‑butenal (HPB242) (276) exhibits 
significant anti‑inflammatory effects by inhibiting STAT3 
activation in Ad. Another structurally similar compound, 
(E)‑2‑methoxy‑4‑(3‑(4‑methoxyphenyl) prop‑1‑en‑1‑yl) 
phenol (MMPP) (277), has been found to inhibit LPS‑induced 
neuroinflammation and memory impairment. In a mouse 
model of neuroinflammation induced by intraperitoneal injec‑
tion of LPS, MMPP significantly reduced Aβ deposition in the 
brain and improved cognitive dysfunction by inhibiting cOX‑2 
and iNOS expression, as well as the activation of microglia in 
the brain. Furthermore, MMPP treatment reduces the expres‑
sion of inflammatory protein and APP in LPS‑induced BV‑2 
microglia. In both in vivo and in vitro experiments, MMPP can 
inhibit the dNA binding activity of STAT3 activation (277). 
Additionally, axstaxanthin (AXT), a naturally occurring 
carotenoid compound with anti‑inflammatory, antioxidant 
and neuroprotective properties (278), has exhibited effects 
on MMPP. In vivo and in vitro experiments have shown that 
AXT reduces the expression of inflammatory proteins induced 
by LPS and improves LPS‑induced memory impairment by 
directly binding to the dNA binding domain (dBd) and linker 
domain (LD) of STAT3, resulting in an anti‑neuroinflamma‑
tory response and inhibiting APP formation (279).

BAcE1 plays a critical role in in the generation of Aβ (280), 
a major component of Ad pathology. The transcriptional 
regulation of BAcE1 by STAT3 (271) is strongly implicated 
in Ad pathology as it can elevate Aβ production (281). 
Notably, STAT3 is activated in response to LPS‑induced 
neuroinflammation, which in turn increases BACE1 levels in 
the brain (275). Treatment with stattic, a selective inhibitor 
of STAT3 activation, has been shown to prevent neuroin‑
flammation and abnormal BAcE1 regulation (282). In an 
LPS‑induced mouse model of neuroinflammation, stattic 

could inhibit STAT3 phosphorylation and microglia activation 
in the hippocampus, consequently reducing levels of inflam‑
matory factors in the brain. Notably, treatment with both LPS 
and Stattic significantly reduced hippocampal BACE1 levels 
in the hippocampus compared to LPS alone (282). These find‑
ings suggest that Stattic may address two pathological aspects 
of Ad in the hippocampus, making it a promising candidate 
for the treatment of Ad.

Janus kinase 2 (JAK2) is a non‑receptor protein tyrosine 
kinase that plays a critical role in the JAK2/STAT3 signaling 
pathway in the cNS (283). Activation of the JAK2/STAT3 
pathway leads to the transcription and expression of inflam‑
matory genes, resulting in an excessive accumulation of 
inflammatory mediators and subsequent inflammation (284). 
Therefore, inhibition of the JAK2/STAT3 pathway may be a 
potential therapeutic approach for neuroinflammatory injury. A 
promising compound, protosappanin A (PTA), which is a major 
bioactive component isolated from Caesalpinia sappan L., 
was found to regulate LPS‑induced neuroinflammation 
by inhibiting the JAK2/STAT3 pathway (285). In the 
LPS‑induced BV2 cell model, PTA treatment reduced the 
production of TNF‑α, IL‑1β and NO in microglia, while 
also dose‑dependently decreasing IL‑6 and IL‑1β mRNA 
expression (285). A further study demonstrated that PTA 
inhibited JAK2/STAT3‑dependent inflammatory pathways 
by downregulating JAK2 and STAT3 phosphorylation as 
well as STAT3 nuclear translocation (285). Furthermore, the 
Porro et al (286) found that curcumin, a pigment isolated from 
Curcuma longa (turmeric) with anti‑inflammatory, antioxidant, 
and anticancer activities (287), regulates neuroinflammation 
by inducing an anti‑inflammatory response against microglia 
through the JAK2/STAT/SOcS (suppressor of cytokine 
signaling) signaling pathway. curcumin treatment increased 
the production of the anti‑inflammatory cytokines IL‑4 and 

Figure 4. PPAR, STAT3 and PI3K/Akt signaling pathways and targets of inhibitors against neuroinflammation in AD. PPAR, peroxisome proliferator‑activated 
receptor; Ad, Alzheimer's disease; 1, berberine; 2, rice bran extract; 3, telmisartan; 4, bis(ethylmaltolato)oxidovanadium; 5, platycodigenin; 6, (E)‑2, 4‑bis(p‑
hydroxyphenyl)‑2‑butenal; 7, (E)‑2‑methoxy‑4‑(3‑(4‑methoxyphenyl) prop‑1‑en‑1‑yl) phenol; 8, astaxanthin; 9, stattic; 10, protosappanin A; 11, curcumin; 12, 
Ent‑Sauchinone; 13, sorafenib; 14, dHcR24 (3‑β‑hydroxysteroid‑Δ‑24‑reductase); 15, sulforaphene; Aβ, amyloid β; LPS, lipopolysaccharide; IKK, IκB kinase; 
JAK2, Janus kinase; GSK‑3β, glycogen synthase kinase‑3β; PTEN, phosphate and tensin homolog deleted on chromosome 10.
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Table IV. drugs that prevent and treat Alzheimer's disease through other signaling pathways.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Wong et al, 2021 Berberine/ ‑ LPS‑induced In vitro: ↓: Basal respiration, PPARγ (255)
 coptidis  BV2 cells 0.3‑10 µM; TNF‑α, IL‑6
 Rhizoma   2 h
El‑din et al, 
2021 Rice bran LPS‑ ‑ In vivo: ↓: cd45, Aβ‑42, p‑ PPARγ (257)
 extract/rice induced  100 mg/kg; Tau, NF‑κB, neuron
 bran Swiss  3 weeks ↑: arginase1, cd36,
  Albino   cd163
  mice
Medrano‑ Malva 5XFAd ‑ In vivo: ↓: Aβ, cd86, TNF, PPARγ/ (260)
Jiménez et al,  parviflora  mice  50 mg/kg; IL‑6 cd36
2019 hydroalcoho‑ LPS‑  8 months ↑: phagocytic activity,
 lic leaf induced  25, 50, microglia accumu‑
 extract/ cd1  100 mg/kg; lation around the Aβ
 Malva mice  7 days plaques, Mgl1,
  parviflora        TREM‑2, PPAR‑γ,
     cd36
Wang et al, 2020 telmisartan/‑ ‑ AβO‑induced In vitro: ↓: IL‑1β, TNF‑α, PPARγ/ (264)
   BV2 cells 5 µM‑2 h NF‑κB activation,  PTEN
     p‑Akt, p‑ERK  pathway
     ↑: IL‑10, PPARγ,
     PTEN
He et al, 2021 Bis (ethyl‑ APP/ Aβ‑induced In vivo: 0.2, ↓: NO, PGE2, iNOS, PPARγ/ (265)
 maltolato) PS1 BV2 cells 1 mM; cOX‑2, TNF‑α, I NF‑κB
 oxidovana‑ double  3 months L‑6, IL‑1β, p‑IκB‑α,
 dium transge‑  In vitro: 5, NF‑κB/p65 transloca‑
  nic mice  10, 20 µmol/l;  tion, Iba1, iNOS,
  with Ad  2 h cOX‑2
     ↑: PPARγ
Yang et al, 2019 Platycodige‑ ‑ Aβ‑induced In vitro: 0.1, ↓: TNF‑α, IL‑1β, PPARγ (266)
 nin/Platyco‑  BV2 cells 1, 10 µM; IL‑6, NO, iNOS,
 don grandi‑   12 h cox2, p‑ p65, p38,
  floras     neuronal death,
      neuritic atrophy
     ↑: IL‑10, IL4, cd206,
     Arg1, TGFβ, Ym1/2,
     PPARγ
Jin et al, 2013 (E)‑2, 4‑bis Tg2576 ‑ In vivo: ↓: Aβ plaques, STAT3 (276)
 (p‑hydroxy‑ mice  5 mg/kg; Aβ1‑42, β‑secretase,
 phenyl)‑2‑   1 month APP, c99, BAcE1,
 butenal     GFAP, Iba1, iNOS,
     cOX‑2, NF‑κB
     translocation, dNA
     binding activity of
     NF‑κB, p‑IκB, p‑STAT1,
     p‑STAT3
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Table IV. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

choi et al, 2017 (E)‑2‑metho‑ LPS‑ LPS‑induced In vivo: ↓: Aβ, β‑secretase, STAT3 (277)
 xy‑4‑(3‑(4‑ induced BV2 cells 5 mg/kg; APP, BAcE1, c99,
 methoxyphe‑ IcR  4 weeks GFAP, the dNA
 nyl) prop‑1‑ mice  In vitro: 1, binding activity of
 en‑1‑yl)   5, 10 µg/ml; STAT3, p‑STAT3,
 phenol    24 h Iba‑1, iNOS, cOX‑2,
     IL‑6, IL‑10
Han et al, 2019 Astaxanthin/ LPS‑ LPS‑induced In vivo: 30, ↓: Aβ, β‑secretase, STAT3 (279)
 marine induced BV2 cells 50 mg/kg; APP, BAcE1, GFAP,
 environment IcR  4 weeks IBA‑1, iNOS,
  mice  In vitro: 5, cOX‑2, McP‑1,
    10, 20 µM; MIP‑1α, MIP‑1β,
    24 h GSH/GSSG, total
     GSH, NO, TBARS,
     STAT3 activation
Millot et al, 2020 Stattic/‑ LPS‑ ‑ In vivo: ↓: PhosphoSTAT3Tyr STAT3 (282)
  induced  20 mg/kg; 705/STAT3 ratio,
  c57BL/  3 days IBA‑1, MAc‑1, IL‑1β, 
  6 mice   TNF‑α, IL‑6,
      IFN‑γ, BAcE1
Wang et al, 2017 Protosappa‑ ‑ LPS‑induced In vitro: ↓: NO, TNF‑α, IL‑1β,  JAK2/ (285)
 nin A/  BV2 cells 12.5, 25, IL‑6, McP‑1, STAT3
 Caesalpinia   50 µmol·l‑1;  p‑JAK2, p‑STAT3,
 sappan L.   24 h STAT3 translocation
Porro et al, 2019 curcumin/ ‑ LPS‑induced In vitro: 10, ↓: p‑JAK2, p‑STAT3, JAK/ (286)
 Curcuma  BV2 cells 30, 50 µM; iNOS STAT3/
 longa   1 h ↑: IL‑4, IL‑10, SOcS
 (turmeric)    SOcS‑1, ARG‑1
Song et al, 2014 Ent‑Sauchi‑ ‑ LPS‑induced In vitro: 1, ↓: iNOS,cOX‑2, STAT3/ (290)
 none/plants  BV2 cells 5, 10 µM; ROS, NF‑κB binding NF‑κB
     24 h  activity, p‑IκB,
     NF‑κB translocation,
     BAcE1, c99, I ba1,
     Aβ accumulation,
     dNA binding
     activity of STAT3,
     STAT3 activity
Kim et al, 2021 Sorafenib/‑ LPS LPS‑induced In vivo: ↓: cOX‑2, IL‑1β,  AKT/ (291)
  induced BV2 cells 10 mg/kg; p‑AKTS473, p‑P38T P38‑
  c57BL  3 times at 180/Y182, p‑STAT linked
  6/J  2‑h 3S727, p‑NF‑kB STAT3/
  mice  intervals S536, caspase‑3, NF‑κB
  5XFAd  10 mg/kg; Iba‑1, GFAP, p‑AKT,
  mice  3 days shank‑1
    In vitro:
    5 µM;
    30 min
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Table IV. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Zu et al, 2020 dHcR24 ‑ Aβ25–35‑ In vitro: ↓: iNOS, iNOScd Akt/GSK (298)
 (3‑β‑hydro‑  induced BV2 lentiviral 11b, IL‑1β, TNF‑α ‑3β
 xysteroid‑  cells transfection‑ ↑: Arg‑1cd11b,
 Δ‑24‑reduc‑   72 h IL‑4, TGF‑β, p‑Akt,
 tase)/‑    p‑GSK3β(S9), p‑Akt/
     Akt, p‑GSK3β/GSK
     3β
Yang et al, 2020 Sulfora‑ STZ‑ LPS‑induced In vivo: 25, ↓: TNF‑α, IL‑6, PI3K/ (300)
 phene/ induced BV2 cells 50 mg/kg; Iba‑1, GFAP, p‑tau Akt/GSK‑
 Raphani Sd rats  6 weeks (Thr205), p‑tau 3 β
 Semen   In vitro: (Ser396), p‑tau
    0.5‑32 µM; (Ser404), NO, IL‑1β,
    1 h NF‑κB p65 translo‑
     cation 
     ↑: IL‑10, p‑Akt/Akt,
     p‑GSK‑3β (S9)/GSK‑
     3β,PI3K p110α
Zhang et al, Sildenafil/‑ APP/ ‑ In vivo: ↓: IL‑1β, IL‑6,  PKG/ (313)
2013  PS1  10 mg/kg; TNF‑α, Aβ1‑40,  cREB
  double  10 days Aβ1‑42
  transge‑   ↑: pcREB
  nic mice
  with Ad 
Wang et al, 2022 Thiopera‑ LPS‑ LPS‑induced In vivo: ↓: Iba‑1, IL‑1β, IL‑6, histamine‑ (317)
 mide/‑ induced BV2 cells 5 mg/kg; TNF‑α, NF‑κB/cBP dependent
  c57BL/  7 days ↑: BrdU, dcX,  H2R/
  6 mice  In vitro: BrdU/dcX, BrdU/ cAMP/
    1 µM; NeuN, p‑cREB,  PKA/
    30 min p‑PKA, cREB/cBP, cREB
     IL‑4, IL‑10, BdNF,
     total dendritic length
Fragoulis et al, Methys‑ APP/ ‑ In vivo: ↓: Iba1, GFAP, TNF‑α,  Nrf2 (323)
2017 ticin/ PS1  6 mg/kg; IL‑17A
 kava double  3 weeks ↑: Nrf2/ARE, HO‑1,
  transge‑   Gclc, Nrf2
  nic mice
  with Ad
Mattioli et al, Polyphenol transge‑ Aβ25‑35‑ In vivo: ↓: IL‑6, IL‑1β, TNF‑α,  Nrf2 (325)
2019 extract/Ara‑ nic Ad induced BV2 40 µl/ml; p65
 bidopsis flies cells 3‑5 days, ↑: IL‑4, IL‑10, IL‑13,
 thaliana   10‑12 days Nrf2, HO‑1, NQO1
    In vitro:
    20 µl/ml;
    24 h
Alvariño et al, Gracilin A/ ‑ LPS‑induced In vitro: ↓: IL‑1β, IL‑6, TNF‑α, Nrf2 (327)
2019 Spongionella  BV2 cells 0.01‑1 µM; GM‑cSF, ROS,
 gracilis   1 h NO, iNOS, p38
     MAPK kinase,
     p‑p38, p65
     ↑: Nrf2
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Table IV. continued.

 compound   dose and
 and   drug
 original In vivo In vitro administra‑  Signaling 
First author, year source model model tion time Targets pathways (Refs.)

Huang et al, Engeletin/ ‑ Aβ1–42‑ In vitro: 20, ↓: ROS, MdA, LdH, Keap1/ (331)
2020 Engelhardia  induced BV2 40 µM; 24 h NO, iNOS, TNF‑α, Nrf2
 roxburghiana  cells  IL‑1β, IL‑6, Keap1
     cell viability
     ↑: GSH‑Px, SOd,
     Nrf2
Eom et al, 2012 Bambusae ‑ LPS‑induced In vitro: 10, ↓: NO, TNF‑α, IL‑1β,  Nrf2/ (334)
 caulis in  BV2 cells 20, 40, 60, IL‑6, iNOS, HO‑1
 Taeniam   80 µg/ml; cOX‑2
 ethyl acetate   1 h ↑: HO‑1, Nrf2
 fraction/
 Phyllosta‑
 chys nigra
 var. henonis
chen et al, 2017 L‑F001/‑ LPS‑ LPS‑induced In vivo: ↓: Reactive oxygen, Nrf2 and (335)
  induced BV2 cells 35 mg/kg; NO, IL‑6, TNF‑α, NF‑κB
  c57BL/  24 h cd16/32, iNOS,
  6 mice  In vitro: cOX‑2, NF‑κB p65,
    0‑10 µM; degradation of IκB
    24 h ↑: cd206,Nrf2
Gao et al, 2020 Beta‑ ‑ LPS‑induced In vitro: ↓: IL‑6, TNF‑α,  Akt/ (338)
 naphthofla‑  BV2 cells 2.5, 5, 10, iNOS, COX‑2, Nrf‑
 vone   20 µM; 0, deterioration of IκBα,  2/HO‑1
    0.5, 1, 3, 6 h p‑IκB, p‑p65, NF‑κB signaling
     p65 translocation axis
     ↑: activation of AKT,
     Nrf2 translocation,
     HO‑1
Jin et al, 2021 cangrelor/‑ Aβ1‑42‑ ‑ In vivo: 2, ↓: GPR17, BAcE1, Nrf2/ (337)
  induced  4 µg/mouse; Aβ1‑42, MdA, TNF‑α,  HO‑1 and
  mice  6 days IL‑1β, Iba1, NF‑κB
  with Ad   NF‑κB p65
     ↑: GSH, SOd, cAT,
     Nrf2, HO‑1, PSd‑95,
     SYN
Park et al, 2018 Bakkenolide B/ ‑ LPS‑induced In vitro: ↓: IL‑1β, IL‑6, IL‑12, AMPK/ (349)
 Petasites  BV2 cells 40 µM‑4,8, TNF‑α, ROS Nrf2
 japonicus   12,16,24 h ↑: Nrf2, HO‑1,
     NQO1, ARE‑
     promoter activity,
     p‑AMPK

Ad, Alzheimer's disease; Aβ, amyloid β; APP/PS1, amyloid‑β protein/presenilin‑1; 5XFAd, 5X familial Alzheimer's disease; AMPK, Adenosine 
5'‑monophosphate (AMP)‑activated protein kinase; BAcE1, β‑site amyloid precursor protein cleaving enzyme 1; BdNF, brain‑derived neuro‑
trophic factor; cOX‑2, cyclooxygenase‑2; cREB, cyclic AMP response element binding; ERK, extracellular signal‑regulated kinases; GFAP, 
glial fibrillary acidic protein; GSK‑3β, glycogen synthase kinase‑3β; HO‑1, haem oxygenase‑1; IKK, IκB kinase; IL, interleukin; iNOS, induc‑
ible nitric oxide synthase; IBA‑1, ionized calcium binding adaptor molecule 1; interferon‑γ, IFN‑γ; JAK2, Janus kinase 2; Keap1, Kelch‑like 
EcH‑associated protein 1; LPS, lipopolysaccharide; NLRP3, NOd‑like receptor thermal protein domain associated protein 3; NO, nitric oxide; 
NF‑κB, nuclear factor‑kappa‑B; Nrf2, Nuclear factor erythroid 2‑related factor 2; PI3K, phosphoinositide 3‑kinase; PGE2, prostaglandin E2; 
PPARs, Peroxisome proliferator‑activated receptors; PTEN, phosphate and tensin homolog deleted on chromosome 10; PKA, protein kinase A; 
PKG, cGMP‑dependent protein kinase; ROS, reactive oxygen species; STAT3, signal transducers and activators of transcription 3; SOcS, 
suppressor of cytokine signaling; TLRs, Toll‑like receptors; WdFY1, Wd repeat and FYVE domain‑containing 1; p‑phosphorylated; AP‑1, 
activator protein 1.
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IL‑10, upregulated the expression of the cytokine signaling 
suppressor SOcS‑1, blocked JAK2 and STAT3 phosphoryla‑
tion and reduced the M1/M2 ratio of microglia phenotype in 
the same LPS‑induced BV2 cell model, thereby ameliorating 
neuroinflammation from multiple perspectives (286).

NF‑κB and STAT3 are two key regulators of cytokine 
production that can reciprocally modulate each other (288,289). 
Inhibition of STAT3 activation has been shown to reduce 
NF‑κB activation, thereby attenuating amyloidogenesis and 
neuroinflammation (271,272). Ent‑Sauchinone, a polyphenolic 
compound from the lignan family, exerts inhibitory effects 
on neuroinflammation and amyloidogenesis by blocking 
the STAT3/NF‑κB pathway (271). In LPS‑stimulated BV‑2 
microglia, ent‑Sauchinone dose‑dependently reduces the 
production of ROS and NO, as well as the expression of 
iNOS and cOX‑2, while inhibiting NF‑κB activation and the 
elevated dNA‑binding activity of STAT3 induced by LPS. 
Inhibition of neuroinflammation and prevention of neuroin‑
flammation‑induced Aβ production were further confirmed 
using short interfering RNA and pharmacological inhibi‑
tors of STAT3 (290). Sorafenib (291), an anti‑cancer drug, 
also exerts anti‑neuroinflammatory effects by modulating 
the AKT/P38‑linked STAT3/NF‑κB signaling pathway. It 
reduces the mRNA expression of pro‑inflammatory cytokines 
in LPS‑induced BV‑2 microglia and inhibits the increase in 
STAT3 and NF‑κB phosphorylation levels by inhibiting AKT 
and P38 signaling. An in vivo study further confirmed the 
anti‑inflammatory effects of Sorafenib, suggesting its potential 
as a therapeutic agent to inhibit neuroinflammatory responses 
in the brain (291) (Fig. 4 and Table IV).

6. PI3K/Akt

The PI3K/Akt pathway is a vital signaling pathway that 
regulates a variety of transcription factors and cellular func‑
tions (292). Its association with various pathogenic factors of 
Ad, including aging, Aβ and synaptic loss, has been uncov‑
ered (293). There are reports of reduced expression of the 
PI3K/Akt pathway in the brains of patients with Ad, while 
upregulation of this pathway can alleviate tau‑induced neuro‑
toxicity and Aβ deposition (294), improve learning and memory 
capacity and reduce brain damage, and reduce inflammation 
and oxidative stress in mice with Ad (295). Therefore, the role 
of the PI3K/Akt pathway in microglia has received increasing 
attention. Studies indicate that PI3K/Akt phosphorylation 
directly regulates NF‑κB in microglia, suggesting a strong 
link between PI3K/Akt and neuroinflammation (296). GSK‑3β 
signaling, which is involved in inflammation, oxidative stress, 
and apoptosis, can be activated by Akt phosphorylation 
upstream (297). Therefore, the Akt/GSK‑3β signaling pathway, 
an important mediator of the inflammatory response, is closely 
linked to the PI3K/Akt pathway and the role of microglia.

dHcR24 (298), also known as 3‑β‑hydroxysteroid‑Δ‑
24‑reductase (seladin‑1), exerts neuroprotective effects by 
participating in the degradation of amyloid precursor proteins, 
thereby preventing Aβ toxicity, endoplasmic reticulum stress 
and cellular oxidative damage, which are beneficial in both 
the prevention and treatment of Ad (298‑299). A recent study 
has revealed that DHCR24 can also exert anti‑inflammatory 
effects by activating the Akt/GSK‑3β signaling pathway (298). 

Lentivirus was used to overexpress dHcR24 in BV‑2 cells 
and the results demonstrated that dHcR24 has the ability 
to attenuate the inflammatory response induced by Aβ25‑35 
by altering the polarization phenotype of microglia (298). 
Further mechanistic analysis revealed that dHcR24 affected 
the protein expression levels of P‑Akt and P‑GSK‑3β. 
Furthermore, the Akt inhibitor MK2206 attenuated this effect, 
thus demonstrating the neuroprotective function of dHcR24 
in AD‑associated inflammatory injury (298). Sulforaphene 
(SF) (300) is an isothiocyanate derived from Raphani 
Semen (301). SF inhibits neuroinflammation by modulating 
the PI3K/Akt/GSK‑3β pathway (300). In rats treated with 
intravenous streptozotocin (STZ), SF treatment significantly 
improved STZ‑induced cognitive impairment, inhibited 
the production of pro‑inflammatory factors and promoted 
the release of anti‑inflammatory factors. Additionally, SF 
increased the ratio of p‑Akt/Akt and p‑GSK‑3β/GSK‑3β in 
the rat hippocampus (300). In LPS‑stimulated BV‑2 cells, SF 
exerted significant inhibitory effects on the release of NO, 
TNF‑α, and IL‑6, while also affecting the nuclear translocation 
of p‑NF‑κB p65 and the p‑GSK‑3β (Ser9)/GSK‑3β ratio (300). 
Therefore, SF shows promising potential as a neuroprotec‑
tive agent and could be further developed as a therapeutic 
treatment for Ad (Fig. 4 and Table IV).

7. CREB

The cyclic AMP response element binding (cREB) is a 
stimulus‑inducible transcription factor that dimers with the 
conserved cyclic AMP response element (cRE) (302) to 
activate cRE‑responsive genes in response to extracellular 
stimuli (303). In the cNS, cREB regulates various protein 
kinases, including protein kinase A (PKA) and MAPKs, which 
are involved in neuronal development, synaptic plasticity, 
short‑term to long‑term memory conversion and neuroprotec‑
tion in the cNS (304,305). Furthermore, dysregulated cREB 
phosphorylation has been identified in AD mouse models (306) 
and patients with Ad (307), demonstrating the important role 
of cREB in the pathogenesis of Ad (308). Notably, cREB has 
been found to be associated with neuroinflammation and may 
be an effective therapeutic target for the treatment of Ad (309). 
Phosphorylation of cREB has been shown to reduce neuroin‑
flammation by regulating NF‑κB to block the transcription of 
inflammatory mediators (310). Moreover, phosphorylation of 
CREB promotes the production of anti‑inflammatory cyto‑
kines in activated microglia that induce microglia inactivation 
or polarization to the M2 phenotype (311), thus modulating 
neuroinflammation for neuroprotection in AD.

The cGMP‑dependent protein kinase (PKG) plays an impor‑
tant role in mediating the transcriptional regulation of cREB 
by phosphorylating cREB and activating different downstream 
genes (312). In an aged Tg APP/PS1 mouse model, sildenafil 
was found to be effective in reducing neuroinflammation 
and Aβ levels in the brain. Specifically, sildenafil suppressed 
Aβ‑induced pro‑inflammatory factors in the hippocampus, 
and this effect was mediated through the PKG/cREB signaling 
pathway (313). Inhibition of PKG in the hippocampus prior to 
sildenafil injection resulted in blocked CREB phosphorylation, 
resulting in a reduced production of inflammatory factors and 
ultimately produced anti‑inflammatory effects. Furthermore, 
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there is ample evidence in the literature to support the 
crucial role of the PKA/cREB pathway as a drug target in 
Ad (314), particularly in the context of downregulation of 
the transcriptional cascade that contributes to the disease. 
Additionally, inhibition of histamine H3 receptors (H3R) has 
been shown to improve cognitive deficits in AD (315,316). 
The histamine H3R antagonist, thioperamide (317), can 
effectively inhibit inflammatory cell recruitment (318), further 
highlighting the importance of the PKA/cREB pathway in 
modulating neuroinflammation as a therapeutic target for AD. 
It has been found that thioperamide exerts its effects on the 
PKA/cREB signaling pathway, suppressing microglia activity 
and promoting their conversion from M1 to M2 phenotype, 
ultimately impeding LPS‑induced neuroinflammation and 
restoring cognitive function in mice (317). Mechanistically, the 
downstream PKA/cREB pathway activated by H2R stimula‑
tion triggers cBP (cREB‑cREB binding protein) interactions 
that facilitated the release of anti‑inflammatory factors and 
brain‑derived neurotrophic factor, while simultaneously 
attenuating NF‑κB‑cBP interactions to reduce the secretion 
of pro‑inflammatory factors. These effects were found to be 
reversible by cimetidine (H2R antagonist) but not by piramine 
(H1R antagonist), indicating a novel H2R‑dependent hista‑
mine‑mediated mechanism underlying the therapeutic effects 
of thioperamide on neuroinflammation (317) (Table IV).

8. Nrf2

Nuclear factor erythroid 2‑related factor 2 (Nrf2) is a transcrip‑
tion factor that plays a crucial role in regulating oxidative stress 
in various cell types, including glial cells and neurons (319). 
Notably, a reduction in Nrf2 expression has been detected in 
the brains of patients with Ad (320). Moreover, a growing 
body of research indicates that augmenting Nrf2 signaling has 
the potential to improve Aβ‑induced neurodegeneration and 
oxidative stress in in vitro and in vivo models of Ad (321). 
Such investigations have also revealed that enhancing Nrf2 
signaling can alleviate microglia‑mediated inflammation 
in the brain (322), highlighting the potential for therapeutic 
intervention targeting Nrf2 in the development of drugs for the 
treatment of Ad.

Studies have shown that certain herbs and natural products 
contain active ingredients that can interfere with Nrf2, thereby 
inhibiting neuroinflammation. For example, Methysticin (323), 
a kavalactones derived from the Piperaceae plant kava (324), 
has been demonstrated to inhibit neuroinflammation and 
oxidative damage and to attenuate long‑term memory loss 
in APP/PS1 mice. These effects are attributed to its ability 
to significantly reduce microglia activation and the secre‑
tion of pro‑inflammatory factors in the hippocampus and 
cortex, possibly mediated by Nrf2. Similarly, a polyphenol 
extract derived from Arabidopsis thaliana was found to 
have anti‑inflammatory activity in transgenic AD flies and 
Aβ25‑35‑induced BV2 cells by influencing the nuclear translo‑
cation of Nrf2 and NF‑κB (325). Gracilin A, a natural product 
isolated from the marine sponge Spongionella gracilis (326), 
has been associated with Nrf2‑involved inflammation. An 
in vitro study has shown that Gracilin A reduces the release 
of pro‑inflammatory factors from BV2 cells induced by LPS 
by inhibiting the expression of iNOS and the activation of p38 

MAPK, which affects the translocation of NF‑κB p65 and 
Nrf2 (327).

Kelch‑like EcH‑associated protein 1 (Keap1), as an adapter 
protein, inhibits the function of Nrf2 by degrading it in the 
normal state of the cell (328). However, when cells are exposed 
to external stimuli, the degradation of Keap1 (dependent on 
Nrf2), is inhibited, leading to the accumulation of Nrf2 in the 
nucleus and its regulatory role in the expression of various 
antioxidant genes (329). Engeletin, a flavonol glycoside derived 
from the leaves of Engelhardia roxburghiana (330), has demon‑
strated anti‑inflammatory properties. Specifically, it has been 
shown to inhibit the expression and secretion of Aβ1‑42‑induced 
pro‑inflammatory factors and to enhance the activation of the 
Keap1/Nrf2 pathway in BV‑2 cells. However, when Nrf2 was 
knocked down, the inhibitory effect of Engeletin was reversed. 
These findings further underscore the potential of pharma‑
cological intervention targeting the Keap1/Nrf2 pathway in 
anti‑Ad therapy (331).

Haem oxygenase‑1 (HO‑1), a stress‑inducible protein, 
exerts a protective effect against inflammatory and oxidative 
stress and has been shown to be beneficial in neurodegen‑
erative diseases including Ad (332). The promotion of HO‑1 
expression is mediated by Nrf2 (333). Study has shown 
that Bambusae caulis in Taeniam ethyl acetate fraction 
(BcE) (334) as a modulator of Nrf2 signaling, regulates 
the neuroprotective and anti‑neuroinflammatory effects of 
microglia BV2 by modulating the expression of HO‑1. BcE 
was shown to inhibit the production of pro‑inflammatory 
mediators and cytokines in LPS‑induced BV2 cells, while 
upregulating the mRNA and protein expression levels of 
HO‑1, and influencing the accumulation and transactivation of 
Nrf2 in the cells (334). Further evidence for the involvement of 
HO‑1 in the observed anti‑inflammatory effects of BCE was 
obtained by using the selective HO‑1 inhibitor, SnPP, which 
reversed these effects (334).

Researchers have identified multiple inhibitors that act on 
multiple pathways to inhibit neuroinflammation by targeting 
Nrf2. Among these inhibitors, L‑F001 (335), a newly devel‑
oped ROcK inhibitor, has shown promise in the treatment 
of Ad by inhibiting NF‑κB and activating Nrf2. An in vitro 
study has demonstrated that L‑F001 significantly inhibits 
the expression of iNOS and cOX‑2 as well as the secretion 
of pro‑inflammatory mediators in BV‑2 cells following LPS 
induction (335). This is accompanied by inhibition of NF‑κB 
signaling and upregulation the expression of HO‑1 and gluta‑
mate cysteine ligase modifier subunit, downstream effectors 
of Nrf2 (335). Similarly in vivo experiments, on mice have 
confirmed that L‑F001 significantly reduces the levels of 
pro‑inflammatory mediators induced by LPS, in line with the 
in vitro findings (335). In addition, the researchers have found 
that G protein‑coupled receptor 17 was expressed in neurons 
and microglia (336) and that its antagonist, cangrelor (337), 
had an inhibitory effect on neuroinflammation. In a mouse 
model of Ad with intracerebroventricular injection of Aβ1‑42, 
cangrelor reduced BAcE1 activity as well as Aβ1‑42 levels in 
the hippocampus and frontal cortex of mice, while inhib‑
iting microglia activation and levels of pro‑inflammatory 
factors through a mechanism involving Nrf2/HO‑1 and 
NF‑κB signaling (337). Another inhibitor, β‑naphthoflavone 
(BNF) (338), a derivative of a natural flavonoid widely used in 
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the pharmaceutical industry, has antioxidant and anti‑inflam‑
matory effects. Pretreatment with BNF was found to inhibit 
activation of the NF‑κB pathway in LPS‑treated BV‑2 cells, 
promote AKT activation, enhance the nuclear translocation 
of Nrf2, lead to an upregulation of the HO‑1 protein levels, 
and significantly reduce the expression of pro‑inflammatory 
mediators (338). The use of MK2206 (an AKT inhibitor), RA 
(an Nrf2 inhibitor) and SnPP IX (an HO‑1 inhibitor) further 
confirms that BNF inhibits the production of pro‑inflammatory 
mediators by activating this pathway (338).

AMPK is an important cellular metabolic sensor and 
regulator (339) that is expressed in peripheral tissues and 

particularly in neuronal cells in the brain (340). Reports 
show that AMPK is hyperactivated in neurons from patients 
with Ad (341) and impaired in the hippocampus of APP/PS1 
mice (342), and is involved in Aβ clearance (343) and tau 
phosphorylation (344). AMPK has also been associated with 
neuroinflammation (345) and is dependent on microglia regula‑
tion (346). A link between AMPK and the Nrf2/ARE pathway 
has been suggested (347,348) and Bakkenolide B (349), the 
major constituent of Petasites japonicus leaves (350), has 
been found to activate the AMPK/Nrf2 signaling pathway. An 
in vitro study demonstrated that Bakkenolide B significantly 
reduces LPS‑mediated production of pro‑inflammatory factors 

Figure 5. Targeting inflammatory signaling pathways with drugs shows promise in AD treatment. By modulating various signaling pathways, drugs and 
inhibitors can effectively target microglia, neurons, and mice with AD. This targeted approach helps regulate inflammatory responses, promote neuronal 
survival, and restore functional recovery, ultimately alleviating symptoms of Ad. Ad, Alzheimer's disease; NLRP3, NOd‑like receptor thermal protein 
domain associated protein 3; cREB, cyclic AMP response element binding; PPAR, Peroxisome proliferator‑activated receptor; Nrf2, Nuclear factor erythroid 
2‑related factor 2.
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in microglia and upregulates the expression of Nrf2‑associated 
downstream effectors, such as NQO‑1 and HO‑1 (349). 
Knockdown of Nrf2, HO‑1, and NQO‑1 attenuated the 
anti‑inflammatory effects of Bakkenolide B, whereas AMPK 
inhibitors reversed these effects. These findings indicate that 
Bakkenolide B induces the AMPK/Nrf2 signaling pathway to 
reduce neuroinflammation (349) (Table IV).

9. Conclusion and future perspectives

The pathogenesis of Ad is a multifaceted process, but 
studies ranging from cellular and animal models, as well 
as studies involving patients with Ad, have unequivocally 
established the pivotal role of neuroinflammation. Excessive 
activation of microglia releases inflammatory mediators that 
contribute to the pathological features of Ad. Thus, inhibiting 
microglia‑mediated inflammation is a promising approach to 
combat this disease.

Intracellular signaling pathways play a crucial role in 
maintaining cellular function and metabolism and are intri‑
cately associated with the pathogenesis of Ad, including 
neuroinflammation. It is worth noting that these signaling 
pathways are complex, interconnected and capable of 
interacting with each other. By intervening in the pertinent 
signaling pathways through the use of drugs or inhibitors, it is 
possible to inhibit neuroinflammation and exert an effect on 
AD. Therefore, this review focused on neuroinflammation in 
Ad and presented a comprehensive synthesis and summary 
of the mechanisms of action and potential signaling proteins 
linked with inhibitors, herbal medicines, and their active 
ingredients and metabolites, from the standpoint of signaling 
pathways (Fig. 5).

Various drugs or inhibitors can regulate various signaling 
pathways, and multiple drugs can also target the same 
pathway. It is worth noting that NF‑κB, MAPK, and NLRP3 
are key signaling molecules targeted in neuroinflammation 
and have been extensively studied in drug discovery. By 
interfering with one or more of these signaling pathways, 
drugs can synergistically modulate multiple targets, achieve 
a balance between antioxidant and pro‑inflammatory effects, 
and ultimately improve cognitive impairment in patients 
with Ad (refer to Fig. 1 for details). Given the complexity 
of Ad pathogenesis, drugs or inhibitors with multi‑level and 
multi‑target potential hold promise as a breakthrough in Ad 
drug development. Exploring the anti‑inflammatory effects 
of commonly used clinical drugs may broaden their poten‑
tial application. However, current research is still primarily 
focused on animal and cellular experiments, with a focus on 
LPS‑ or Aβ‑stimulated BV2 microglia. Although a number 
of problems have prevented a number of drugs from entering 
clinical trials, inhibitors, that target neuroinflammation remain 
a potentially promising therapeutic option for Ad.

In summary, the present review highlighted the prominent 
role of neuroinflammation in Ad pathology and reviewed 
various anti‑inflammatory inhibitors targeting molecular 
targets and signaling pathways. These inhibitors have shown 
significant potential as drug treatments for Ad and have 
provided a foundation for the further development of novel 
Ad therapeutics. However, the specificity, efficacy, safety, 
and availability of these inhibitors, natural ingredients and 

metabolites, are critical considerations for their clinical appli‑
cation. Moreover, further studies on their pharmacokinetic 
profiles and underlying mechanisms are necessary for the 
development of novel Ad therapeutics. despite these chal‑
lenges, the potential benefits of these drugs underscore the 
need for continued research into their efficacy as treatments 
for Ad.
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