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Abstract. Vitamin K (VK), a fat‑soluble vitamin, is well 
known as an anticoagulant in the clinic. It is essential for 
the post‑translational activation of VK‑dependent proteins 
(VKdPs) because hydroquinone VK is a cofactor of gluta‑
mine carboxylase. At present, 17 VKdPs are known, which 
are mainly involved in coagulation and calcification. When 
Glu residues are carboxylated to Gla residues, these proteins 
gain a higher calcium‑binding ability, which explains why 
VK has an important role in blood coagulation and biomin‑
eralization. However, the current view on the role of VK and 
several VKdPs in biomineralization remains inconsistent. 
For instance, conflicting results have been reported regarding 
the effect of osteocalcin gene knockout on the bone of mice; 
matrix Gla protein (MGP) promotes osteoblasts mineraliza‑
tion but inhibits vascular smooth muscle cell mineralization. 
The present review aimed to summarize the existing evidence 
that several VKdPs, including osteocalcin, MGP, Gla‑rich 
protein and growth arrest specific 6 are closely related to 
calcification, including bone health, vascular calcification and 
lithiasis. The current review discussed these controversies and 
provided suggestions for future studies on VKdPs, i.e. taking 
into account dietary habits, geographical environments and 
genetic backgrounds.
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1. Introduction

Biomineralization is a complex process in which inorganic 
ions are deposited on organic matter under the action of 
proteins, hormones and enzymes (1,2). It has a critical role 
in a variety of physiological and pathological processes, 
such as bone and cardiovascular health, and lithiasis. Bone 
requires mineralization to maintain its strength and function. 
Insufficient mineralization and calcium (Ca) loss from bone 
may cause osteochondrosis and osteoporosis; however, exces‑
sive mineralization may lead to sclerosteosis (3). In addition, 
the excessive deposition of inorganic ions in soft tissues, such 
as blood vessels, joints and internal organs, is pathological, 
resulting in gall‑stones, kidney stones and vascular calcifica‑
tion (4). certain studies have reported that multivitamins, such 
as vitamin d (Vd), vitamin c (Vc) and vitamin K (VK), have 
important roles in maintaining bone and blood vessel health 
and preventing pathological calcium deposition or loss (5).

Vd affects mineralization mainly by influencing ca 
and phosphorus (P) metabolism and osteoclast activity (6). 
Vc promotes bone mass via anti‑oxidation, promoting 
collagen formation and inhibiting osteoclast activity (7). 
VK is a pivotal factor in the biomineralization balance. 
VK maintains blood vessel and bone health by promoting 
osteoblast differentiation, anti‑oxidation and inhibiting cell 
autophagy and ferroptosis (8‑10). In addition, the partial role 
of VK in biomineralization is thought to be associated with 
VK‑dependent proteins (VKdPs), including osteocalcin, 
matrix γ‑carboxyglutamic acid (Gla) protein (MGP), Gla‑rich 
protein (GRP) and growth arrest specific 6 (Gas6) (11). The 
current review introduces the role of VK and several VKdPs 
in physiological and pathological bone mineralization.
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2. The VK family

VK, a fat‑soluble vitamin, was discovered in 1929 by the 
danish biochemist Henrik dam as being essential for blood 
coagulation. VK is a general term for compounds with 
different structural forms, including VK1, VK2, VK3 and VK4 
(Fig. 1A), which share the same menadione structure (the 
2‑methyl‑1,4‑naphthoquinone core) (12). These VKs contain 
different numbers of isoprenoid side chains at the 3‑position of 
the naphthoquinone ring (Fig. 1A), which is the reason for their 
different solubilities. VK1, consisting of a side chain containing 
three isoprenes (liposoluble), is exclusively synthesized by 
algae and green plants. The different VK2 (lip solubility) 
members are called menaquinones (MKn) according to the 
amount of isoprene in their side chain (MK‑4 to MK‑13) and 
are mainly found in fish, chicken, Japanese natto and cheese. In 
addition, certain components of the intestinal flora are able to 
produce MK‑6, MK‑8 and MK‑11, the form and concentration 
of which are influenced by the composition of the intestinal 
microbiota. VK3, without a side chain, is an artificially 
synthesized water‑soluble vitamin. VK4, a synthetic vitamin, 
is an oxidized form of VK3 (12). To date, several international 
institutions have published a recommended daily intake (RdI) 
dose because of the important role of VK in physiological 
functions; however, the recommended RdIs are not consistent. 
The National Academy of Medicine recommends an adequate 
intake of 120 µg per day for an adult male and 90 µg per day 
for an adult female. The World Health Organization and the 
Food and Agriculture Organization recommend a VK dose of 
65 µg per day for an adult male and 55 µg per day for an adult 
female (13,14).

3. Absorption, distribution and metabolism of VK

The different types of VK vary in their absorption, distribu‑
tion and metabolism. As indicated in Fig. 1B, VK1 and VK2 
from food are absorbed in the small intestine by forming a 
mixture containing bile salts, pancreatic lipolysis products and 
other dietary lipids, and then spread throughout the body via 
chylomicrons because of their fat‑soluble nature. In addition, 
the absorption of VK1 is related to three protein transporters, 
Neimann‑Pick c1 like 1, scavenger receptor class B type I 
and cd36 (12,15). VK3 and VK4 are generally used for 
intramuscular injection and are absorbed in the intestines, 
without bile water solubility. In blood transportation, VK1 
and VK2 are different. VK1 is transported by triglyceride‑rich 
lipoproteins, while VK2 is mainly transported by low‑density 
lipoproteins. Previous research reported that VK1 is highly 
enriched in the liver and VK2 is more widely distributed in 
the body's extrahepatic tissues. However, recent research has 
demonstrated that MK‑4 is the major VK form in mammalian 
tissues, regardless of the dietary input of VK1 or VK2, which 
results from the action of the enzyme UbiA prenyltransferase 
domain‑containing protein 1, which converts phylloquinone to 
MK‑4. VK1 and VK2 are catabolized in the liver and excreted 
through a common degradation pathway. The two types of VK 
are reduced to hydroquinone in the liver and excreted after 
combining with glucuronic acid and sulfuric acid (Fig. 1c). 
In addition, a recent study found that ATP‑binding cassette 
protein G5 (ABcG5)/ABcG8, a heterodimer exporting 

cholesterol, participates in the excretion of VK from the 
intestines (16).

4. Functions of VK

Although VK is well known as an anticoagulant, the function 
of VK in other physiological processes is being increasingly 
recognized. For instance, VK is able to regulate the immune 
response, maintain intestinal health and inhibit cancer 
growth (17,18). clinically, VK has been used to treat and 
prevent numerous diseases, such as osteoporosis, atheroscle‑
rosis, intestinal diseases and cholestatic liver disease (17,19,20). 
Some of the mechanisms by which VK can treat and prevent 
these diseases are partly known. For instance, MK‑4, 
converted from VK, interacts with the cell surface VK‑binding 
nuclear receptor steroid and xenobiotic receptor to improve 
bone quality. In addition, VK exerts anti‑inflammatory effects 
by inhibiting nuclear factor κB (NF‑κB) signaling and anti‑
oxidant effects by blocking the production of reactive oxygen 
species (21). A recent study reported that reduced forms of 
VK, including menadione and chloroquinone, are potent 
anti‑ferroptosis agents (22).

The most important role of VK is associated with the 
VK cycle. In this cycle, VK is firstly reduced to hydroqui‑
none VK (KH2) under the action of VK reductase (VKR) or 
VK‑2,3‑epoxidoreductase (VKOR). Subsequently, KH2, as 
a coenzyme, assists carboxyglutamyl carboxylase (GGcX) 
to carboxylate VKDPs [specific glutamyl (Glu) residues in 
VKdPs are converted to Gla], while KH2 is oxidized to epoxide 
VK (KO). Finally, KO is reduced to VK under the action of 
VKOR (23) (see Fig. 2). currently, 17 members of the Gla 
protein family of VKDPs have been identified. These include 
S prothrombin, factor VII, factor IX, factor X, protein c, 
protein S and protein Z, which are crucial in maintaining the 
delicate balance of blood coagulation. In addition, there are 
MGP, osteocalcin, Gas6, GRP, periostin and periostin‑like 
factors, which have significant roles in biomineralization. 
Furthermore, the family consists of two amino acid‑rich Gla 
proteins and two transmembrane Gla proteins (24,25). When 
Glu residues are carboxylated to Gla residues, these proteins 
gain a higher calcium‑binding ability, which is why VK has 
an important role in blood coagulation and biomineraliza‑
tion. The American Health Association recommends that 
VK is injected into newborns to reduce the risk of bleeding 
because of low levels of VK in their bodies. Warfarin is used 
to prevent and treat coagulation by decreasing the activity of 
VKOR. However, the long‑term use of warfarin is associated 
with calcification of blood vessels, heart valves and osteo‑
porosis (26‑28). Verma et al (29) found that VK antagonism 
impairs the bone marrow microenvironment and bone density, 
and increases osteoclast activity.

5. VK and biomineralization

Biomineralization is a physical process that includes the 
maintenance of bone and teeth. However, inappropriate miner‑
alization may cause several diseases, such as osteoporosis, 
vascular calcification and renal calculi.

Bone is composed of organic matter (type I collagen, 
proteins), inorganic matter and cells (osteoblasts, osteocytes 
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and osteoclasts). Phosphate‑calcium (crystalline hydroxyapa‑
tite) combines with type I collagen to enhance bone strength 
through proteins (including VKdPs) and enzymes (30,31). 
Loss of Ca and the insufficient ability of Ca to bind collagen 
may cause osteoporosis and fracture. Excessive deposition of 
ca/P may cause osteosclerosis, which increases bone fragility. 
At present, it is inconclusive whether VK can improve osteo‑
porosis and reduce the fracture rate. A clinical study showed 
that VK deficiency is associated with osteoporosis and 
vascular calcification (25). A meta‑analysis by Ma et al (32) 

showed that VK increased the bone mineral density (BMd) 
in the lumbar spine. In addition, VK can reduce bone loss by 
increasing osteoprotegerin levels (33). However, a meta‑anal‑
ysis by Salma et al (34) reported that VK supplementation 
reduced the fracture rate but did not improve the BMd in the 
femur and tibia. The notion that VK has a positive effect on 
bone mineralization is dominant, which is recognized by the 
European Food Safety Authority Association (35).

Vascular calcification, common in the elderly, and in 
patients with diabetes and chronic kidney disease (cKd), is 

Figure 1. Structure, absorption and metabolism of VK. (A) Structure of VK. VK is a general term for a group of compounds including VK1‑4. VK2 is divided 
into MK3‑14 based on the amount of isoprene in the side chain. (B) Absorption of VK. VK1 and VK2 are absorbed in the small intestine through mixed micelles 
with the assistance of NPc1L1, SR‑BI and cd36. chylomicrons containing VK1 and VK2 in the small intestine then enter blood vessels through lymphatic 
capillaries and are transferred to tissues. (c) Metabolism of VK. VK, vitamin K; MK, menaquinone; NPc1L1, Neimann‑Pick c1 like 1; SR‑BI, scavenger 
receptor class B type I; UBIAd1, UbiA prenyltransferase domain‑containing protein 1; cM, chylomicrons.
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caused by excessive ca/P deposition in aortic elastin, which 
is the main component of the intermediate elastic fibers (4). 
Vascular calcification is affected by numerous factors. High 
expression of bone‑related genes such as RUNX family 
transcription factor 2 (RUNX2) and bone morphogenetic 
protein‑2 (BMP2) in vascular smooth muscle cells leads to 
the phenotypic transformation to osteoblasts (36). After 
phenotypic transformation, the high expression of alkaline 
phosphatase (ALP), osteopontin, osteocalcin and MGP 
induced by RUNX2 result in extracellular deposition of 
hydroxyapatite in a blood vessel, leading to atherosclerosis. 
Endoplasmic reticulum stress, mitochondrial damage and 
hyperphosphate blood damage vascular smooth muscle cells 
during vascular calcification (37,38). In addition, the lack of 
mineralization inhibitors (VKdPs) results in excessive deposi‑
tion of hydroxyapatite crystals on blood vessels, which is also 
a key factor in vascular calcification (39). Treatment with VK 
antagonists for anticoagulation carries the risk of concomitant 
vascular or valvular calcification for patients (40,41). MK‑7 
supplementation may reduce the progression of vascular 
calcification in patients with coronary artery disease. VK may 
also reduce vascular calcification by decreasing the produc‑
tion of inflammatory cytokines. VK inhibits the production 
of tumor necrosis factor (TNF) in macrophages. TNF can 
promote the osteogenic differentiation of vascular smooth 
muscle cells under stimulation by high phosphate, oxidative 
stress and high glucose (42).

Urolithiasis is a common disease including stones of the 
kidney, bladder, ureter and urethra. It is affected by numerous 
factors, including hypercalcemia, dietary habits, obesity, 
diabetes and kidney disease. The most common types of 
stones are calcium oxalate, calcium phosphate and uric acid. 
certain studies have demonstrated that the VK cycle and its 

dependent proteins are related to the formation of various 
urinary stones (43,44).

In general, there is a close relationship between VK and 
biomineralization. The effects of VKdPs on biomineralization 
are mainly described in the following sections.

6. VKDPs are essential in biomineralization

Role of osteocalcin in biomineralization. Osteocalcin, 
secreted by osteoblasts and osteocytes, was found in 
cattle (45). Osteocalcin is encoded by the BGLAP gene on 
chromosome 1 at 1q25‑q31, is highly conserved among species 
and regulated by 1,25‑dihydroxyvitamin‑d3 [1,25(OH)d3] at 
transcription (46). It is the most abundant non‑collagen protein 
(constituting ~20% of non‑collagen proteins) in bone and has 
an important role in bone mineralization. After its synthesis, 
osteocalcin is targeted by a signaling peptide in primary 
structures to the extracellular matrix. It is then cleaved by a 
furin‑like proteolytic enzyme at the RxxR site to produce a 
prodomain that only contains the γ‑glutamyl carboxylase 
recognition site (47). Mature osteocalcin contains three Glu 
residues (at positions 17, 21 and 24), which endow different 
ca‑binding abilities depending on their degree of carboxyl‑
ation (48). After carboxylation under the action of GGcX 
and VK, osteocalcin with a high binding ability to the bone 
matrix is secreted into the bone matrix. Undercarboxylated 
osteocalcin (uc‑osteocalcin) is secreted into the blood because 
of its low binding ability (Figs. 3 and 4). In addition, osteo‑
calcin in bone is released into the blood by decarboxylation of 
osteoclasts.

The levels of uc‑osteocalcin in the blood are used as a 
maker for the clinical detection of osteoporosis and VK defi‑
ciency. However, clinical trials concerning the relationship 

Figure 2. The VK cycle. The inhibition of VKOR and/or VKR decreases the level of KH2, which is a cofactor of GGcX. This results in a decrease in carbox‑
ylation (Glu to Gla) of VK‑dependent proteins and a subsequent increase in the risk of bleeding, osteoporosis and vascular calcification. ER, endoplasmic 
reticulum; VK, vitamin K; VKR, VK reductase; VKOR; VK epoxide reductase; MGP, matrix Gla protein; GRP, Gla‑rich protein; Gas6, growth arrest specific 6; 
POSTN, Periostin; GGcX, carboxyglutamyl carboxylase; KO, epoxide VK; FSP1, ferroptosis suppressor protein‑1.
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between osteocalcin and osteoporosis are not consistent. 
Most clinical research reported that high serum osteocalcin 
(uc‑osteocalcin and osteocalcin) levels are closely associated 
with a lower BMd and higher fracture risk (49,50). However, 
other studies determined that the serum osteocalcin level was 
not associated with BMd (32,51). A reasonable explanation 
is that the reagents for detecting serum osteocalcin are not 
uniform, i.e., antibodies cannot distinguish uc‑osteocalcin 
from osteocalcin. However, the effect of osteocalcin on bone 
has also been controversial in animal studies. It was reported 
that the bone biophysical properties in osteocalcin‑deficient 
mice were altered, with fewer hydroxyapatite crystals, resulting 
in increased bone fragility and fracture rates. A recent study 
reported increased bone fragility and altered energy dissipa‑
tion mechanisms in osteocalcin‑deficient mice and highlighted 
the role of glycation of osteocalcin in bone (52). The biological 
apatite (BAp) c‑axis of hydroxyapatite parallel to the collagen 

fiber is necessary for optimal bone strength. Microbeam X‑ray 
diffraction system analysis showed that osteocalcin‑knockout 
mice have a disrupted BAp c‑axis orientation, which demon‑
strated that osteocalcin is necessary for the alignment of 
the BAp c‑axis parallel to collagen fibers. The results of a 
nanoindentation test showed that the Young's modulus of 
the femur in osteocalcin‑knockout mice was significantly 
lower than that of wild‑type mice (Fig. 3) (53). However, the 
osteocalcin‑deficient mice were found have a higher bone 
mass and BMd, which resulted in osteocalcin being identi‑
fied as a negative regulator of bone formation (54,55). Of note, 
in subsequent studies, the same research group reported that 
knockdown of osteocalcin in B6 mice resulted in a lower BMd 
and bone strength (Fig. 3) (56). This opposite effect was caused 
by different genetic backgrounds. Although warfarin (a VK 
circulation inhibitor) has a controversial role in BMd, certain 
studies suggest that it has a negative effect on bone. Impaired 

Figure 3. Effect of osteocalcin on bone in mice. Osteocalcin is secreted by osteoblasts and osteocytes. (A) Osteocalcin is secreted into bone to main‑
tain the arrangement of collagen and hydroxyapatite. Lack of osteocalcin in bone leads to a disturbed crystal arrangement and osteoporosis. (B) 129/B6 
mice with osteocalcin deficiency exhibit higher bone mass and bone mineral density; however, B6 mice with osteocalcin deficiency exhibit osteoporosis. 
Uc, undercarboxylated; BAp, biological apatite.

Figure 4. Effect of osteocalcin on human MScs and human vascular smooth muscle cells. Osteocalcin can promote the transformation of preosteoblasts and 
MScs into osteoblasts by promoting cell activity and ALP expression. The association between osteocalcin, undercarboxylated osteocalcin and vascular 
atherosclerosis requires further validation. ALP, alkaline phosphatase.
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osteoblast function and osteoporosis have been described in 
mice receiving warfarin (29). In addition, warfarin was able 
to further reduce the bone calcium loss caused by 1,25(OH)
d3, which is thought to be related to osteocalcin. In an in vitro 
study, osteocalcin promoted the proliferation, ALP activity and 
mineral deposition of human osteoblast‑like MG63 cells (57). 
Similarly, Tsao et al (58) also confirmed that osteocalcin has 
an important role in osteogenic differentiation and mineraliza‑
tion processes of mesenchymal stem cells. Overall, osteocalcin 
has a positive effect on bone and osteoblasts, but the opposite 
result may occur in different genetic backgrounds.

More than a decade ago, a strong association between 
osteocalcin and atherosclerosis was reported (59). This finding 
was subsequently confirmed in clinical investigations (60,61). 
For instance, in a five‑year study of 9,413 patients with type 2 
diabetes, patients with lower serum osteocalcin levels had a 
higher risk of all‑cause and cardiovascular mortality (62). A 
study of 59 patients with atherosclerosis identified osteocalcin 
in any form as a biomarker of vascular risk (63). Guo et al (64) 
demonstrated that higher serum osteocalcin levels were 
associated with severe arteriosclerosis in patients with kidney 
disease. In vitro, osteocalcin is also used as an important 
indicator to detect the transformation of vascular smooth 
muscle cells into osteoblasts, as it is highly expressed in the 

early differentiation of osteoblasts (65). However, recently, 
certain clinical investigations found that there was no associa‑
tion between osteocalcin and atherosclerosis (Fig. 4) (66‑68). 
Research by Millar et al (66) demonstrated that osteocalcin 
has no effect on the calcification of vascular smooth muscle 
cells, suggesting that osteocalcin is not directly involved 
in atherosclerosis or vascular disease. certain researchers 
even proposed that osteocalcin has a good protective effect 
on vascular calcification in animal experiments (70,71). 
A long‑term high‑sugar and ‑fat diet is a factor in the develop‑
ment of atherosclerosis. Huang et al (70) found that osteocalcin 
improved the protective effect against the induction of arte‑
riosclerosis in diabetic rat models by affecting glucose levels, 
insulin sensitivity and lipid metabolites. Osteocalcin had an 
endothelial‑protective effect in mouse thoracic aortic athero‑
sclerosis caused by apolipoprotein E (ApoE) knockout (71). 
Therefore, it may be speculated that the high serum level of 
osteocalcin in patients with atherosclerosis may be the body's 
attempt to produce more osteocalcin to prevent the process of 
atherosclerosis.

Role of MGP in biomineralization. MGP (a 14 kda protein) 
is a calcification inhibitor that was first isolated from bovine 
bone matrix in 1985 (72). The MGP gene consists of four 
exons separated by three large intervening sequences; in addi‑
tion, the typical TATA and cAT boxes, and the binding sites 
of retinoic acid and VD, were identified at regions of the MGP 
gene promoter (73). It is expressed in chondrocytes, fibroblasts 
and vascular smooth muscle cells. The structural features 
of MGP are similar to those of osteocalcin, both sharing a 
common historic ancestor. As for osteocalcin, MGP contains a 
signaling peptide in primary structures; in addition, it contains 
five Glu residues and three serine phosphorylation sites at its 
N‑terminus (72,74). MGP Gla residues provide binding sites 
for ca and hydroxyapatite. In addition, phosphorylation is 
important for its function and influences its protein struc‑
ture (74). Therefore, there are four forms of MGP in the body, 
including MGP, carboxylated but underphosphorylated MGP, 
phosphorylated but undercarboxylated MGP, and completely 
inactivated dephosphorylated and undercarboxylated MGP 
(dpucMGP) (Fig. 5A).

MGP has an important role in the activity of bone cells, 
bone calcification and osteoarthritis (OA). MGP gene muta‑
tions and the long‑term use of VK antagonists are associated 
with an increased risk of OA and a decrease in BMd (75,76). 
Osteoporosis was found in MGP knockout mice because of 
osteoblast dysfunction. Recently, Laurent et al (77) demon‑
strated that the femur size of MGP‑deficient mice was smaller 
in the early stages of life. The Wnt/β‑catenin signaling 
pathway is important in osteoblast differentiation, promoting 
the expression of osteogenic differentiation genes through 
RUNX2. Zhang et al (78) demonstrated that MGP promotes 
the proliferation and mineralization of MG63 osteoblasts and 
improves osteoporosis caused by ovariectomy through the 
Wnt by/β‑catenin signaling pathway. The effect of MGP on 
bone cells is shown in Fig. 5B. A high‑fat diet of pregnant 
mice resulted in a decrease in bone structure of their offspring 
6 weeks after birth, which is thought to be related to the 
level of MGP gene expression (79). Further experiments in 
MGP knockout mice confirmed the role of MGP in high‑fat 

Figure 5. Effects of MGP on animals' bone and blood vessels. (A) The four forms 
of MGP and their affinity for calcium and phosphorus. Low affinity of MGP 
for hydroxyapatite results in arterial calcification. (B) The effect of MGP on 
chondrocytes, osteoblasts and osteoclasts. ucMGP, undercarboxylated matrix 
Gla protein; dpcMGP, carboxylated but unphosphorylated MGP; dpucMGP, 
undercarboxylated and dephosphorylated MGP; VSMc, vascular smooth 
muscle cell; NFATc1, nuclear factor of activated T cells, cytoplasmic 1; Src, 
steroid receptor coactivator; RAc1, ras‑related c3 botulinum toxin substrate 1.
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diet‑induced bone mass loss (80). conversely, another view 
is that MGP is a bone calcification inhibitor. MGP inhibits 
bone matrix formation and hydroxyapatite deposition (81). 
MGP inhibits the formation and function of osteoclasts 
through nuclear factor of activated T cells, cytoplasmic 1 and 
steroid receptor coactivator/ras‑related c3 botulinum toxin 
substrate 1 signaling (82). certain studies have indicated that 
overexpression of MGP inhibits cartilage mineralization and 
endochondral ossification. MGP‑deficient mice present with 
inappropriate calcification of cartilage, short stature, osteo‑
penia and fractures (83). In addition, the expression of MGP 
in chondrocytes is regulated by extracellular inorganic phos‑
phorus, which may represent a feedback regulatory mechanism 
to inhibit inappropriate calcification in cartilage (84). Of note, 
ectopic expression of MGP in human osteosarcoma (OS) cells 
significantly increased cancer cell metastasis to the lung in 
patients with OS, which may lead to poor prognosis (88). In 
general, MGP maintains bone health by affecting cartilage 
mineralization, osteoblast function and osteoclast activity.

MGP was the first identified vascular calcification inhibitor, 
which combines with ca/P to prevent its deposition in blood 
vessels. Several studies have indicated that the serum level of 
MGP is associated with vascular diseases. A prospective study 
reported that the levels of plasma dpucMGP were strongly 
associated with vascular death, from an average of 15.5 years 
of follow‑up among 684 elderly patients aged 50‑89 years (86). 
In an observational study of 7,066 adults, a significant associa‑
tion between high levels of ucMGP and arterial stiffness was 
observed. In a subsequent experimental study, it was reported 
that MGP heterozygous mice showed arterial stiffness (87). In 
animal studies, MGP‑deficient mice showed severe vascular 
calcification and premature bone mineralization, and died 
within two months because of vascular rupture caused by arte‑
rial calcification (83). In addition, rats treated with warfarin 
for a long time developed extensive vascular calcification, 
indicating that carboxylation of MGP has a key role in inhib‑
iting vascular calcification. However, a recent study suggested 
something different. Parashar et al (88) constructed MGP 
mutant mice and found that the serine residues at the MGP 
N‑terminus and glutamate at the c‑terminus had a synergistic 
effect to inhibit vascular tissue calcification; however, the 
serine residues had a more critical role. In addition, a study 
used immunohistochemistry to confirm that cMGP and 
pMGP have anti‑calcification effects in veins (89). Based on 
its high anti‑calcification ability, MGP has been considered 
an agent with great potential in preventing calcic aortic valve 
disease (90).

The polymorphism of the MGP gene is related to kidney 
stones in chinese Han and Japanese populations (91,92). 
Li et al (43) confirmed that VK1 reduced the crystal deposi‑
tion in HK2 cells by promoting MGP expression. In rats with 
hyperoxaluria induced by 0.75% ethylene glycol, crystals 
were only deposited in the damaged renal tubules lacking 
MGP expression, indicating that MGP has a protective role in 
maintaining cell survival and inhibiting crystal retention (93). 
Goiko et al (94) detected the effect of MGP on hydroxyapatite 
formation and calcium oxalate crystallization using dynamic 
light scattering and scanning electron microscopy. The results 
showed that MGP inhibited the formation of calcium oxalate 
monohydrate, whether the polypeptide was in the modified or 

unmodified form after translation. In addition, high concentra‑
tions of Ca significantly inhibited the expression of MGP and 
then promoted the mineralization of NRK‑52E cells. However, 
castiglione et al (95) found no significant difference in serum 
dpucMGP levels among 498 cases of calculous formers and 
395 cases of non‑calculous formers after the evaluation of 
symptomatic patients with recurrent kidney stones within 
5 years, indicating that the increase in serum dpucMGP was 
not related to recurrent renal stone events.

Role of GRP in biomineralization. GRP, a newly identi‑
fied VKdP, was isolated from an Adriatic sturgeon by 
Viegas et al (96) in 2008. In the same year, two other indepen‑
dent groups identified this gene and named it ‘upper zone of 
growth plate and cartilage matrix associated protein’ (UcMA) 
while searching for chondrocyte‑specific genes (97,98). Later, 
GRP was found in the skin, vasculature and mammary gland 
and it has been described to be conserved among different 
vertebrate species. The GRP gene contains 5 coding exons, 
which are separated by phase‑1 introns. After removal of 
the transmembrane signaling peptide, pro‑GRP containing 
135 amino acids is cleaved into a propeptide (38‑39 amino 
acids) and a mature peptide (67‑74 amino acids) (99). At 
present, only a small number of studies on regulating GRP 
gene expression are available. Le Jeune et al (97) reported that 
E‑twenty six‑related gene transcription factors was indicated 
to regulate GRP gene transcription by combining ETS binding 
site. Runx2 and osterix (OSX) were identified as direct 
transcriptional promoters by dNA microarray analysis of 
heterozygous embryos. In addition, transcription factor E2‑α 
(E47), myocyte enhancer factor 2 and the signal transducer and 
activator of transcription 1 were predicted as the human GRP 
gene promoter (100). GRP got its name because it contains 
highest content of Gla residues (15 or 16 Gla sites in sturgeon 
and human) among VKdPs, so it is considered to have the 
highest ca binding affinity (96,101). The accumulation of 
GRP in pathological calcification sites seems to confirm its 
ca‑binding ability (99). In addition, ucGRP also has the ability 
to bind ca/P (102).

The role of GRP in bone is controversial in different 
species. GRP gene deficiency experiments in zebrafish showed 
that a lack of GRP and inhibition of GRP carboxylation 
resulted in severe growth retardation and bone development 
disorder, which indicated the important role of GRP in bone 
development (103). However, this was not observed in mice. 
GRP‑deficient mice did not show any obvious defects in bone 
and cartilage, indicating that GRP was not necessary for mouse 
bone development (Fig. 6A). In cells, previous studies reported 
that GRP is an inhibitor of osteogenic differentiation; however, 
two studies by Lee et al (104,105) found the opposite result, 
as they suggested that GRP is regulated by RUNX2 and OSX 
(osteogenic differentiation proteins) and recombinant GRP 
promotes Mc3T3 cell osteogenic differentiation and miner‑
alization, suggesting that it is a candidate bone mineralization 
promoter (Fig. 6A). OA is a movement‑limiting joint disease 
and is characterized by loss of articular cartilage, tissue 
inflammation, abnormal bone formation and extracellular 
matrix mineralization. Studies have reported that the serum 
GRP concentration is positively correlated with OA; however, 
it may be a compensatory response mechanism. ucGRP/GRP 
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reduced the mineral deposition of chondrocytes and synovial 
cells derived from OA, which may be associated with inhibition 
of aggregase activity and the anti‑inflammatory effect of GRP 
with or without γ‑carboxylation (106). Thus, GRP has been 
proposed as a potential therapeutic candidate in OA (106).

First, Bordoloi et al (107) reported that GRP accumulates 
in pathological calcification sites of the skin and blood vessels. 
This may be because of the lack of antibodies to distinguish 
whether the protein is carboxylated at that time. A subsequent 
study pointed out that ucGRP occupies a dominant position 
in the area of vascular mineralization (108). Vascular smooth 
muscle cells from GRP‑deficient mice had a higher level of 
calcification than wild‑type cells, suggesting that GRP is an 
inhibitor of vascular calcification, as is MGP (Fig. 6B) (109). A 
five‑year cross‑sectional interview site study of patients with 
diabetic nephropathy indicated that the decrease in serum GRP 
levels was closely related to an increased risk of aortic and 
mitral valve calcification. Although the complex mechanisms 
of action of calciprotein particles (cPPs) and extracellular 
vehicles (EVs) in vascular calcification remain to be fully 

elucidated, cPPs and EVs have been suggested as protectors 
that prevent vascular calcification in healthy individuals. The 
change in the contents of EVs and cPPs are key factors that 
increased mineral deposition in patients with cKd. A study by 
Viegas et al (110) demonstrated that decreased levels of GRP 
in circulating cPPs and EVs are a main factor for cPP and 
EV pathogenicity. Of note, the addition of ucGRP to ccPs 
and EVs from the serum of patients with cKd did not reduce 
the mineralization of vascular smooth muscle cells induced by 
the serum of patients with cKd, suggesting the importance of 
carboxylation in preventing mineralization (Fig. 7) (110). In 
addition to combining with calcium phosphate, GRP inhibits 
crystal formation by inhibiting downstream signaling path‑
ways. GRP was shown to inhibit vascular smooth muscle cell 
calcification and osteogenic differentiation through upregula‑
tion of actin and downregulation of osteopontin (108). The 
P imbalance increased systemic inflammatory response, 
and local microinflammation are major inducers of vascular 
calcification. Willems et al (109) pointed out that GRP inhibits 
phosphate‑induced vascular smooth muscle cell calcification 
by inhibiting SMAD‑dependent BMP signaling. Whether 
GPR is carboxylated or not, it may inhibit inflammation by 
downregulation of a variety of proinflammatory factors, 
including TNF‑α, IL‑1β and NF‑κB (Fig. 7) (111).

Role of Gas6 in biomineralization. Gas6, a secreted protein 
with a high degree of amino acid conservation, was found in 
mouse fibroblasts (112), and was then successively identified 
in myeloid progenitor cells, endothelial cells, vascular smooth 
muscle cells and macrophages. The Gas6 gene, containing 15 
exons, was isolated from the human chromosomal location 
13q34 (113). Gas6 has high homology (44%) with antico‑
agulant protein S, including an extensively γ‑carboxylated 
amino‑terminal, four epidermal growth factor‑like motifs 
and a large carboxy‑terminal region, known as the d domain; 
however, it has no direct effect on blood coagulation (112). 
Gas6 has a Gla amino acid domain at its N‑terminus and is 
a member of the VKdPs. Although Gla residues are impor‑
tant for Gas6 binding to its receptor, Gas6 does not act as a 
promoter or inhibitor of calcification by combining with Ca/P, 
as would have been expected. Gas6 is a ligand for tyrosine 
kinase receptors, including tyrosine‑protein kinase receptor 3 
(Tyro3), AXL receptor tyrosine kinase (Axl) and c‑mer 
proto‑oncogene tyrosine kinase (Mer). Axl has the highest 
affinity for Gas6 among the three receptors (112). Gas6 is 
mainly involved in the pathogenesis of inflammation, athero‑
sclerosis and cancer through the Axl receptor. In addition, 
Gas6 is also considered a potential target for the treatment of 
malignant tumors because of the role of the Axl receptor in a 
variety of human malignant tumors (114).

Gas6 promotes the absorptive activity of osteoclasts by 
promoting the autophosphorylation of the Tyro3 receptor on 
osteoclasts (115). The GAS6 mRNA level in bone marrow 
increased after ovariectomy, suggesting that it may be related 
to bone loss caused by estrogen deficiency (115). However, this 
is inconsistent with the treatment of osteoporosis in postmeno‑
pausal women with VK. Gas6 inhibited the mRNA expression 
of collagen 2 and aggrecan, which are the building blocks of 
cartilage. In addition, Gas6 inhibits chondrocyte differentia‑
tion through the Erk1/2 and serine/threonine kinase 39/JNK 

Figure 7. Effect of GRP on human vascular calcification. GRP inhibits vessel 
mineralization through anti‑inflammatory and binding calcium and phos‑
phorus in EVs. ucGRP, undercarboxylated Gla‑rich protein; EV, extracellular 
vesicle.

Figure 6. Effect of GRP on animals' bone and blood vessels. (A) GRP defi‑
ciency inhibits bone development in zebrafish but not in mice. GRP promotes 
osteoblast mineralization via Runx2 and OSX. (B) GRP inhibits vascular 
smooth muscle cell mineralization through inhibition of SMAd. GRP, 
Gla‑rich protein; OSX, osterix; Runx2, RUNX family transcription factor 2.
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pathways (115). However, Hutchison et al (116) reported the 
opposite result: collagen type II α1 chain (col2a1) was upreg‑
ulated after long‑term Gas6 treatment, whereas short‑term 
Gas6 treatment decreased the col2a1 level.

Pericytes, a component of the microvasculature, have 
a potential role in osteogenic differentiation (117), and are 
similar to bone marrow stromal cells. An in vitro study found 
that inhibition of the Gas6/Axl signaling pathway increased 
the rate of pericytes, which could be alleviated using recom‑
binant Gas6 (118). Inflammation, age, hyperphosphatemia and 
CKD are the main factors of vascular calcification. Gas6 has 
a role in the antagonism of adiponectin toward TNF, thereby 
inducing vascular calcification (119). Postmenopausal women 
have a higher prevalence of vascular calcification, indicating 
the protective effect of estrogen. Nanao‑Hamai et al (120) 
reported that estradiol inhibits vascular smooth muscle cell 
calcification through estrogen receptor α‑mediated transacti‑
vation of Gas6. In older men, testosterone levels decrease with 
age. There is an association between testosterone levels and 
atherosclerosis (120). Testosterone delays the progression of 
vascular smooth muscle cells through the Gas6/Axl axis (122). 
The apoptosis of aortic smooth muscle cells induced by high 
phosphorus is a major inducer of vascular calcification. The 
level of Gas6 decreased in apoptotic cells and restoring the 
Gas6/Axl signaling axis could alleviate calcification through 
an anti‑apoptotic effect, which is the mechanism by which 
VK2 inhibits vascular smooth muscle cell calcification (123). 
In addition, studies have shown that several drugs inhibit 
vascular smooth muscle cell calcification via this mechanism, 
such as statins (124), and α‑lipoic acid and taurine (125). In 
general, Gas6 can resist vascular mineralization complica‑
tions mainly by activating Axl downstream signals. However, 
the ca contents of wild‑type and Gas6‑/‑mouse aortas were 
similar (125). This indicated that Gas6/Axl may have other, 
as‑yet‑unknown mechanisms in pathological conditions, 
which require further investigation.

7. Conclusion

In general, VK and VKdPs have an important role in biomin‑
eralization; however, their involvement and mechanisms are 
complex and controversial. clinical investigations of the effect 
of VK on bone quality and cardiovascular health in different 
regions reported inconsistent results, which may be related to 
different dietary habits, geographical environments and genetic 
backgrounds (20,34,126). In addition, different VKdPs have 
opposite effects on the same tissue, which may also be one of 
the reasons for the different results of clinical investigations of 
VK on bone quality (VK deficiency or supplementation affects 
the carboxylation of total VKdPs). Similarly, in animal studies 
on the effects of VKdPs on bone quality, a VKdP may have 
different or even opposite results for the same tissue under 
different genetic backgrounds. Therefore, when studying the 
effect of VKdPs on bone quality, it is necessary to select 
experimental animals with an appropriate genetic background. 
In addition, warfarin exhibits wide inter‑individual differences 
in its pharmacodynamic effects, resulting from polymor‑
phisms in genes involved in the uptake of VK, including 
ApoE, VKORC1 and GGCX (127,128). Without any doubt, 
these gene polymorphisms also result in individual differences 

in the quality of bone and blood vessels under circumstances 
such as VK deficiency or warfarin treatment.
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