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Abstract. Copper, an indispensable trace element in living 
organisms, plays a pivotal role in human physiological 
processes. Wilson's disease (WD), an inherited disorder of 
copper metabolism, is caused by mutations in the ATP7B gene. 
This genetic malfunction disrupts the dynamics of copper 
transport and metabolism, thereby impairing ceruloplasmin 
synthesis and copper excretion. The resultant accumulation of 
copper in various tissues and organs precipitates a cascade of 
cellular demise and functional impairment. Notably, cupro‑
ptosis, a recently discovered copper‑dependent regulated cell 
death mechanism, distinctly deviates from conventional cell 
death paradigms. This novel mode of cell death involves the 
interaction of copper with lipoacylated proteins within the 
tricarboxylic acid cycle, leading to proteinotoxic stress and 
culminating in cell death. In the realm of pathophysiology, 
cuproptosis has emerged as a pivotal player in a spectrum of 
diseases, with WD standing as a paradigm closely intertwined 
with the dysregulation of copper metabolism. This study 
aimed to encapsulate the pivotal molecular underpinnings 
of cuproptosis and delve into its crucial involvement in the 
etiopathogenesis of WD. By elucidating these mechanisms, 
the present analysis contributes significantly to the nuanced 
understanding of the pathological underpinnings of WD, 
thereby providing fresh insights and evidence that may direct 
innovative therapeutic strategies for this condition.
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1. Introduction

Copper is a pivotal trace element and a biologically active 
cofactor within the human body, exerting a critical influence 
on a multitude of physiological processes, including mito‑
chondrial respiration, biosynthetic pathways and antioxidant 
defense mechanisms  (1). Under physiological steady‑state 
conditions, the body meticulously regulates the equilibrium 
between copper intake and elimination to preserve optimal 
copper concentrations. Imbalances characterized by copper 
insufficiency or excess can precipitate metabolic disorders 
related to copper, such as Menkes syndrome and Wilson's 
disease (WD) (2,3). Notably, copper overload is particularly 
deleterious, as it can lead to the dysregulation of cellular 
function, ultimately culminating in cell death (4).

The phenomenon of copper‑dependent cell death, termed 
‘cuproptosis’, was first described in 2022  (5). This mode 
of death constitutes a critical node in regulated cell death 
(RCD), distinguished by its dependence on copper metabolic 
dynamics and its role in modulating mitochondrial respiration. 
Cuproptosis differs from other RCD modalities, including 
apoptosis, pyroptosis, autophagy and ferroptosis  (6‑8), as 
it involves the interaction of copper ions with lipoacylated 
protein components in the tricarboxylic acid (TCA) cycle. 
These interactions result in the accumulation of lipoacylated 
proteins and a concomitant reduction in iron‑sulfur (Fe‑S) 
cluster proteins, thereby activating a protein‑toxicity stress 
response that culminates in cell death (5).

WD is a genetic disorder of copper metabolism that arises 
from an autosomal recessive inheritance. Characterized by the 
excessive accumulation of copper in vital organs, such as the 
liver, kidneys, brain and cornea, this condition leads to cellular 
damage, death and a spectrum of organ dysfunction  (9). 
Cuproptosis is intricately linked to the metabolism of copper 
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ions. The present study aimed to elucidate the molecular 
underpinnings of cuproptosis and delineate its pivotal role in 
the pathogenesis of WD, thereby providing a robust scientific 
foundation and theoretical framework for targeted therapeutic 
interventions in WD.

2. Copper absorption, transport mechanisms and 
physiological implications in human biology

The human body primarily acquires copper from dietary and 
water sources. In adults, the net absorption of copper from the 
diet is ~1 mg/day. Dietary copper, in conjunction with roughly 
4‑5 mg of endogenous copper, is secreted into the gastrointes‑
tinal tract through diverse digestive juices. The majority of this 
copper is subsequently returned to the circulation and depos‑
ited in various tissues (10). Copper in the human body exists 
in two primary forms: Cu2+ and Cu+ (11). At the surface of the 
small intestinal epithelial cells, dietary Cu2+ is reduced to Cu+ 
through the enzymatic actions of prostate metal reductase, six 
transmembrane epithelial antigen and duodenal cytochrome b. 
Subsequently, copper ions are absorbed intracellularly via the 
copper transporter 1(CTR1)/solute carrier family 31 member 1 
(SLC31A1) (12‑14). During copper transportation, the CTR1 
protein effectively maintains copper in its reduced form 
through two His‑Met‑Asp cluster structures located at the 
N‑terminus (15‑17).

In complex cellular processes, copper ions must be accu‑
rately transported to their designated organelles and proteins 
to prevent harmful effects induced by reactive oxygen species 
(ROS). Before they arrive at their intended destinations, 
copper chaperone proteins facilitate the binding of Cu+ ions 
through a sophisticated chaperone mechanism, thereby miti‑
gating oxidative damage that could arise from the production 
of ROS (18). The pantheon of characterized copper chaperone 
proteins includes notable entities, such as antioxidant protein 1 
(ATOX1), copper chaperone for superoxide dismutase (CCS) 
and cytochrome c oxidase copper chaperone (COX17). 
The pivotal role of ATOX1 in facilitating the transport 
of copper ions to the Golgi apparatus is underscored by its 
critical function in promoting protein synthesis and activation. 
Concurrently, CCS plays a vital role in maintaining the intra‑
cellular ROS equilibrium by binding copper ions and shuttling 
them to superoxide dismutase (SOD)1. Additionally, COX17 is 
predominantly involved in the transport of copper ions from 
the cytoplasm to the mitochondria, thereby supplying indis‑
pensable copper ions to copper‑dependent enzymes within this 
organelle (19,20).

In the regulatory framework governed by the ATPase 
copper transporting β (ATP7B) protein, a subset of copper 
ions interacts with α2‑globulin, which serves as a precursor 
to ceruloplasmin, culminating in the formation of this essen‑
tial copper‑containing enzyme  (21,22). Concomitantly, as 
the intracellular copper concentration increases, ATP7A/B 
proteins play a pivotal role as they are tasked with the efflux 
of redundant copper ions from the cellular milieu (23,24). As 
a vital metal‑enzyme cofactor, copper is pivotal for numerous 
physiological processes in the human body. At the cellular 
level, it facilitates the activity of key enzymes in the respira‑
tory chain, thereby ensuring efficient energy metabolism. In 
neuroendocrinology, copper is instrumental in the synthesis of 

neurotransmitters and peptide hormones, thereby enhancing 
neural signaling and hormonal regulation. Within the context of 
antioxidant defense mechanisms, copper‑dependent enzymes 
play a critical role in scavenging free radicals, thereby miti‑
gating oxidative damage to cells. Furthermore, in the context 
of tissue architecture, copper‑mediated cross‑linking reactions 
are essential for reinforcing the structural integrity of elastin, 
collagen and keratin, which underpin the normal form and 
function of bone, among other tissues. The inherent antimi‑
crobial properties of copper also contribute significantly to its 
role in immune defense through nutrient provision (25‑29). An 
illustrative diagram delineating the physiological mechanisms 
underlying copper metabolism is shown in Fig. 1.

3. Cuproptosis: A novel copper‑mediated RCD pathway

Characteristics and manifestations of cuproptosis. The 
phenomenon of ‘Cuproptosis’ was initially delineated by 
Tsvetkov et al (5), describing it as a distinctive cell death 
pathway. This mechanism is characterized by its reliance on 
copper, progressive accumulation of lipoacylated proteins 
and diminished levels of Fe‑S cluster proteins (5). Copper 
accumulation plays a pivotal role in apoptosis. An increase 
in the intracellular copper ion concentration triggers a 
Fenton‑like reaction, leading to increased production of ROS 
and disruption of the intracellular redox balance. Oxidative 
stress induces lipid peroxidation  (30). Concurrently, the 
impairment of the integrity of the ubiquitin‑proteasome 
system (UPS) results in a significant reduction in proteolytic 
activity. This interference disrupts the degradation and turn‑
over of cell cycle regulatory proteins and ultimately impedes 
cell proliferation (31). Furthermore, copper overload severely 
compromises normal TCA cycle function. Excessive copper 
promotes the acylation of intracellular TCA enzymes, signif‑
icantly elevating their acylated forms. Acyl groups directly 
bind to copper ions, causing the abnormal aggregation of 
acylated proteins. This process also leads to the loss of Fe‑S 
cluster‑containing proteins and induces the production of heat 
shock protein 70 (HSP70), thereby triggering an acute protein 
toxicity stress response (32,33). These alterations culminate 
in mitochondrial dysfunction and cuproptosis (34,35).

The classic morphological manifestations of cupro‑
ptosis primarily include mitochondrial contraction, plasma 
membrane disruption, endoplasmic reticulum (ER) damage 
and chromatin fragmentation  (36). Hu  et al  (37) observed 
the morphological characteristics of cuproptosis induced by 
copper nanoparticles and found significant mitochondrial 
atrophy, reduction or disappearance of cristae and increased 
membrane density. Li et al  (38) reported that treatment of 
HepG2 cells with copper sulfate resulted in prominent ER 
swelling under a microscope. Zhao et al (39) also observed 
a decrease in inner mitochondrial membrane and ER 
damage in zebrafish retinal cells treated with copper sulfate. 
Furthermore, studies have shown that copper induction can 
damage the membrane structure of chicken liver cells, disrupt 
the chromatin structure and exacerbate mitochondrial vacu‑
olization (40). Notably, these morphological changes are not 
unique to cuproptosis and may overlap with or be similar to 
those of other types of cell death. Therefore, when evaluating 
the microstructural features associated with cuproptosis, it is 
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essential to integrate multidimensional molecular biological 
evidence for a comprehensive assessment.

Molecular mechanisms involved in cuproptosis. The influx 
and subsequent accumulation of copper within cellular 
compartments are instrumental in orchestrating the cascade of 
events that constitute cuproptosis. Central to this mode of cell 
death is the lipoacylation of proteins, a defining characteristic 
of cellular proptosis. Notably, ferroxin 1 (FDX1) has emerged 
as a pivotal upstream regulator in this context (41). Studies 
have demonstrated that genetic knockout of FDX1 or related 
acylase genes markedly reduces cuproptosis (42). This finding 
highlights the potential significance of these genes as critical 
biomarkers indicative of the progression of cuproptosis. In the 
realm of cuproptosis‑related biomarkers, the current litera‑
ture identifies a suite of pivotal genes. These include FDX1, 
lipoyltransferase 1 (LIPT1), lipoic acid synthase (LIAS), 
dihydrolipoamide dehydrogenase (DLD), dihydrolipoamide 
S‑acetyltransferase (DLAT), pyruvate dehydrogenase E1 
subunit α1 (PDHA1), and PDHB. These biomarkers are senti‑
nels, reflecting the intricate metabolic perturbations associated 
with cuproptosis, and thus merit continued scholarly inquiry 
and clinical assessment.

FDX1 encodes a small iron‑sulfur protein that primarily 
functions in the electron transport chain, Fe‑S cluster biogen‑
esis and regulation of lipoic acid acylation reactions  (43). 
Concurrently, LIPT1 plays a pivotal role in lipid metabolism, 
primarily by facilitating the transfer of the acyl moiety to 

the apolipoprotein. This transfer is an important event in the 
biosynthetic pathway of lipoic acid (44). LIAS, a member of 
the biotin and lipoic acid synthase family, is predominantly 
localized in mitochondria. It plays an essential role in cata‑
lyzing the biosynthesis of lipoic acid, a crucial molecule 
involved in various metabolic pathways (45). DLD belongs to 
the flavin‑dependent oxidoreductase class. As a component of 
the E3 subunit of the pyruvate dehydrogenase complex (PDC), 
its primary function is to catalyze the dehydrogenation of 
dihydrolipoamide and convert it into oxidized lipoamide (46). 
Similarly, DLAT, PDHA1 and PDHB collectively encode key 
subunits of PDC. As integral components of this complex, they 
are instrumental in energy metabolism in the human body, 
facilitating the conversion of pyruvate into acetyl‑CoA, which 
is a critical step in the TCA cycle (47‑49).

The integration of whole‑genome CRISPR/Cas9 knockout 
technology has revealed that the knockout of seven pivotal 
genes, FDX1, LIPT1, LIAS, DLD, DLAT, PDHA1 and 
PDHB, markedly mitigates the cytotoxic effects associ‑
ated with copper ion carriers (5). These findings underscore 
the significance of these genes in the cellular response to 
copper‑induced toxicity. Additionally, several other genes 
were identified as being implicated in this process, including 
metal‑regulated transcription factor 1 (MTF1), glutaminase 
(GLS), cyclin‑dependent kinase inhibitor 2A, HSP70, dihy‑
drolipoamide branched‑chain transacylase E2, SLC31A1, 
ATOX1, copper chaperone for cytochrome c oxidase 11, dihy‑
drolipoamide S‑succinyltransferase and transporters of copper 

Figure 1. Physiological mechanisms of copper metabolism. ATOX1, antioxidant protein 1; ATP, adenosine triphosphate; ATP7A/B, ATPase copper trans‑
porting α/β; IEC, intestinal epithelial cells; CCS, copper chaperone for superoxide dismutase; COX17, cytochrome c oxidase copper chaperone; CTR1, copper 
transporter 1; SLC31A1; solute carrier family 31 member 1; DCYTB, duodenal cytochrome B; SOD1, superoxide dismutase 1; STEAP, six transmembrane 
epithelial antigen; TGN, trans Golgi network.
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and zinc 1 (ZnT1) (50‑54). This comprehensive gene network 
highlights the intricate molecular mechanisms underlying 
cellular responses to copper ion exposure.

In addition, the tumor suppressor p53 plays a crucial 
role in metabolic regulation. This factor not only inhibits 
the activity of glycolysis but also promotes oxidative 
phosphorylation in the metabolic pathway of cancer cells. 
Notably, p53 plays a significant role in the regulation of 
glutathione (GSH) production. By controlling the expression 
of genes involved in Fe‑S cluster biosynthesis, p53 may play 
an important role in the mechanism of cuproptosis. Previous 
studies have found that FDXR (FDX1/2) plays a key role in 
iron metabolism under p53 regulation and may be related to 
the maintenance of Fe‑S cluster stability (55). In addition, 
p53 can activate the expression of the iron‑sulfur cluster 
assembly enzyme and frataxin genes, which are primarily 
responsible for synthesizing scaffold proteins crucial for the 
iron‑sulfur cluster assembly process (56‑58). Consequently, 
p53 likely plays a pivotal role in regulating cuproptosis 
mediated by FDX1.

Overall, for the key genes associated with cuproptosis 
that have been identified thus far, copper metabolism can 
be regulated through the following mechanisms, thereby 
inf luencing cuproptosis: i)  Regulation of copper ion 
uptake; for example, SLC31A1 affects copper metabolism 
by modulating the cellular uptake of copper ions  (59). 
ii)  Involvement in the transport and storage of copper 
ions: For instance, ATOX1 regulates copper ion levels by 

binding and transporting them  (60). iii)  Modulation of 
metabolic pathways related to copper ions, such as FDX1, 
regulates copper metabolism by affecting key proteins in 
the mitochondrial respiratory chain (61). Further studies 
are required to elucidate the underlying mechanisms. A 
mechanistic diagram based on the pathological process of 
cuproptosis is shown in Fig. 2.

4. Role of cuproptosis in the pathogenesis of WD

The pathogenesis of WD. WD arises from mutations in the 
ATP7B gene and was first reported by Kinnier Wilson et al (62). 
ATP7B, which is located on chromosome 13, spans 21 exons 
and produces a transcript of ~7.5 kilobases in length. This tran‑
script encodes a substantial transmembrane protein consisting 
of 1,465 amino acids. ATP7B is predominantly expressed in 
the liver, kidneys and placenta (63‑65). It plays a crucial role in 
intracellular copper metabolism in hepatocytes by facilitating 
the transport of copper ions across the cellular membrane into 
the Golgi apparatus. Subsequently, this copper is directed 
towards lysosomes and is eventually excreted into the bile, 
thereby maintaining homeostasis and preventing copper over‑
load. Additionally, in the Golgi apparatus, ATP7B protein is 
essential for ceruloplasmin synthesis. This process ultimately 
facilitates the secretion of copper‑bound ceruloplasmin into 
the circulatory system (66,67).

Mutations in ATP7B cause concomitant dysfunction of 
the protein, which in turn diminishes its capacity to transport 

Figure 2. Schematic representation of the pathological process in cuproptosis. DLAT, dihydrolipoamide S-acetyltransferase; DLD, dihydrolipoamide dehydro‑
genase; FDX1, ferroxin 1; GSH, glutathione; LIAS, lipoic acid synthase; LIPT1, lipoyltransferase 1; TCA, tricarboxylic acid.
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copper ions effectively. This decrease in transport efficacy 
manifests as diminished synthesis of ceruloplasmin within 
the serum and a compromised ability to excrete copper 
through the biliary ducts. Consequently, there is a tendency 
for copper to accumulate excessively within the liver or be 
released into the circulatory system, where it may deposit in 
various organs, including the brain, kidneys and corneas (68). 
This pathological accumulation is capable of precipitating 
a spectrum of clinical symptoms, including liver damage, 
neurological abnormalities, cardiac and renal impairments, 
development of Kayser‑Fleischer rings in the cornea and 
hemolytic anemia (69).

In WD, liver injury may manifest with various clinical 
presentations, such as acute hepatitis, liver fibrosis and 
cirrhosis. It has been reported that these morbid conditions are 
intricately linked to the hepatic stellate cell activation induced 
by copper deposition. This activation is further associated 
with the accumulation of extracellular matrix components 
and proliferation of myofibroblasts, ultimately contributing 
to the degeneration and necrosis of hepatocytes  (70‑73). 
The clinical manifestations of neurological impairment may 
include a spectrum of symptoms, such as tremors, ataxia, 
dysphagia, alterations in emotional regulation and significant 
memory deficits. Previous studies have shown that WD‑related 
neuropathy predominantly affects the basal ganglia, thalamus, 
brainstem and cerebellum. Pathological examination revealed 
axonal swelling, spheroid formation and demyelination (74‑78). 
Clinically, when WD is combined with renal involvement, 
the symptoms include hematuria, proteinuria and edema of 
the face and lower extremities. Studies indicate that renal 
tubular epithelial injury is a defining feature characterized by 
cytoplasmic vacuolization, increased cell volume and nuclear 
fragmentation (69,79,80). The presence of a Kayser‑Fleischer 
ring and corneal copper deposition correlates with ocular 
symptoms (81,82). Furthermore, patients with WD who also 
experience cardiac injury may present with atrial fibrillation, 
heart failure and autonomic dysfunction. These symptoms 
have been attributed to copper deposition‑induced myocardial 
fibrosis, small vessel sclerosis and inflammatory cell infiltra‑
tion  (83‑85). In addition, reproductive dysfunction caused 
by WD is primarily characterized by hypogonadism and 
teratozoospermia, which are linked to mechanisms such as 
inflammation, pyroptosis and apoptosis triggered by copper 
deposition (86‑88). WD can also affect the skeletal system, 
leading to conditions such as osteomalacia and osteoporosis, 
which may be associated with secondary renal dysfunc‑
tion (89,90). Additionally, WD may cause blood system‑related 
symptoms, such as hemolytic anemia, potentially due to 
copper‑induced hemoglobin oxidation reactions  (91‑93). 
The corresponding clinical manifestations and pathological 
mechanisms are summarized in Table I.

The key role of cuproptosis in WD
Activation of oxidative stress and impairment of the anti-
oxidant defense system. The activation of oxidative stress 
can induce apoptosis. In WD, increased copper concentra‑
tions promote the formation of high levels of ROS through 
Fenton‑like reactions  (94) or by inhibiting the activity of 
mitochondrial respiratory chain complexes (95). Excessive 
ROS directly trigger oxidative stress by attacking cellular 

lipids, proteins and DNA, thereby causing cellular damage. 
When this damage reaches a certain threshold, apoptosis is 
induced (96). Nuclear factor κB (NF‑κB) stands as a pivotal 
regulator of cell survival, modulated by ROS. Previous 
research has demonstrated that copper can elevate ROS levels 
in BV2 cells (mouse microglia), thereby activating the NF‑κB 
pathway. This activation subsequently leads to a reduction in 
the mitochondrial membrane potential and decreased expres‑
sion of Parkin and phosphatase and tensin homolog‑induced 
kinase 1, ultimately resulting in cell death (97). Furthermore, 
the synergistic action of disulfiram and Cu2+ enhanced ROS 
production and activated the p38 mitogen‑activated protein 
kinase (MAPK) signaling pathway. Concurrently, the NF‑κB 
signaling pathway is repressed, ultimately resulting in breast 
cancer cells (98). Hence, the deposition of copper in WD can 
elicit cell death through oxidative stress‑related signaling path‑
ways, a phenomenon intimately associated with cuproptosis.

Furthermore, impairment of the antioxidant defense 
system is closely associated with the induction of cuproptosis. 
In WD, excessive intracellular copper accumulation inhibits 
the activity of key antioxidant enzymes, including SOD, 
thereby compromising the cellular capacity to neutralize 
ROS  (99). When the antioxidant defense system fails to 
effectively eliminate ROS, these oxidants accumulate precipi‑
tously (100), leading to elevated intracellular oxidative stress, 
which subsequently triggers cuproptosis. Additionally, copper 
overload depletes critical intracellular antioxidants, such as 
GSH. As a principal nonenzymatic antioxidant, GSH normally 
scavenges ROS through conversion to oxidized GSH (101,102). 
However, excess copper directly binds to GSH, causing its 
rapid consumption (103) and significantly diminishing the 
cellular antioxidant reserves. This compromised defense 
mechanism renders the cells vulnerable to ROS‑mediated 
damage, ultimately driving cuproptosis. Thus, the interplay 
between oxidative stress and antioxidant system dysfunction 
synergistically promotes the progression of cuproptosis in WD, 
representing a pivotal pathogenic mechanism in this disease.

Dysfunction of the UPS. UPS constitutes a refined 
mechanism for selective protein hydrolysis by dismantling 
ubiquitin‑conjugated substrates via proteasomal degrada‑
tion (104). The initiation of this system is contingent upon 
activation by the E1 ubiquitin‑activating enzyme, which subse‑
quently facilitates the recognition and linkage process through 
the binding of E2 conjugating enzymes. This intricate cascade 
is further orchestrated by E3 ligases, ultimately culminating 
in the proteolytic degradation and subsequent recycling of 
targeted proteins (105,106). The UPS plays a pivotal role in 
the maintenance of protein homeostasis, regulation of the cell 
cycle and modulation of diverse signaling pathways (107‑109). 
In WD, copper ions selectively bind to specific subunits of 
the constitutive proteasome, thereby diminishing its activity. 
This interference disrupts the intracellular redox equilibrium, 
thereby disturbing the efficiency and progression of the 
ubiquitination cascade. The resultant abnormal accumulation 
of copper ions may precipitate the misfolding or aggrega‑
tion of critical proteins, resulting in the formation of protein 
aggregates. Such aggregates frequently evade degradation 
by the ubiquitin‑proteasome system, thereby augmenting 
cellular stress and culminating in the functional impairment 
of cells (31).

https://www.spandidos-publications.com/10.3892/ijmm.2025.5558
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Studies have shown that copper complexes exert a profound 
inhibitory effect on proteasome activity in human cancer 
cells (110). Furthermore, the dithioamine‑Cu2+ complex has 
been demonstrated to potently inhibit the degradation of ubiqui‑
tinated proteins by obstructing upstream signaling pathways of 
the protease system and suppressing ubiquitination‑dependent 
ATP synthase activity (111). Collectively, these findings suggest 
that the accumulation of copper in WD may perturb cellular 
copper homeostasis, thereby affecting cell death via the ubiq‑
uitin‑proteasome system and its associated signaling pathways.

Mechanisms of cuproptosis induced by specific protein 
toxicity and associated stress responses. Firstly, excess copper 

ions can bind to specific proteins containing particular amino 
acid motifs, thereby disrupting their normal functions. In the 
TCA cycle, lipid acylation, triggered by the deposition of WD 
copper ions, is a critical step in initiating cell death (112). This 
reaction transfers lipid acyl groups to specific amino acid resi‑
dues of enzymes, resulting in the lipid acylation modification of 
TCA enzymes, which affects their activity and function (113). 
Additionally, copper overload can lead to protein misfolding 
and aggregation aberrantly interacting with proteins, thereby 
interfering with normal cellular physiological functions and 
ultimately causing toxic damage to cells. Abnormal elevations 
in copper ion concentrations can cause abnormal aggregation 

Table I. Summary of clinical features and pathological mechanisms of WD.

Organs affected			 
by WD	 Clinical features	 Pathological mechanism	 (Refs.)

Liver	 Fatigue, decreased appetite, 	 Copper deposition induces	 (70-73)
	 bloating; Abnormal liver	 activation of hepatic stellate	
	 function, jaundice and	 cells, accumulation of	
	 coagulation dysfunction; 	 extracellular matrix, 	
	 Splenomegaly, esophageal	 proliferation of	
	 and gastric varices, ascites	 myofibroblasts, degeneration	
		  and necrosis of liver cells	
Brain	 Tremors, dystonia, 	 The lesion is mainly located in	 (74-78)
	 swallowing difficulties; 	 the basal ganglia area, 	
	 Ataxia; Emotional changes, 	 including the thalamus, 	
	 memory decline	 brainstem and cerebellum, 	
		  with pathological	
		  manifestations such as axonal	
		  swelling, spheroid formation	
		  and demyelination of nerve	
		  cells	
Kidneys	 Hematuria, proteinuria, 	 Mainly characterized by	 (69,79,80)
	 facial and lower limb edema	 damage to renal tubular	
		  epithelial cells, pathological	
		  manifestations include	
		  vacuolization, volume increase	
		  and nuclear rupture	
Eyes	 Kayser-Fleischer ring	 Copper deposition in the	 (81,82)
		  cornea	
Heart	 Atrial fibrillation, heart	 Myocardial fibrosis, small	 (83-85)
	 failure, autonomic	 vessel sclerosis and	
	 dysfunction	 inflammatory cell infiltration	
		  induced by copper deposition	
Reproduction	 Hypogonadism, 	 Related to mechanisms such as	 (87,88)
	 teratozoospermia	 inflammatory response, 	
		  pyroptosis and apoptosis	
		  caused by copper deposition	
Bones	 Osteomalacia, osteoporosis	 Related to renal insufficiency	 (89,90)
Hemocyte	 Hemolytic anemia	 Hemoglobin oxidation caused	 (91-93)
		  by copper	

WD, Wilson's disease.
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of lipid‑acylated proteins, subsequently impairing the normal 
function of Fe‑S cluster proteins in the mitochondrial respira‑
tory chain (114).

Notably, when intracellular protein aggregation and loss 
of Fe‑S cluster proteins occur, they trigger a series of acute 
stress responses, such as the unfolded protein response (UPR) 
and heat shock response. Initially, these abnormal signals are 
perceived by intracellular stress sensors, initiating UPR (115). 
The UPR inhibits protein synthesis, reduces the production of 
new misfolded proteins and regulates gene expression related 
to protein folding and ER‑associated degradation, thereby 
enhancing the ability of cells to handle misfolded proteins and 
maintain intracellular proteostasis (116). Furthermore, when 
cells are subjected to stress stimuli associated with cellular 
proptosis, they activate heat shock factor 1  (117), thereby 
promoting the expression of heat shock proteins, such as 
HSP70 (118). HSP70 recognizes and binds to misfolded or 
aggregated proteins, assisting them in refolding or transporting 
them to the proteasome for degradation, thereby mitigating 
the detrimental effects of protein toxicity in cells (119). The 
underlying mechanism of WD‑induced cuproptosis is shown 
in Fig. 3.

Potential association between genes involved in cupro-
ptosis and WD. Studies have reported that numerous genes 
co‑expressed with FDX1 play pivotal roles in various mito‑
chondrial respiratory metabolic activities. Furthermore, these 
genes are associated with the Notch signaling pathway (42). 
Our group previously identified the enrichment of key 
signaling pathways, including Notch and MAPK, through 
differential expression analysis of long non‑coding RNAs 
in a toxic milk (TX) mouse model, which is recognized as 
an ideal animal model for WD research (120). Additionally, 
research in immunology has revealed close associations 
between FDX1 and several immune‑related pathways, such 
as inflammatory responses and the TNF‑α/NF‑κB signaling 
pathway (121). It has been confirmed that patients with WD 
exhibiting liver and nervous system damage show significant 
elevations in plasma levels of type 1 T‑helper (Th1) cells 
(TNF‑α and TNF‑β), Th3 (TGF‑β1) and Th17 (IL‑23) (122). 
Furthermore, recent investigations have elucidated that 
the accumulation of copper ions activates the Toll‑like 
receptor 4/NF‑κB signaling cascade. This activation was 
associated with a marked increase in the levels of inflam‑
matory cytokines in the serum and testicular compartments 

Figure 3. Mechanistic diagram of cuproptosis induced by WD. WD, Wilson's disease; ATP7B, ATPase copper transporting β; CER, ceruloplasmin; DLAT, 
dihydrolipoamide S-acetyltransferase; FDX1, ferroxin 1; LIAS, lipoic acid synthase; ROS, reactive oxygen species.
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of TX mice (123). Collectively, these findings suggest that 
FDX1, a pivotal regulatory gene, may serve as a critical 
determinant of the cuproptosis in WD.

LIPT1 is a pivotal regulator of the lipoic acid metabolic 
cascade and plays a crucial role in the orchestration of mito‑
chondrial energy metabolism (124,125). Recent investigations 
have shown that the hepatic pathology observed in patients 
with WD, as well as in the corresponding animal models, is 
characterized by varying degrees of mitochondrial copper 
accumulation. This excess copper not only precipitates the 
disintegration of mitochondrial integrity but also leads to the 
structural degradation of mitochondrial components (126). 
Collectively, these findings suggest that LIPT1 may serve as a 
critical modulator of the copper‑mediated pathophysiology of 
WD by influencing the TCA cycle and intricate mechanisms 
of mitochondrial energy metabolism.

Previous studies have established a compelling asso‑
ciation between LIAS and the pathophysiological mechanisms 
underlying oxidative stress and inflammatory responses. In a 
murine model of diabetic nephropathy, LIAS was identified as 
a pivotal factor for preserving mitochondrial integrity through 
its regulatory influence on the expression of inflammatory 
mediators. This regulatory function is involved in oxidative 
stress responses, encompassing signaling cascades, such as 
the MAPK pathway, and the promotion of antioxidant mecha‑
nisms, including the nuclear factor erythroid 2‑related factor 2 
(NRF2) signaling pathway (127). Our research group previ‑
ously corroborated the significance of the MAPK signaling 
pathway in the etiology of WD (120). Furthermore, a recent 
study demonstrated that Nrf2 expression is markedly elevated 
in PC12 cells following copper loading in a WD neural injury 
model (128). This finding suggests a potential link between 
LIAS and copper‑mediated pathogenesis of WD, underscoring 
the intricate interplay between these molecular pathways in 
disease progression.

DLD and DLAT, which are integral components of the 
PDC, are strongly associated with glucose metabolism. 
Inhibition of DLD enzymatic activity has been shown to 
effectively decelerate the glycolytic pathway of glucose, 
thereby significantly diminishing its metabolic rate (129,130). 
Using proton nuclear magnetic resonance metabolomics, 
our research team observed that the liver concentrations of 
glycogen, α glucose and lactate in TX mice were notably 
elevated compared to those in the control group (131). These 
findings indicate the potential roles of DLD and DLAT in WD 
pathogenesis.

PDHA1 and PDHB, integral subtypes of PDC, are pivotal 
in the glycolytic and TCA cycle metabolic pathways (132,133). 
Concurrently, extracellular signal‑regulated kinase (ERK), 
a key member of the MAPK family, plays a critical role in 
cellular signaling transduction. It has been demonstrated 
that fisetin‑induced inhibition of ERK‑1/2 phosphorylation 
triggered by fisetin can significantly suppress the expres‑
sion of PDHA1, thereby mitigating cellular apoptosis (134). 
Furthermore, cell proliferation and migration, which are 
modulated by the PDHB and ERK signaling pathways, are 
intricately interconnected (135). Wang et al (136) reported 
that the deposition of copper in WD may perturb the secretion 
of reproductive hormones by inducing apoptosis in hypotha‑
lamic‑pituitary cells and suppressing ERK signaling in mice. 

This disruption resulted in diminished male fertility in mice. 
Collectively, these findings suggested that PDHA1 and PDHB 
may serve as potential biomarkers of copper‑dependent 
toxicity, indicating their association with WD to a certain 
extent.

GLS, a pivotal enzyme in the catabolic pathway of 
glutamine, has emerged as a critical regulatory protein in 
the mechanism of cuproptosis (137). Glutamine, a copious 
nonessential amino acid in the cellular environment, plays a 
fundamental role in diverse biological processes, including 
protein synthesis, immune modulation and cellular metabo‑
lism  (138). Studies have revealed altered metabolism in 
hepatic glutamine levels in TX mice compared with those in 
the normal group (131), suggesting that GLS may influence 
the body's redox imbalance by modulating protein and energy 
metabolism  (139), which is implicated in WD‑associated 
cuproptosis.

p53 plays a pivotal role in WD‑related cuproptosis, 
potentially through its regulatory effects on copper ion 
homeostasis and the oxidative defense system. It has been 
shown that p53 modulates cellular copper uptake by regu‑
lating the expression of the copper transporter CTR1, 
thereby altering copper ion stability and sensitivity to cupro‑
ptosis (140). Furthermore, p53 activates the transcription of 
antioxidant genes, including SOD2 and catalase, thereby 
enhancing ROS scavenging and mitigating oxidative stress 
damage (141). Notably, a substantial increase in p53 muta‑
tions has been observed in liver samples from patients with 
WD (142), highlighting the multifaceted involvement of p53 
in the pathogenesis of cuproptosis in WD.

Additionally, research has identified several metal homeo‑
stasis regulators, such as MTF1 and ZnT1, that participate in 
WD‑related copper toxicity by interacting with copper ions 
or competitively binding to shared sites, thereby influencing 
intracellular copper concentrations (53,143).

In summary, the currently identified cuproptosis‑related 
genes may modulate cuproptosis through the following core 
mechanisms in WD: i) Regulation of lipoic acid metabo‑
lism: Genes such as FDX1, LIPT1 and LIAS can influence 
the TCA cycle and Fe‑S cluster stability by participating in 
lipoic acid metabolism; ii) modulation of energy metabo‑
lism: Genes like DLD, DLAT, PDHA1/PDHB regulate the 
coupling of glycolysis to the mitochondrial respiratory 
chain, leading to ATP synthesis impairment and lactic 
acidosis; iii) control of oxidative stress and inflammation: 
Genes including p53 and GLS may trigger lipid peroxida‑
tion and the release of inflammatory cytokines by regulating 
oxidative stress; and iv)  metal homeostasis regulation: 
Genes such as MTF1 and ZnT1 indirectly affect cuproptosis 
by adjusting metal homeostasis or competing ion transport. 
The associations between copper death‑related genes and 
WD are summarized in Table II.

The present study had several limitations. First, as a recently 
discovered form of cell death, the core molecular machinery 
of cuproptosis remains incompletely elucidated, particularly 
regarding the coordinated actions of the key molecular players 
that trigger cuproptosis in WD, an area that warrants more 
systematic investigation. Second, although the present study 
identified and characterized the pivotal role of cuproptosis in 
the pathogenesis of WD, the specific molecular mechanisms 
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require further experimental investigation and validation. 
Third, although therapeutic strategies targeting cuproptosis 
hold translational promise, clinical implementation faces 

significant challenges, including the precise modulation 
of cuproptotic pathways without disrupting physiological 
copper metabolism and overcoming tissue‑specific barriers 

Table II. Relationship between partial cuproptosis-related genes and WD.

Gene		  Bridge between	 Relationship between	
name	 Function	 genes and WD	 genes and WD	 (Refs.)

FDX1	 Encodes iron sulfur	 Associated with	 Involved in key signaling	 (42,120-123)
	 protein, involved in	 FDX1 co-expression, 	 pathways such as Notch	
	 electron transfer	 immune- and	 and NF-κB, as well as the	
	 chain and Fe-S	 inflammation-	 expression of immune and	
	 cluster biosynthesis; 	 related genes	 inflammatory factors, 	
	 regulation of the		  including TNF-α, TNF-β, 	
	 esterification		  TGF-β1 and IL-23	
	 reaction of lipoic			 
	 acid			 
LIPT1	 Participates in the	 Regulation of	 Mitochondrial copper	 (124-126)
	 biosynthesis of lipoic	 mitochondrial	 overload, breakdown of	
	 acid	 energy	 mitochondrial membrane	
		  metabolism	 and structural damage	
LIAS	 Catalysis in the	 Oxidative stress, 	 Regulation of the MAPK	 (127,128)
	 biosynthesis of	 inflammatory	 signaling pathway and	
	 α-lipoic acid	 response	 NRF2 gene expression	
DLD, 	 E3 constituent of	 Glucose	 Affecting the levels of	 (129-131)
DLAT	 PDC; E2 constituent	 metabolism	 glycogen, α glucose and		
	 of PDC		  lactate	
PDHA1, 	 E1 constituent of	 Cell signaling	 Regulation of the ERK	 (132-136)
PDHB	 PDC	 transduction	 signaling pathway	
GLS	 Catalyzes the	 Protein, energy	 Affecting glutamine levels	 (131,137-139)
	 hydrolysis of	 metabolism and		
	 glutamine into	 redox balance		
	 glutamic acid and			 
	 ammonia			 
p53	 Regulates	 Regulates the	 Regulates CTR1 and	 (140-142)
	 glutathione	 steady-state of	 antioxidant gene	
	 production and	 copper ions and	 expression	
	 participates in gene	 the oxidation		
	 expression related to	 defense system		
	 Fe-S cluster			 
	 biosynthesis			 
MTF1	 Maintains the steady	 Interacts with	 Promotes the expression	 (143)
	 state of metal ions	 copper ions	 of genes such as	
			   metallothionein 1X	
ZnT1	 Zinc transporter, a	 Affects copper	 Zn2+ competes with Cu2+ 	 (53)
	 novel copper	 uptake	 for the ZnT1 binding site,	
	 transporter		  affecting copper	
			   metabolism	

WD, Wilson's disease; CTR1, copper transporter 1; DLAT, dihydrolipoamide S-acetyltransferase; DLD, dihydrolipoamide dehydrogenase; 
ERK, extracellular regulated protein kinases; FDX1, ferroxin 1; GLS, glutaminase; IL-23, interleukin-23; LIAS, lipoic acid synthase; LIPT1, 
lipoyltransferase 1; MAPK, mitogen-activated protein kinase; MTF1, metal-regulated transcription factor 1; NF-κB, nuclear factor κB; NRF2, 
nuclear factor erythroid 2-related factor 2; PDC, pyruvate dehydrogenase complex; p53, tumor protein 53; PDHA1, pyruvate dehydrogenase 
E1 subunit α1; PDHB, pyruvate dehydrogenase E1 subunit β; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; ZnT1, 
transporters of copper and zinc 1.

https://www.spandidos-publications.com/10.3892/ijmm.2025.5558
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in drug delivery. Future studies should integrate multi‑omics 
approaches, organoid modeling and clinical cohort analyses 
to comprehensively decipher cuproptotic molecular networks 
and facilitate the development of novel mechanism‑based 
therapeutic interventions.

5. Conclusions

Copper, an indispensable trace element and a pivotal cofactor 
within the human body, plays a critical role in myriad physi‑
ological processes. Disturbances in copper homeostasis and 
deposition, as observed in WD, significantly contribute to 
cellular dysregulation. This dysregulation orchestrates a 
symphony of cellular responses, including activation of oxida‑
tive stress, impairment of the ubiquitin‑proteasome system 
and activation of protein toxicity stress responses, all of which 
converge to regulate cell death. Lipoacylation of proteins is 
a crucial step in the cuproptosis observed in WD. FDX1 has 
emerged as a key regulatory node in this intricate network, 
exerting a profound influence on cuproptosis. It serves as a 
sentinel with landmark significance, orchestrating the expres‑
sion of pivotal marker proteins, such as LIPT1, LIAS, DLD, 
DLAT, PDHA1 and PDHB. This study systematically delin‑
eates the molecular underpinnings of cuproptosis and provides 
a comprehensive overview of the mechanisms underlying its 
pivotal role in the pathogenesis of WD. By integrating critical 
molecular clusters, the present review provided a comprehen‑
sive framework for understanding the coordinated regulation of 
cuproptosis in WD. Concomitantly, targeted therapies directed 
at this mechanism hold promise as novel and prospective treat‑
ment approaches, thereby offering more precise and effective 
therapeutic strategies for patients with WD. Consequently, this 
could lead to a significant enhancement in quality of life and 
survival rates.
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