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Abstract. The complexity of lung cancer, driven by multi‑
factorial causes such as genetic, environmental and lifestyle 
factors, underscores the necessity for tailored treatment 
strategies informed by recent advancements. Studies high‑
light a significant association between the lung microbiome 
and lung cancer, with dysbiosis potentially contributing to 
disease development via inflammation, immune response 
alterations and bacterial metabolite production. Furthermore, 
exposure to airborne bacteria may influence lung health 
by introducing pathogenic species or altering the human 
microbiome, thereby implicating certain dominant airborne 
bacteria in lung diseases, including the exacerbation of lung 
cancer. Extracellular vesicles (EVs) facilitate cell‑to‑cell 
communication, penetrating mucosal barriers to impact 
various organs, notably the lung. Epidemiological evidence 
suggests a strong relationship between the presence of 
microbial EVs (MEVs) in the air and chronic pulmonary 
diseases, with indications of a potential risk for lung cancer. 
MEVs play a significant role in pulmonary disease develop‑
ment by inducing airway inflammation and affecting lung 
function. The microbiome and MEVs offer considerable 
potential as novel tools in precision medicine for lung cancer. 
Biological data analysis and artificial intelligence technology 

advancements are pivotal for fully realizing their diagnostic 
and therapeutic capabilities. These developments can poten‑
tially shape the future landscape of lung cancer diagnostics, 
therapeutics and prevention strategies.
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1. Introduction

Lung cancer is the most newly diagnosed cancer worldwide, 
comprising 12.4% (2.48 million cases) of cases and causing 
18.7% (1.82 million deaths) of cancer‑associated mortali‑
ties, and it is now the leading concern among males, with 
an incidence rate of 15.3% (1.57 million cases), surpassing 
prostate cancer in 2022 (1). In addition, domestic cancer 
statistics in South Korea demonstrate the highest fatality 
rates, with crude mortality rates of 36.8 per 100,000 indi‑
viduals (18,902 deaths) in 2021, aligning with international 
trends (2). While lung cancer is traditionally classified into 
non‑small cell lung cancer and small cell lung cancer, recent 
advancements such as next‑generation sequencing (NGS) 
have revealed a significant heterogeneity within the disease. 
This has led to the identification of various pathological 
subtypes, highlighting the complexity of lung cancer and 
underscoring the need for tailored treatment strategies for 
individual patients (3‑5).
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Well‑known risk factors for lung cancer include genetic 
polymorphisms, tobacco smoking, diet, alcohol consump‑
tion, chronic inflammation, exposure to ionizing radiation 
and occupational exposure to substances such as asbestos, 
chromium compounds, silica and diesel exhaust (6). Similar 
to most types of cancer, lung cancer is recognized to result 
from the interplay of various multifactorial causes. Among 
these factors, the microbiome has also emerged as a topic of 
growing interest in research (7). In the past, it was believed that 
the lung was sterile; however, recent research has uncovered a 
range of commensal microbiomes, including fungi, bacteria 
and viruses, all of which contribute to homeostasis (8,9). 
Numerous studies have investigated the association between 
these microbiomes and various lung diseases, including 
cancer (10). Although dysbiosis is not exclusively associated 
with cancer development, it has been found to correlate with 
innate immunity, suggesting potential therapeutic implica‑
tions (11‑13). Therefore, the present review aims to summarize 
the research on the influence of both human and environ‑
mental microbiomes on the occurrence and progression of 
lung cancer, as well as their potential clinical implications.

2. Association between the microbiome and lung cancer

Human microbiome. Multiple studies have highlighted 
significant associations between lung cancer and the human 
microbiome using fecal, sputum, tissue and saliva samples, as 
summarized in Table I. The lung microbiota is shaped by inter‑
actions with the gut and oral microbiome, as well as external 
exposures (14). In patients with lung cancer, Streptococcus 
was consistently found at higher levels in sputum, tissue 
and saliva compared to healthy individuals (15‑17), while its 
abundance was significantly reduced in fecal samples (18). 
Conversely, Faecalibacterium, which is typically abundant 
in feces, was found in higher levels in fecal samples from 
patients with lung cancer but reduced in their saliva (17‑19). 
Other pro‑inflammatory bacteria, such as Ruminococcus and 
Klebsiella, were also elevated in fecal samples of patients with 
lung cancer compared to healthy controls (18,20). By contrast, 
beneficial genera such as Bifidobacterium and Bacteroides 
were observed in greater abundance in fecal samples from 
healthy individuals (19,21,22).

In addition to comparisons with healthy controls, studies 
have also evaluated differences in microbiota composition 
between patients with lung cancer and those with benign 
pulmonary conditions or other cancer types. For instance, 
higher levels of Veillonella, Megasphaera, Atopobium and 
Selenomonas were reported in patients with lung cancer 
compared to individuals with benign lung lesions (23). 
Similarly, Haemophilus levels showed significant variability 
between lung cancer and patients with esophageal squamous 
cell carcinoma (20). These findings suggest that the lung 
microbiota may interact with bacteria originating from the 
oral cavity or pharynx, further emphasizing the concept of a 
gut‑lung axis (14).

Despite these advances, variability in study outcomes 
remains a challenge, often attributed to small sample sizes, 
diverse cancer subtypes, and differences in patient charac‑
teristics, such as age, sex and medical history. Furthermore, 
discrepancies arise from variations in sequencing approaches 

and taxonomic databases. For example, targeting different 
16S ribosomal RNA regions (such as V1‑V3 vs. V3‑V4) and 
using different platforms, such as Illumina MiSeq and Roche 
454, yield differing results. Additionally, inconsistencies 
across databases [such as SILVA (https://www.arb‑silva.de/), 
Ribosomal Database Project (RDP interface is no longer avail‑
able), Greengenes (https://greengenes2.ucsd.edu/) and National 
Center for Biotechnology Information (https://www.ncbi.nlm.
nih.gov/)] contribute to the variability (24‑26). Nonetheless, 
several studies have consistently identified Streptococcus and 
Faecalibacterium as key genera associated with lung cancer, 
with the former being particularly prominent (14,17).

Dysbiosis, characterized by a shift in the microbiome 
that favors harmful over beneficial bacteria, plays a central 
role in cancer progression. It promotes inflammation, alters 
metabolic pathways and dysregulates immune responses, as 
observed in studies of colorectal cancer (14,27,28). In the 
lung, similar mechanisms are suspected but remain underex‑
plored. Emerging evidence suggests that dysbiosis of the lung 
microbiota may facilitate lung cancer progression through 
bacterial metabolite release and activation of inflammatory 
pathways (29). Moreover, the gut‑lung axis, influenced by gut 
microbiota such as Lactobacillus reuteri and Clostridium, 
shapes immune responses in the lungs, highlighting its poten‑
tial role in lung cancer pathogenesis (30,31). Despite these 
findings, large‑scale studies are needed to validate microbial 
biomarkers for lung cancer, which could pave the way for 
novel diagnostic and therapeutic strategies.

Environmental microbiome. A previous study investigated 
the relationship between environmental microorganisms 
and human health (Fig. 1). Humans are exposed to environ‑
mental microorganisms through the air, food, soil and water, 
which circulate and interact, influencing various ecological 
systems (32). These microbes can infiltrate the body via respi‑
ration, skin contact and ingestion, integrating into the complex 
interactions of these ecosystems. Subsequently, environmental 
microorganisms that have penetrated the body can directly 
impact human health by introducing pathogenic bacteria or 
indirectly by altering the human microbiome (33,34).

In particular, pulmonary diseases are related to exposure 
to airborne bacteria. Previous studies have identified some 
prevalent airborne bacteria, revealing that their composition 
varies depending on the characteristics of the outdoor environ‑
ments. In outdoor air, the dominant genera varied according 
to meteorological conditions (32). In the indoor air of an 
office, the most dominant genera were Methylobacterium, 
Enterobacteriaceae_unidentified genus, Exiguobacteirum 
and Bacteroides (32). Also, Shin et al (35) reported that 
Micrococcus, Paracoccus, Staphylococcus and Enhydrobacter 
were the common genera in indoor air of childcare facilities.

Several studies have elucidated that airborne microbes are 
associated with lung diseases (36‑40). Exposure to airborne 
microbes has been implicated in developing and exacerbating 
lung diseases, such as asthma and chronic obstructive pulmonary 
disease (COPD) (36). For example, Pseudomonas aeruginosa 
is common in patients with cystic fibrosis and COPD (37). It is 
known that exposure to bioaerosols, such as allergens, toxins 
and pro‑inflammatory agents, induces airway inflammation, 
leading to respiratory symptoms (38). Asthma and bioaerosol 
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exposure have been found to reduce lung function while 
increasing pulmonary inflammation (39). This series of lung 
function decline, increased inflammation and dysregulation 

can contribute to the development of lung cancer. Additionally, 
a study reported a relationship between exposure to bioaerosols 
and the development of specific cancers, including pancreatic, 

Table I. Clinical studies on microbiome genera alteration in lung cancer compared with healthy individuals and other lung 
diseases using 16S ribosomal RNA method.

 Microbiome
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Sample Increase Decrease (Refs.)

Feces Haemophilus, Faecalibacterium Neisseria, Fusobacterium, Treponema, Rothia, (19)
  Burkholderia, Filifactor, Dialister, Mycoplasma,
  Catonella, Anaerovorax, Acholeplasma, Bacteroides,
  Peptococcus, Megamonas, Bradyrhizobium, TG5
 Eubacterium, Ruminococcus, Streptococcus, Enterococcus, Roseburia (18)
 Faecalibacterium
 Klebsiella, Streptococcus Haemophilus (20)
	 Enterococcus	 Bifidobacterium	 (21)
  Lachnospira (124)
	 Ruminococcus	 Faecalibacterium,	Streptococcus,	Bifidobacterium,	 (22)
  Veillonella
Sputum Parabacteroides, Eggerthella, Haemophilus, Dialister, Burkholderia, WAL_1855D, (19)
 Weissella Neisseria, Bulleidia
 Granulicatella, Abiotrophia, Sphinogomonas, Leptotrichia (15)
 Streptococcus,
Tissue Streptococcus Staphylococcus (16)
  Corynebacterium, Halomonas, Lachnoanaerobaculum,  (125)
  Acidovorax (126)
Saliva Veillonella, Streptococcus  Fusobacterium, Prevotella, Bacteroides, (17)
  Faecalibacterium 

Figure 1. Relationship between the microbiomes of the environment and humans. Environmental microbiomes, circulating through air, water and soil, come 
into contact with humans, subsequently impacting the human microbiome.
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liver and lung cancer (40). In summary, alterations in the 
pulmonary micro‑environment and functions, which may 
contribute to the development of lung cancer, are increasingly 
acknowledged; however, research into the definitive impact of 
the microbiome on its pathogenesis remains limited.

3. Microbial extracellular vesicles as key communication 
materials between the microbiome and lung cancer

Exposure to microbial extracellular vesicles. Extracellular 
vehicles (EVs) are cell‑to‑cell communication materials 
enclosed in a lipid bilayer containing proteins, lipopolysac‑
charides (LPS) and nucleic acids, ranging from 20 to 200 nm 
in diameter. Microbial EVs (MEVs), found in all bacteria, are 
known as outer membrane vesicles (OMVs) in Gram‑negative 
bacteria and membrane vesicles (MVs) in Gram‑positive 
bacteria (41,42). Gut commensal microbes secrete MEVs, 
which penetrate the mucosal barrier and circulate throughout 
the body, reaching organs such as the lung, liver and skeletal 
muscle after oral administration (43). Additionally, dietary 
habits influence the microbiome and MEV composition, 
impacting human health and disease risk (44‑46). For 
example, the microbial diversity in the feces of individuals 
on habitual Western diets was decreased compared with 
plant‑based diets (44). Nanosized particles, including MEVs, 
are absorbed through inhalation and spread to various organs. 
These particles can accumulate in deep lung tissue, potentially 
affecting lung function over time (47).

Epidemiological studies have linked MEVs in indoor dust 
with chronic pulmonary diseases. A clinical study found that 
63.6% of children with asthma had IgG1 sensitization to MEVs 
in indoor dust, suggesting a role in chronic lung diseases (48). 
Higher levels of anti‑dust EV IgG antibodies were observed 
in patients with asthma, COPD and lung cancer compared 

to healthy controls (49,50). In summary, while research is in 
its early stages, MEVs may pose a significant risk for lung 
disease, including cancer.

Pathogenesis of microbial extracellular vesicles in the devel‑
opment of lung diseases. As the EV membrane is embedded 
with surface ligands that interact with receptors on target 
cells, EVs can attach to and modify the physiological state of 
recipient cells (51,52). Furthermore, MEVs have recently been 
shown to be involved in the development of a wide variety of 
diseases, including cancer (24,53).

MEVs in beds were found to be mainly derived from 
pathogenic bacteria, such as Pseudomonas, Acinetobacter, 
Enterobacter and Staphylococcus (50). The prolonged expo‑
sure to MEVs in inhaled indoor dust induces significant airway 
inflammation, leading to severe asthma‑like responses as well 
as emphysema. The induction of emphysema is of particular 
concern, as it is known to be a major factor in the development 
of irreversible airway obstruction (48). The exposure to MEVs 
during respiration and dysbiosis of gut microbiota constitute 
two primary pathophysiological mechanisms‑the airway and 
gut‑lung axis‑contributing to disease development (Fig. 2).

When the parent cell is an extracellular gram‑negative 
bacterium, OMVs induce T helper (Th)17 responses, leading 
to neutrophilic inflammation via the release of IL‑17. This 
inflammation often causes airway hyperreactivity, fibrosis 
and conditions such as asthma and COPD, which may elevate 
the risk of lung cancer (54). A previous study has shown that 
OMVs from Escherichia coli trigger IL‑17A‑dependent neutro‑
philic inflammation and emphysema in mice, accompanied by 
elastase upregulation (55). Intraperitoneal injection of E. coli 
EVs induces lung dysfunction and mortality (56). Similarly, 
P. aeruginosa EVs exacerbate pulmonary inflammation through 
Toll‑like receptor (TLR)2 and TLR4 activation, elevating in the 

Figure 2. Microbiome as a significant factor in lung cancer carcinogenesis. Environmental microorganisms and gut microbiome contribute to pulmonary 
inflammation, which can lead to development of lung cancer. EVs, extracellular vesicles; TLRs, Toll‑like receptors; Th, T helper cells; Treg, regulatory T cells.
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chemokines (CXCL1 and C‑C motif ligand 2) and the cytokines 
(IL‑1β, TNF‑α, IL‑6 and IFN‑γ), alongside neutrophil and 
macrophage infiltration (37). Moreover, indoor dust, including 
various bacterial components, has been associated with both 
Th1 and Th17 responses, leading to the induction of neutro‑
philic pulmonary inflammation (48,57). By contrast, MVs 
from intracellular Gram‑positive bacteria primarily induce Th1 
polarization via IFN‑γ, leading to mononuclear inflammation 
and alveolar elastase production, which may cause emphy‑
sema (54). Although research on MVs has not been as extensive 
as on OMVs, a previous study has revealed immunological 
responses to some common MVs in the airway. For example, 
Repeated airway exposure to Staphylococcus aureus EVs 
triggers both Th1 and Th17 responses, increasing neutrophilic 
inflammation through TLR2 (58). These results suggest that 
the pathogenicity of MEVs is strongly related to lung diseases. 
Understanding these immunological pathways is crucial for 
advancing pulmonary health research.

As aforementioned, numerous immune responses are 
triggered by MEVs, and it is evident that the mechanisms of 
these responses in the airways vary according to the Gram 
type of the bacteria. For example, common airway OMVs, 
such as those derived from P. aeruginosa, E. coli and 
Acinetobacter baumannii, increase IL‑6 levels and neutro‑
philic activity (37,56,59). Meanwhile, MVs, such as those 
derived from S. aureus and Faecalibacterium prausnitzii, have 
been reported to commonly increase IFN‑γ levels (58,60).

4. Clinical implications of the microbiome for lung cancer

Recently, interest in the relationship between the microbiome 
and human health and efforts toward clinical application have 

increased. Previous studies have suggested that the microbiome 
holds valuable information, demonstrating its potential as a 
material or biomarker for diagnosis, therapeutics and health‑
care (Fig. 3) (24,61,62). After MEVs circulate throughout the 
body, they are excreted via feces, urine and exhaled air in their 
intact forms, unlike live microbes, which are restricted to the 
mucosal lumen or skin surface (43). Certain MEVs act as etio‑
logical agents of various diseases, while some MEVs have a 
protective role in disease pathogenesis. Therefore, circulating 
MEVs in our body provides us with noteworthy information 
for health and disease status (24).

Diagnostic potential of microbiome. Risk assessment, early 
diagnosis, treatment response prediction and disease moni‑
toring are crucial for reducing mortality and enhancing quality 
of life in patients with cancer (63,64). There is a growing 
trend in developing diagnostic or screening technologies that 
utilize the microbiome‑based quantitative polymerase chain 
reaction (qPCR), NGS, machine learning and enzyme‑linked 
immunosorbent assay (Fig. 3). Most studies utilize fecal 
samples, which contain sufficient microbiomes for analysis, 
and therefore, research on microbiome‑based diagnostics 
primarily targets gastrointestinal diseases. Previous studies on 
colorectal cancer diagnosis showed that a metagenomics algo‑
rithm achieved an area under the curve (AUC) of 0.89 (65), 
while qPCR demonstrated higher accuracy with an AUC of 
0.93 (66). Additionally, this approach has been applied to 
lung cancer diagnostics using feces samples, with models 
using Enterococcus, Streptococcus and Klebsiella achieving 
an AUC of 0.96, a Haemophilus‑specific model showing an 
AUC of 0.75 (20), and a model based on 13 OTU biomarkers 
demonstrating an AUC of 0.976 (22).

Figure 3. Clinical applicability of the microbiome: i) Diagnosis, including screening; ii) therapeutics; and iii) healthcare, such as monitoring and supplements. 
NGS, next generation sequencing; EVs, extracellular vesicles.

https://www.spandidos-publications.com/10.3892/ijmm.2025.5560
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Recent studies have been conducted using diverse human 
samples, including urine, blood, saliva, bronchoalveolar lavage 
fluid (BALF) and sputum, with a focus on specific diseases, to 
development of diagnostic or screening technology based on 
microbiomes. For instance, to distinguish between benign lung 
disease and lung cancer using BALF, Kim et al (67) developed 
a prediction model based on unclassified_SAR202_clade 
(phylum Chloroflexi), achieving an AUC of 0.98, while a model 
using Veillonella and Megasphaera showed an AUC of 0.89 (23).

MEVs, rather than live microorganisms, are emerging 
as precise biomarkers for disease diagnostics using artificial 
intelligence (AI)‑based analysis (61). McDowell et al (68) 
developed machine learning models using MEV metage‑
nomes from serum, achieving AUCs of 0.93 for COPD, 0.99 
for asthma and 0.94 for lung cancer. Antibodies against 
MEVs have also shown diagnostic potential, with IgG against 
MEVs derived from S. aureus, Acinetobacter baumannii, 
Enterobacter cloacae and P. aeruginosa, which are predomi‑
nant in indoor dust, achieving AUCs of 0.78 for asthma, 0.79 
for COPD and 0.81 for lung cancer (50).

MEV‑based diagnostics have broad utility, with AUC 
of 0.95 for colorectal cancer using feces (69), 0.93 for brain 
tumor using blood (45), 0.87 for hepatocellular carcinoma 
using blood (70), 0.82 for gastric cancer using urine (71) and 
1.00 for pancreatic cancer using blood (72). Furthermore, 
diagnostic models based on MEVs incorporating additional 
markers demonstrate improved performance. Combining 
MEV data with additional markers, such as metabolomics or 
tumor markers, significantly enhances diagnostic accuracy 
across various cancers (69,73). Thus, MEV‑based diagnostic 
technologies, including composition assessment and immu‑
noassays, can provide information on exposure to etiological 
agents (50). Additionally, MEVs derived from various samples 
can assist in the diagnosis of lung diseases.

5. Therapeutic potential of the microbiome

Live biotherapeutic products. Commensal bacteria are essen‑
tial to human health, with growing recognition that humans are 
holobionts or supra‑organisms. This means that the combined 
metabolic capabilities of both eukaryotic and prokaryotic 
components surpass those of each component alone (24). The 
U.S. Food and Drug Administration (FDA) has announced a 
new category called live biotherapeutic products (LBPs). The 
FDA has identified LBPs as biological products containing 
live organisms such as bacteria, which are used for disease 
prevention, treatment or cures, but are not vaccines (74). LBPs 
are administered in sufficient quantities to provide health 
benefits to the host (24,75).

Several studies have demonstrated the efficacy of LBP 
monotherapy. For examples, Lactococcus lactis inhibited 
lung cell proliferation (76,77). Other studies have shown 
that β‑glucan, derived from Saccharomyces cerevisiae, can 
modulate immune responses and inhibit cancer cell viability 
in the lung cancer microenvironment (78,79). Short‑chain fatty 
acids such as butyrate, propionate and acetate, when delivered 
from the gut to the lung, induce apoptosis in lung cancer 
cells (80). Although the exact mechanisms of LBPs remain 
unclear, immune system regulation and pathogen attachment 
interference are possible explanations.

LBPs can also be applied with regular treatments, such 
as conventional chemotherapy and immunotherapy, and have 
enhanced tumor suppression. Kotzampassi et al (81) found 
that the intake of Lactobacillus and Bifidobacterium reduced 
postoperative complications. In addition, Wada et al (82), 
demonstrated that the intake of Bifidobacterium	breve during 
the chemotherapy period reduced the incidence of fever 
and decreased the need for intravenous antibiotics, thereby 
facilitating more effective therapy. Furthermore, combining 
Lactobacillus with cisplatin has been shown to reduce 
tumor size and increase immune responses in lung cancer 
models (83).

Microbial extracellular vesicles‑based therapy as new‑
generation therapeutics. Recently, there has been a growing 
demand for developing new therapeutic targets distinct from 
conventional ones, suggesting the use of MEVs to address 
unmet medical needs as next‑generation therapeutics. While 
the potential of using mammalian EVs for therapeutic purposes 
has been widely discussed, MEVs have yet to receive much 
attention thus far (84). Nevertheless, several studies have 
reported the beneficial effects of MEVs as therapeutic agents. 
EV derived from Lactobacillus paracasei significantly affects 
colorectal homeostasis in inflammation‑mediated pathogenesis 
by attenuating LPS‑induced inflammation in the intestine by 
activating endoplasmic reticulum stress (85). EVs derived from 
Lactococcus lactis can modulate airway inflammation by 
promoting a shift in immune responses from Th2 to Th1 by stim‑
ulating dendritic cells to produce IL‑12, which offers a possible 
advantage for managing allergic asthma (86). Conversely, 
Micrococcus luteus‑derived EVs alleviate neutrophilic airway 
inflammation by reducing IL‑1β and IL‑17 levels in BALF and 
inhibiting group 3 innate lymphoid cells activation through 
upregulation of microRNA (miRNA) in airway epithelial 
cells, proposing them as a potential therapeutic for unresolved 
neutrophilic asthma (87). Additionally, Lactobacillus plan‑
tarum‑derived EVs have been suggested to treat atopic 
dermatitis, decreasing skin inflammation and epidermal thick‑
ness (88). EVs derived from Bifidobacterium longum have 
been shown to reduce the occurrence of diarrhea, which can 
be a symptom of food allergy, by inducing mast cell apoptosis 
without affecting T cell‑mediated immune responses (89). 
Therefore, therapeutic strategies can utilize beneficial MEVs as 
potential immunomodulators while suppressing harmful MEVs 
by inhibiting their production or function (90). In addition, 
postbiotics represent a new modality for next‑generation therapy 
to complement current cancer treatment, including those for 
lung cancer, such as small molecules, proteins, monoclonal 
antibodies and cell‑based therapeutics (24).

Therefore, LBPs and MEVs‑derived treatments can be 
used independently or as adjuncts to chemotherapy or immu‑
notherapy, potentially becoming a major component of lung 
cancer treatment in the near future.

6. Healthcare potential of the microbiome

It has been demonstrated that the human microbiome is 
strongly associated with health. Therefore, it can be utilized 
within healthcare systems for: i) Vaccines; ii) supplements 
such as probiotics and postbiotics; and iii) monitoring systems.
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Vaccine. Cancer vaccines primarily target tumor‑specific 
antigens but often lack sufficient efficacy. Researchers are 
exploring the potential of combining probiotics with cancer 
vaccines to enhance their effectiveness. Plasmodium, the 
malaria parasite, shows promise as an adjuvant for cancer 
vaccines, particularly in combination with DNA vaccines (91). 
Additionally, MEVs can deliver genetic materials of vaccine 
components into target cells, potentially improving vaccine 
efficacy (92,93). MEVs, with their bilayered lipids, primarily 
containing LPS and outer membrane lipids, could also poten‑
tially be used to deliver beneficial proteins, miRNAs and 
act as adjuvants in vaccine development (62,94). Due to the 
variety of glycolipids and glycoproteins in their composition, 
MEVs can introduce biological activity into cells, making 
them suitable as drug delivery vehicles for cyclic nucleotides, 
enzymes and antitumor drugs (95‑97). Recently, nano and 
micro materials, such as virus‑like particles and liposomal 
vesicles, are also being explored for vaccine delivery (98,99). 
Kim et al (100) demonstrated the successful modification of 
OMVs as multifunctional vaccine delivery vehicles to enhance 
immune responses against cancer cells. This approach aims 
to boost the immune response against cancer cells. Ongoing 
research is investigating these combinations' potential to 
improve cancer treatment outcomes.

Supplements such as probiotics and postbiotics. Probiotics, or 
LBPs, are live microorganisms that, when consumed in adequate 
amounts, provide beneficial effects to the host and are widely 
used in clinical practice. Numerous studies suggest that micro‑
biome intake plays a role in cancer prevention (77,101‑112), 
initially evidenced by Goldin and Gorbach (100) in 1980, 
which showed that Lactobacillus acidophilus supplementation 
reduced intestinal cancer incidence in rat models. Subsequent 
studies, particularly in vitro research, have demonstrated 
that probiotics can reduce cell proliferation, induce cell 
cycle arrest and trigger apoptosis (102‑106). Strains such as 
Lactobacillus plantarum, Lactobacillus rhamnosus and 
Bifidobacterium	polyfermenticus have been shown to reduce 
tumor incidence and progression in animal models (107‑111). 
However, most research focuses on gastrointestinal cancers, 
with limited studies on lung cancer. Preclinical data on mice 
suggest that Lactococcus lactis can inhibit cancer cell prolif‑
eration and proinflammatory cytokine production, showing 
promise for lung cancer prevention (77,112). Despite limited 
research on the use of probiotics for lung cancer, the findings 
mentioned are promising, and future studies are expected to 
yield further positive outcomes.

Postbiotics, including MEVs, are soluble factors released 
by microbes or after microbial lysis that provide physiological 
benefits (113). MEVs are emerging as key postbiotics in 
precision medicine, facilitating intercellular communication 
through proteins and small molecules enclosed in a lipid 
bilayer (114). Cell‑to‑cell communication is tightly regulated, 
and its disruption prompts disease advancement. Soluble 
factors include proteins and small molecules, and cell‑to‑cell 
communication is performed by MEVs, which are packages of 
information from microbial cells enclosed by a cell membrane. 
Moreover, recent scientific evidence has shown that certain 
MEVs as postbiotics have protective effects against disease 
development or progression (62,85,115,116).

Therefore, we propose that the intake of probiotics and 
postbiotics holds significant potential in the prevention of 
lung cancer, offering a hopeful avenue for future research and 
preventive measures.

Monitoring system. A healthcare monitoring system can be 
employed to track human health biomarkers by analyzing the 
airborne microbiome (34). Considering the significant associa‑
tion between human health and air pollution, which includes 
particulate matter, bioaerosols and gaseous substances, the 
vigilant monitoring of atmospheric pollutants can contribute 
to disease prevention. In numerous countries, bioaerosol regu‑
lation has been implemented through measurements based on 
culturing techniques (117). Culture‑based analysis can directly 
observe bacteria in the air and yield colony‑forming units. 
However, this method faces several limitations: i) It can only 
measure bacteria counted >1% of the total in a solid medium 
agar plate (118); ii) it is restricted to analyzing specific bacte‑
rial species; and iii) it is incapable of analyzing unculturable 
bacterial material such as MEVs and dead bacteria. For these 
reasons, numerous studies are underway to enable real‑time 
on‑site monitoring of bioaerosols and biomarkers related 
to human health. Cho et al (119) developed the bioaerosol 
monitoring system based on ATP extracted from E. coli and 
demonstrated that this system can continuously monitor with 
high sensitivity in real‑time. Additionally, a previous study 
has utilized reverse transcription‑PCR to detect airborne 
bacteria (120). Furthermore, to facilitate the precise and rapid 
detection of bioaerosols, droplet digital PCR (ddPCR) has been 
employed extensively in various studies for pathogen diag‑
nosis, mutation detection and transgenic research (120‑122). 
For instance, airborne Mycobacterium tuberculosis was 
detected using ddPCR (123); however, this method currently 
cannot detect airborne bacteria in real‑time on‑site, indicating 
that the technology requires further improvement.

Through such monitoring systems, lung cancer surveillance 
can be enhanced. Furthermore, by observing microbiomes 
associated with lung cancer risk, these systems have the poten‑
tial to utilize these microbiomes as biomarkers for the disease.

7. Conclusion

The present review explored the potential of microbiomes 
and MEVs as innovative tools in precision medicine for lung 
cancer. Disease patterns are linked to cellular aging and 
elevated reactive oxygen species, contributing to conditions 
such as inflammation, immune diseases and cancer. There is 
a growing shift toward promoting health through advanced 
diagnostics, safer therapeutics and prevention‑focused health‑
care systems. To support this shift, advancements in biological 
data analysis, including metagenomics and AI technologies 
such as machine learning, are essential for disease prediction 
and personalized therapies. While significant research on the 
microbiome exists, understanding the interactions between 
microbiota and host, particularly microbial products, remains 
limited. A deeper understanding of these interactions is key to 
developing beneficial microbial products. MEVs, unlike LBPs, 
can penetrate cells and target distant organs, offering signifi‑
cant advantages as diagnostic biomarkers and therapeutic 
candidates. We propose MEVs as next‑generation technologies 
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for lung cancer, capable of replacing current biologics such as 
proteins, antibodies and genes.

Future research on MEVs is expected to enhance our 
understanding of their role in lung cancer and foster precision 
medicine approaches, including diagnostics and therapies 
utilizing MEVs from beneficial microorganisms.
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