You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI | |
|
Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA and Soerjomataram I: Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 77:1598–1606. 2022. View Article : Google Scholar | |
|
Qin S, Bai Y, Lim HY, Thongprasert S, Chao Y, Fan J, Yang TS, Bhudhisawasdi V, Kang WK, Zhou Y, et al: Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J Clin Oncol. 31:3501–3508. 2013. View Article : Google Scholar | |
|
Donne R and Lujambio A: The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 77:1773–1796. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A, et al: Treated Pembrolizumab in patients with advanced hepatocellular carcinoma previously with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 19:940–952. 2018. View Article : Google Scholar | |
|
El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, et al: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 389:2492–2502. 2017. View Article : Google Scholar | |
|
Giraud J, Chalopin D, Blanc JF and Saleh M: Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front Immunol. 12:6556972021. View Article : Google Scholar | |
|
Sharma A, Seow JJW, Dutertre CA, Pai R, Blériot C, Mishra A, Wong RMM, Singh GSN, Sudhagar S, Khalilnezhad S, et al: Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell. 183:377–394.e21. 2020. View Article : Google Scholar | |
|
Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Khong HT and Restifo NP: Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol. 3:999–1005. 2002. View Article : Google Scholar | |
|
Thomas DA and Massagué J: TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 8:369–380. 2005. View Article : Google Scholar | |
|
Drake CG, Jaffee E and Pardoll DM: Mechanisms of immune evasion by tumors. Adv Immunol. 90:51–81. 2006. View Article : Google Scholar | |
|
Chen C, Wang Z, Ding Y and Qin Y: Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol. 14:11333082023. View Article : Google Scholar | |
|
Korpela K and de Vos WM: Early life colonization of the human gut: Microbes matter everywhere. Curr Opin Microbiol. 44:70–78. 2018. View Article : Google Scholar | |
|
Korpela K, Helve O, Kolho KL, Saisto T, Skogberg K, Dikareva E, Stefanovic V, Salonen A, Andersson S and de Vos WM: Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: A proof-of-concept study. Cell. 183:324–334.e5. 2020. View Article : Google Scholar | |
|
Yoo JY, Groer M, Dutra SVO, Sarkar A and McSkimming DI: Gut microbiota and immune system interactions. Microorganisms. 8:15872020. View Article : Google Scholar : PubMed/NCBI | |
|
Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH, McCracken C, Giglio MG, et al: Strains, functions and dynamics in the expanded Human microbiome project. Nature. 550:61–66. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yu J, Zhu P, Shi L, Gao N, Li Y, Shu C, Xu Y, Yu Y, He J, Guo D, et al: Bifidobacterium longum promotes postoperative liver function recovery in patients with hepatocellular carcinoma. Cell Host Microbe. 32:131–144.e6. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chambers ES, Byrne CS, Rugyendo A, Morrison DJ, Preston T, Tedford C, Bell JD, Thomas L, Akbar AN, Riddell NE, et al: The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes Metab. 21:372–376. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Paul SB, Acharya SK, Gamanagatti SR, Sreenivas V, Shalimar S and Gulati MS: Acetic acid versus radiofrequency ablation for the treatment of hepatocellular carcinoma: A randomized controlled trial. Diagn Interv Imaging. 101:101–110. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Y, Sichler A, Ecker J, Laschinger M, Liebisch G, Höring M, Basic M, Bleich A, Zhang XJ, Kübelsbeck L, et al: Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis. J Hepatol. 78:820–835. 2023. View Article : Google Scholar | |
|
Zhang M, Huang X, Zhang Y, Yu M, Yuan X, Xu Y, Ma L, Wang X and Xing H: Gut microbial metabolite butyrate suppresses hepatocellular carcinoma growth via CXCL11-dependent enhancement of natural killer cell infiltration. Gut Microbes. 17:25197062025. View Article : Google Scholar : PubMed/NCBI | |
|
Behary J, Amorim N, Jiang XT, Raposo A, Gong L, McGovern E, Ibrahim R, Chu F, Stephens C, Jebeili H, et al: Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun. 12:1872021. View Article : Google Scholar : PubMed/NCBI | |
|
Hliwa A, Ramos-Molina B, Laski D, Mika A and Sledzinski T: The role of fatty acids in non-alcoholic fatty liver disease progression: An update. Int J Mol Sci. 22:69002021. View Article : Google Scholar | |
|
Kalyanaraman B, Cheng G and Hardy M: The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys. 761:1101722024. View Article : Google Scholar : PubMed/NCBI | |
|
Garrett WS: Cancer and the microbiota. Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bultman SJ and Jobin C: Microbial-derived butyrate: An oncometabolite or tumor-suppressive metabolite? Cell Host Microbe. 16:143–145. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dalile B, Van Oudenhove L, Vervliet B and Verbeke K: The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 16:461–478. 2019. View Article : Google Scholar | |
|
Mann ER, Lam YK and Uhlig HH: Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat Rev Immunol. 24:577–595. 2024. View Article : Google Scholar | |
|
Garron ML and Henrissat B: The continuing expansion of CAZymes and their families. Curr Opin Chem Biol. 53:82–87. 2019. View Article : Google Scholar | |
|
Albillos A, de Gottardi A and Rescigno M: The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 72:558–577. 2020. View Article : Google Scholar | |
|
Xu Z, Jiang N, Xiao Y, Yuan K and Wang Z: The role of gut microbiota in liver regeneration. Front Immunol. 13:10033762022. View Article : Google Scholar | |
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T and Shin JH: Butyrate producers, ‘The Sentinel of Gut’: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol. 13:11038362022. View Article : Google Scholar | |
|
Schönfeld P and Wojtczak L: Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J Lipid Res. 57:943–954. 2016. View Article : Google Scholar | |
|
Deleu S, Machiels K, Raes J, Verbeke K and Vermeire S: Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine. 66:1032932021. View Article : Google Scholar : PubMed/NCBI | |
|
Rooks MG and Garrett WS: Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 16:341–352. 2016. View Article : Google Scholar | |
|
Wong JM, de Souza R, Kendall CW, Emam A and Jenkins DJ: Colonic health: Fermentation and short chain fatty acids. J Clin Gastroenterol. 40:235–243. 2006. View Article : Google Scholar | |
|
Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P and Lapaque N: SCFA: Mechanisms and functional importance in the gut. Proc Nutr Soc. 80:37–49. 2021. View Article : Google Scholar | |
|
Frankel WL, Zhang W, Singh A, Klurfeld DM, Don S, Sakata T, Modlin I and Rombeau JL: Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology. 106:375–380. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, et al: The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 278:11312–11319. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, et al: GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69:2826–2832. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J: Drinking vinegar, a potential adjuvant for immunotherapy of HCC? Hepatology. 77:3–5. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tan JK, McKenzie C, Mariño E, Macia L and Mackay CR: Metabolite-Sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu Rev Immunol. 35:371–402. 2017. View Article : Google Scholar | |
|
Li S, Duan Y, Luo S, Zhou F, Wu Q and Lu Z: Short-chain fatty acids and cancer. Trends Cancer. 11:154–168. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang YX, Chan AWH, Wei H, Yang X, Sung JJY and Yu J: Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut. 70:761–774. 2021. View Article : Google Scholar | |
|
Zhao S, Zhang H, Zhu H, Zhao T, Tu J, Yin X, Yang S, Zhang W, Zhang F, Zhang M, et al: Gut microbiota promotes macrophage M1 polarization in hepatic sinusoidal obstruction syndrome via regulating intestinal barrier function mediated by butyrate. Gut Microbes. 16:23775672024. View Article : Google Scholar : PubMed/NCBI | |
|
Deng M, Qu F, Chen L, Liu C, Zhang M, Ren F, Guo H, Zhang H, Ge S, Wu C and Zhao L: SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol. 245:425–437. 2020. View Article : Google Scholar | |
|
Tilg H, Adolph TE and Trauner M: Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 34:1700–1718. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Turner JR: Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 9:799–809. 2009. View Article : Google Scholar | |
|
Abreu MT: Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 10:131–144. 2010. View Article : Google Scholar | |
|
Balmer ML, Slack E, de Gottardi A, Lawson MA, Hapfelmeier S, Miele L, Grieco A, Van Vlierberghe H, Fahrner R, Patuto N, et al: The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med. 6:237ra662014. View Article : Google Scholar : PubMed/NCBI | |
|
Rui L: Energy metabolism in the liver. Compr Physiol. 4:177–197. 2014. View Article : Google Scholar | |
|
Sahuri-Arisoylu M, Brody LP, Parkinson JR, Parkes H, Navaratnam N, Miller AD, Thomas EL, Frost G and Bell JD: Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int J Obes (Lond). 40:955–963. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Karpe AV, Hutton ML, Mileto SJ, James ML, Evans C, Ghodke AB, Shah RM, Metcalfe SS, Liu JW, Walsh T, et al: Gut microbial perturbation and host response induce redox pathway upregulation along the gut-liver axis during giardiasis in C57BL/6J mouse model. Int J Mol Sci. 24:16362023. View Article : Google Scholar | |
|
Wang X, Zhang B and Jiang R: Microbiome interplays in the gut-liver axis: implications for liver cancer pathogenesis and therapeutic insights. Front Cell Infect Microbiol. 15:14671972025. View Article : Google Scholar | |
|
den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ and Bakker BM: Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-Dependent switch from lipogenesis to fat oxidation. Diabetes. 64:2398–2408. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar | |
|
Park S and Hall MN: Metabolic reprogramming in hepatocellular carcinoma: Mechanisms and therapeutic implications. Exp Mol Med. 57:515–523. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Golonka RM and Vijay-Kumar M: Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res. 149:171–255. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Q, Yang M and Chen M: Metabolic interactions: how gut microbial metabolites influence colorectal cancer. Front Microbiol. 16:16116982025. View Article : Google Scholar | |
|
Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ and Rabinowitz JD: The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27:351–361.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Astbury S, Song A, Zhou M, Nielsen B, Hoedl A, Willing BP, Symonds ME and Bell RC: High fructose intake during pregnancy in rats influences the maternal microbiome and gut development in the offspring. Front Genet. 9:2032018. View Article : Google Scholar | |
|
Song M, Li X, Zhang X, Shi H, Vos MB, Wei X, Wang Y, Gao H, Rouchka EC, Yin X, et al: Dietary copper-fructose interactions alter gut microbial activity in male rats. Am J Physiol Gastrointest Liver Physiol. 314:G119–G130. 2018. View Article : Google Scholar | |
|
Dewdney B, Roberts A, Qiao L, George J and Hebbard L: A sweet connection? Fructose's role in hepatocellular carcinoma. Biomolecules. 10:4962020. View Article : Google Scholar : PubMed/NCBI | |
|
Jang C, Wada S, Yang S, Gosis B, Zeng X, Zhang Z, Shen Y, Lee G, Arany Z and Rabinowitz JD: The small intestine shields the liver from fructose-induced steatosis. Nat Metab. 2:586–593. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Che L, Tharp KM, Park HM, Pilo MG, Cao D, Cigliano A, Latte G, Xu Z, Ribback S, et al: Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology. 63:1900–1913. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nelson ME, Lahiri S, Chow JD, Byrne FL, Hargett SR, Breen DS, Olzomer EM, Wu LE, Cooney GJ, Turner N, et al: Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat Commun. 8:146892017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Q, Zhang G, Zheng Y, Yang Y, Chen C, Xia J, Liang L, Lei C, Hu Y, Cai X, et al: SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC. Cell Death Differ. 27:1086–1104. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Canfora EE, Meex RCR, Venema K and Blaak EE: Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 15:261–273. 2019. View Article : Google Scholar | |
|
Paul B, Lewinska M and Andersen JB: Lipid alterations in chronic liver disease and liver cancer. JHEP Rep. 4:1004792022. View Article : Google Scholar : PubMed/NCBI | |
|
Lau HC, Zhang X and Yu J: Gut microbiome in metabolic dysfunction-associated steatotic liver disease and associated hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 22:619–638. 2025. View Article : Google Scholar | |
|
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, et al: Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 500:232–236. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Narushima S, Sugiura Y, Oshima K, Atarashi K, Hattori M, Suematsu M and Honda K: Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes. 5:333–339. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, et al: Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 25:1104–1109. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H, Tantawy MN, Fu A, Manning HC, et al: Acetate dependence of tumors. Cell. 159:1591–1602. 2014. View Article : Google Scholar | |
|
Lin J, Rao D, Zhang M and Gao Q: Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol. 17:62024. View Article : Google Scholar | |
|
Song Y, Lau HC, Zhang X and Yu J: Bile acids, gut microbiota, and therapeutic insights in hepatocellular carcinoma. Cancer Biol Med. 21:144–162. 2023.PubMed/NCBI | |
|
Han J, Qin WX, Li ZL, Xu AJ, Xing H, Wu H, Zhang H, Wang MD, Li C, Liang L, et al: Tissue and serum metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin Chim Acta. 488:68–75. 2019. View Article : Google Scholar | |
|
Sun Y, Zhu M, Zhao H, Ni X, Chang R, Su J, Huang H, Cui S, Wang X, Yuan J, et al: Serum fibroblast growth factor 19 and total bile acid concentrations are potential biomarkers of hepatocellular carcinoma in patients with type 2 diabetes mellitus. Biomed Res Int. 2020:17519892020. View Article : Google Scholar | |
|
Colosimo S and Tomlinson JW: Bile acids as drivers and biomarkers of hepatocellular carcinoma. World J Hepatol. 14:1730–1738. 2022. View Article : Google Scholar | |
|
Chiu M, Tardito S, Pillozzi S, Arcangeli A, Armento A, Uggeri J, Missale G, Bianchi MG, Barilli A, Dall'Asta V, et al: Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. Br J Cancer. 111:1159–1167. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jin L, Alesi GN and Kang S: Glutaminolysis as a target for cancer therapy. Oncogene. 35:3619–3625. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun HW, Yu XJ, Wu WC, Chen J, Shi M, Zheng L and Xu J: GLUT1 and ASCT2 as predictors for prognosis of hepatocellular carcinoma. PLoS One. 11:e01689072016. View Article : Google Scholar : PubMed/NCBI | |
|
Adebayo Michael AO, Ko S, Tao J, Moghe A, Yang H, Xu M, Russell JO, Pradhan-Sundd T, Liu S, Singh S, et al: Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-catenin mutations. Cell Metab. 29:1135–1150.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Y, Tang X, Ren Y, Yang Y, Song F, Fu J, Liu S, Yu M, Chen J, Wang S, et al: An RNA-RNA crosstalk network involving HMGB1 and RICTOR facilitates hepatocellular carcinoma tumorigenesis by promoting glutamine metabolism and impedes immunotherapy by PD-L1+ exosomes activity. Signal Transduct Target Ther. 6:4212021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Gan G, Wang X, Xu T and Xie W: The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 15:1258–1279. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Klement RJ: Beneficial effects of ketogenic diets for cancer patients: A realist review with focus on evidence and confirmation. Med Oncol. 34:1322017. View Article : Google Scholar | |
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H and Wang C: Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol. 13:8441422022. View Article : Google Scholar | |
|
Ringelhan M, Pfister D, O'Connor T, Pikarsky E and Heikenwalder M: The immunology of hepatocellular carcinoma. Nat Immunol. 19:222–232. 2018. View Article : Google Scholar | |
|
Zheng M and Tian Z: Liver-mediated adaptive immune tolerance. Front Immunol. 10:25252019. View Article : Google Scholar | |
|
Vinolo MA, Rodrigues HG, Nachbar RT and Curi R: Regulation of inflammation by short chain fatty acids. Nutrients. 3:858–876. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hao X, Sun G, Zhang Y, Kong X, Rong D, Song J, Tang W and Wang X: Targeting immune cells in the tumor microenvironment of HCC: New opportunities and challenges. Front Cell Dev Biol. 9:7754622021. View Article : Google Scholar | |
|
Schwabe RF and Greten TF: Gut microbiome in HCC-Mechanisms, diagnosis and therapy. J Hepatol. 72:230–238. 2020. View Article : Google Scholar | |
|
Yu LX and Schwabe RF: The gut microbiome and liver cancer: Mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 14:527–539. 2017. View Article : Google Scholar | |
|
Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI | |
|
Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H, et al: Microbial short-chain fatty acids modulate CD8(+) T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 12:40772021. View Article : Google Scholar : PubMed/NCBI | |
|
Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA and Dejong CH: Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr. 28:657–661. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R, et al: Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 68:1014–1023. 2019. View Article : Google Scholar | |
|
Lapidot Y, Amir A, Nosenko R, Uzan-Yulzari A, Veitsman E, Cohen-Ezra O, Davidov Y, Weiss P, Bradichevski T, Segev S, et al: Alterations in the gut microbiome in the progression of cirrhosis to hepatocellular carcinoma. mSystems. 5:e001532020. View Article : Google Scholar : PubMed/NCBI | |
|
Song Q, Zhang X, Liu W, Wei H, Liang W, Zhou Y, Ding Y, Ji F, Ho-Kwan Cheung A, Wong N and Yu J: Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Hepatol. 79:1352–1365. 2023. View Article : Google Scholar | |
|
Kobayashi M, Mikami D, Uwada J, Yazawa T, Kamiyama K, Kimura H, Taniguchi T and Iwano M: A short-chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells. Oncotarget. 9:31342–31354. 2018. View Article : Google Scholar | |
|
Hu Y, Setayesh T, Vaziri F, Wu X, Hwang ST, Chen X and Yvonne Wan YJ: miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther. 31:1829–1845. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma H, Yang L, Liang Y, Liu F, Hu J, Zhang R, Li Y, Yuan L and Feng F: B. thetaiotaomicron-derived acetic acid modulate immune microenvironment and tumor growth in hepatocellular carcinoma. Gut Microbes. 16:22978462024. View Article : Google Scholar : PubMed/NCBI | |
|
Mohebali N, Weigel M, Hain T, Sütel M, Bull J, Kreikemeyer B and Breitrück A: Faecalibacterium prausnitzii, Bacteroides faecis and Roseburia intestinalis attenuate clinical symptoms of experimental colitis by regulating Treg/Th17 cell balance and intestinal barrier integrity. Biomed Pharmacother. 167:1155682023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Gao H, Zhang T, Fan Y, Wu Y, Zhao X, Li Y, Wu L, Zhao H, Yang L, et al: In vitro lactic acid bacteria anti-hepatitis B virus (HBV) effect and modulation of the intestinal microbiota in fecal cultures from HBV-Associated hepatocellular carcinoma patients. Nutrients. 16:6002024. View Article : Google Scholar : PubMed/NCBI | |
|
Honda T, Ishigami M, Ishizu Y, Imai N, Ito T, Yamamoto K, Yokoyama S, Muto H, Inukai Y, Kato A, et al: Gut microbes associated with functional cure of chronic hepatitis B. Hepatol Int. 19:519–528. 2025. View Article : Google Scholar | |
|
Kim MH, Kang SG, Park JH, Yanagisawa M and Kim CH: Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 145:396–406.e1-10. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H, Rubino S, Moriyama EH, Copeland JK, Surendra A, Kumar S, et al: Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell. 158:288–299. 2014. View Article : Google Scholar | |
|
Singh V, Chassaing B, Zhang L, San Yeoh B, Xiao X, Kumar M, Baker MT, Cai J, Walker R, Borkowski K, et al: Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA Desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metab. 22:983–996. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, Lapek JD Jr, Zhang L, Wang WB, Hao S, et al: Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell. 175:679–694.e22. 2018. View Article : Google Scholar | |
|
Rajapakse J, Khatiwada S, Akon AC, Yu KL, Shen S and Zekry A: Unveiling the complex relationship between gut microbiota and liver cancer: Opportunities for novel therapeutic interventions. Gut Microbes. 15:22400312023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H and Zhou Y: Roles of the gut microbiota in hepatocellular carcinoma: From the gut dysbiosis to the intratumoral microbiota. Cell Death Discov. 11:1402025. View Article : Google Scholar : PubMed/NCBI | |
|
Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, et al: Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 36:1093322021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou P, Chang WY, Gong DA, Xia J, Chen W, Huang LY, Liu R, Liu Y, Chen C, Wang K, et al: High dietary fructose promotes hepatocellular carcinoma progression by enhancing O-GlcNAcylation via microbiota-derived acetate. Cell Metab. 35:1961–1975.e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, et al: Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 579:586–591. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Yang Y, Shao F, Meng Y, Guo D, He J and Lu Z: Acetate reprogrammes tumour metabolism and promotes PD-L1 expression and immune evasion by upregulating c-Myc. Nat Metab. 6:914–932. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, Chen F, Xiao Y, Zhao Y, Ma C, et al: Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun. 9:35552018. View Article : Google Scholar : PubMed/NCBI | |
|
Chang PV, Hao L, Offermanns S and Medzhitov R: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 111:2247–2252. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yeoh BS, Saha P, Golonka RM, Zou J, Petrick JL, Abokor AA, Xiao X, Bovilla VR, Bretin ACA, Rivera-Esteban J, et al: Enterohepatic shunt-driven cholemia predisposes to liver cancer. Gastroenterology. 163:1658–1671.e16. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Singh V, Yeoh BS, Abokor AA, Golonka RM, Tian Y, Patterson AD, Joe B, Heikenwalder M and Vijay-Kumar M: Vancomycin prevents fermentable fiber-induced liver cancer in mice with dysbiotic gut microbiota. Gut Microbes. 11:1077–1091. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zekry A and El-Omar EM: A tale of two fibers: A liver twist! Gastroenterology. 163:1495–1497. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504:451–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN and Garrett WS: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 341:569–573. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, et al: Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 132:2328–2339. 2017. View Article : Google Scholar | |
|
Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M and Gordon JI: Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA. 105:16767–16772. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM, Oscarsson J and Bohlooly-Y M: Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab. 300:E211–E220. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hu M, Eviston D, Hsu P, Mariño E, Chidgey A, Santner-Nanan B, Wong K, Richards JL, Yap YA, Collier F, et al: Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat Commun. 10:30312019. View Article : Google Scholar : PubMed/NCBI | |
|
Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, McKenzie C, Kranich J, Oliveira AC, Rossello FJ, et al: Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 18:552–562. 2017. View Article : Google Scholar | |
|
Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J and Kim CH: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8:80–93. 2015. View Article : Google Scholar | |
|
Mandaliya DK, Patel S and Seshadri S: the combinatorial effect of acetate and propionate on high-fat diet induced diabetic inflammation or metaflammation and T cell polarization. Inflammation. 44:68–79. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Xu B, Wang X, Wan WH, Lu J, Kong D, Jin Y, You W, Sun H, Mu X, et al: Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology. 77:48–64. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou CJ, Xie BL, Han HY, Wang Y, Wang YH, Hong JY, Wei YX, Liu ZG, Feng Y, Yang G and Yang PC: Short-chain fatty acids promote immunotherapy by modulating immune regulatory property in B cells. J Immunol Res. 2021:26843612021. View Article : Google Scholar : PubMed/NCBI | |
|
Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K, Whitney PG, Fernandez-Ruiz D, Dähling S, Kastenmüller W, et al: Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8(+) T cells. Immunity. 51:285–297.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kang X, Liu C, Ding Y, Ni Y, Ji F, Lau HCH, Jiang L, Sung JJ, Wong SH and Yu J: Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8(+) T cells. Gut. 72:2112–2122. 2023. View Article : Google Scholar | |
|
Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, et al: Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 11:44572020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Du W, Ni Y, Lan G and Shi G: The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol. 207:53–64. 2022. View Article : Google Scholar | |
|
Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DGW, Pires E, et al: The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 50:432–445.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luu M, Weigand K, Wedi F, Breidenbend C, Leister H, Pautz S, Adhikary T and Visekruna A: Regulation of the effector function of CD8(+) T cells by gut microbiota-derived metabolite butyrate. Sci Rep. 8:144302018. View Article : Google Scholar : PubMed/NCBI | |
|
Chriett S, Dąbek A, Wojtala M, Vidal H, Balcerczyk A and Pirola L: Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci Rep. 9:7422019. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Q, Wei A, Chen F, Chen X, Ding W, Ding Z, Wu Z, Du R and Cao W: Enhancing PPARγ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacol Res. 160:1050592020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun B, Jia Y, Hong J, Sun Q, Gao S, Hu Y, Zhao N and Zhao R: Sodium butyrate ameliorates high-fat-diet-induced non-alcoholic fatty liver disease through peroxisome proliferator-activated receptor α-mediated activation of β oxidation and suppression of inflammation. J Agric Food Chem. 66:7633–7642. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
van Vorstenbosch R, Cheng HR, Jonkers D, Penders J, Schoon E, Masclee A, van Schooten FJ, Smolinska A and Mujagic Z: Systematic review: Contribution of the gut microbiome to the volatile metabolic fingerprint of colorectal neoplasia. Metabolites. 13:552022. View Article : Google Scholar : PubMed/NCBI | |
|
Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, Dulai PS, Caussy C, Bettencourt R, Highlander SK, et al: Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 30:6072019. View Article : Google Scholar : PubMed/NCBI | |
|
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Matsumoto S, Inoue K and Muto M: Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 3:e2028952020. View Article : Google Scholar : PubMed/NCBI | |
|
Coutzac C, Jouniaux JM, Paci A, Schmidt J, Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix L, et al: Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 11:21682020. View Article : Google Scholar : PubMed/NCBI | |
|
Oliver A, Alkan Z, Stephensen CB, Newman JW, Kable ME and Lemay DG: Diet, microbiome, and inflammation predictors of fecal and plasma short-chain fatty acids in humans. J Nutr. 154:3298–3311. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R and Karampoor S: Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother. 139:1116192021. View Article : Google Scholar : PubMed/NCBI | |
|
Polyviou T, MacDougall K, Chambers ES, Viardot A, Psichas A, Jawaid S, Harris HC, Edwards CA, Simpson L, Murphy KG, et al: Randomised clinical study: Inulin short-chain fatty acid esters for targeted delivery of short-chain fatty acids to the human colon. Aliment Pharmacol Ther. 44:662–672. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Pan Y, Shao W, Wang C, Wang R, He Y, Zhang M, Wang Y, Li T, Wang Z, et al: Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling. Microbiome. 10:1952022. View Article : Google Scholar : PubMed/NCBI | |
|
Edelman MJ, Bauer K, Khanwani S, Tait N, Trepel J, Karp J, Nemieboka N, Chung EJ and Van Echo D: Clinical and pharmacologic study of tributyrin: An oral butyrate prodrug. Cancer Chemother Pharmacol. 51:439–444. 2003. View Article : Google Scholar | |
|
Donovan JD, Bauer L, Fahey GC Jr and Lee Y: In vitro digestion and fermentation of microencapsulated tributyrin for the delivery of butyrate. J Food Sci. 82:1491–1499. 2017. View Article : Google Scholar | |
|
Johnston CS, Kim CM and Buller AJ: Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care. 27:281–282. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ostman E, Granfeldt Y, Persson L and Björck I: Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr. 59:983–988. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Corrocher R, Tedesco F, Rabusin P and De Sandre G: Effect of human erythrocyte stromata on complement activation. Br J Haematol. 29:235–241. 1975. View Article : Google Scholar | |
|
Wheeler JG, Bogle ML, Shema SJ, Shirrell MA, Stine KC, Pittler AJ, Burks AW and Helm RM: Impact of dietary yogurt on immune function. Am J Med Sci. 313:120–123. 1997. View Article : Google Scholar | |
|
Gill PA, van Zelm MC, Muir JG and Gibson PR: Review article: Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther. 48:15–34. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wolever TM, ter Wal P, Spadafora P and Robb P: Guar, but not psyllium, increases breath methane and serum acetate concentrations in human subjects. Am J Clin Nutr. 55:719–722. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Rahat-Rozenbloom S, Fernandes J, Cheng J, Gloor GB and Wolever TM: The acute effects of inulin and resistant starch on postprandial serum short-chain fatty acids and second-meal glycemic response in lean and overweight humans. Eur J Clin Nutr. 71:227–233. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL and Conlon MA: Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr. 141:883–889. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Upadhyaya B, McCormack L, Fardin-Kia AR, Juenemann R, Nichenametla S, Clapper J, Specker B and Dey M: Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep. 6:287972016. View Article : Google Scholar : PubMed/NCBI | |
|
Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR and Schmidt TM: Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 4:332016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Lo EKK, Chen C, Lee JC, Felicianna Ismaiah MJ, Leung HKM, Tsang DHL and El-Nezami H: Probiotics mixture, prohep: A potential adjuvant for low-dose sorafenib in metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma suppression through modulating gut microbiota. Probiotics Antimicrob Proteins. May 23–2025.(Epub ahead of print). View Article : Google Scholar | |
|
Wang X, Liu X, Gong F, Jiang Y, Zhang C, Zhou W and Zhang W: Targeting gut microbiota for diabetic nephropathy treatment: Probiotics, dietary interventions, and fecal microbiota transplantation. Front Endocrinol (Lausanne). 16:16219682025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Z, Li W, Dong X, Chen Y, Zhang D, Wang J, Zhou L and He G: Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence. Clin Chim Acta. 559:1196862024. View Article : Google Scholar | |
|
Qusty N, Sarhan A, Taha M, Alshanqiti A, Almuteb AM, Alfaraidi AT, Alkhairi HA, Alzahrani MM, Alamry AHA, Alomry TQB, et al: The role of gut microbiota in the efficacy and side effect profile of biologic therapies for autoimmune diseases. Cureus. 16:e711112024.PubMed/NCBI | |
|
Lindstad LJ, Lo G, Leivers S, Lu Z, Michalak L, Pereira GV, Røhr ÅK, Martens EC, McKee LS, Louis P, et al: Human gut faecalibacterium prausnitzii deploys a highly efficient conserved system to cross-feed on β-mannan-derived oligosaccharides. mBio. 12:e03628202021. View Article : Google Scholar : PubMed/NCBI | |
|
Guo C, Che X, Briese T, Ranjan A, Allicock O, Yates RA, Cheng A, March D, Hornig M, Komaroff AL, et al: Deficient butyrate-producing capacity in the gut microbiome is associated with bacterial network disturbances and fatigue symptoms in ME/CFS. Cell Host Microbe. 31:288–304.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fässler D, Heinken A and Hertel J: Characterising functional redundancy in microbiome communities via relative entropy. Comput Struct Biotechnol J. 27:1482–1497. 2025. View Article : Google Scholar |