
Abstract. Hematopoietic stem cells (HSC) can be identified
by the expression of the CD34 molecule. CD34+ cells are
found in bone marrow (BM), umbilical cord blood (UCB)
and in mobilized peripheral blood (PB). CD34+ cells express
P-glycoprotein (Pgp), a product of the multidrug resistance
(MDR) gene. Pgp activity can be measured by the efflux of
the dye Rhodamine 123 (Rho 123) and can be blocked by
verapamil. Transport activity in HSC suggests that Pgp could
have a functional role in stem cell differentiation. This study
compared the number of CD34+ cells with Pgp activity
measured by efflux of Rho 123 in the hematopoietic population
obtained from different sources. Samples were analysed for
their content of CD34+ cells, and BM had a significantly higher
amount of CD34+ cells compared to UCB, mobilized PB and
normal PB. When the frequency of Rholow cells was studied
among the CD34+ population, an enrichment of cells with Pgp
activity was observed. The frequency in BM was significantly
lower than that in UCB and mobilized PB. The low retention
of Rho 123 could be modified by verapamil, indicating that
the measurements reflected dye efflux due to Pgp activity.
Although UCB and mobilized PB had a lower number of
CD34+ cells compared to BM, the total number of CD34+ cells
with Pgp activity was similar in the three tissues. The different
profiles may indicate the existence of subpopulations of stem
cells or different stages of cellular differentiation detected by
the extrusion of the dye Rho 123.

Introduction

Hematopoietic stem cells (HSC) are characterized by their
ability to self-renew and differentiate into multipotent
progenitors, which develop subsequently into myeloid and
lymphoid cells (1,2). The first quantitative in vivo study of
stem cells was conducted in 1961 by Till and McCulloch (3),
demonstrating that a single precursor cell exists in the bone
marrow (BM) of adult animals which is capable of both
extensive self-renewal and multi-lineage differentiation. HSC
can be characterized based on both phenotype and function.
The human CD34 protein is a developmental stage-specific
surface antigen expressed in hematopoietic stem and progenitor
cells, and it has been used for the selection of long-term
repopulating cells (4,5). Therefore, CD34+ cells are commonly
used in hematopoietic stem cell transplantation. CD34+ cells
are found in BM (6), umbilical cord blood (UCB) (7) and in
peripheral blood (PB) where they are extremely rare. They can
be mobilized to the periphery by means of chemotherapy
and/or cytokine treatment, such as G-CSF (granulocyte colony-
stimulating factor), increasing their numbers in the circulation
(8,9). Therefore, UCB and mobilized PB have become
important in the study of hematopoiesis, and they are being
used as alternative sources to BM for HSC transplantation
(7,10). Despite the lack of a universal protocol for the
enumeration of CD34+ cells, there is a general consensus that
reliable engraftment can occur in patients receiving at least
2x106 CD34+ cells/kg body weight for mobilized PB (11,12),
0.8-1.7x105 CD34+ cells/kg for UCB (13,14), and 0.5-2x106

CD34+ cells/kg for BM (12,15). It is not clear, however, if
CD34+ cells from all of these sources represent the same type
of cell.  

Another functional and phenotypical method of enriching
HSC exploits the fact that some cells have evolved a cellular
protection mechanism against toxic metabolites and xeno-
biotics. This mechanism involves the expression of efflux
pumps that belong to the ATP-binding cassette (ABC) super-
family of membrane transporters (16). The best studied
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transporter, P-glycoprotein (Pgp or ABCB1), is a 170-kDa
transmembrane glycoprotein (17) encoded by the multidrug
resistance 1 (MDR 1) gene (18,19). Pgp acts as an ATP-
dependent efflux pump that prevents the accumulation of
many natural substances and anticancer drugs. MDR 1 gene
expression is frequently observed in different human tumors
and correlates with resistance to chemotherapy (20). In
addition to neoplastic cells, a variety of normal human tissues
(kidney, colon, blood-brain barrier, liver and hematopoietic
tissue) are known to express Pgp at different levels (21), and
it is thought to play an important role in removing toxic
metabolites from cells (22). In the hematopoietic compartment,
Pgp is expressed by peripheral blood lymphocytes, especially
CD56+ natural killer and CD8+ cytotoxic T cells, as well as
by CD34+ HSC (23,24). Several lines of evidence suggest that
Pgp expression is functionally conserved in HSC (23-25).
HSC can be identified based on their ability to efflux
fluorescent dyes, such as Rhodamine (Rho) 123 (26). Rho 123
is a known substrate for Pgp and has been used extensively
as an indicator for Pgp activity (27,28). This transporter
molecule can be modulated by a series of substances known as
Pgp reversers. Among these the first studied was the calcium-
channel inhibitor, verapamil (VP), which blocks Pgp function
(29). Transport activity in HSC suggests the possibility that
Pgp could have a functional role in stem cell regulation (30).
Indeed, other studies have demonstrated that stem cell
populations can differ in their ability to accumulate Rho 123
and that this dye can be used to define functionally distinct
subpopulations of primitive stem cells (31-33). It was also
reported that the hematopoietic population that expresses CD34
and retains low levels of Rho 123 is responsible for the long-
term repopulation (31,33,34). The exact phenotype of HSC is
still unknown, and additional approaches to further purify HSC
can lead to a better characterization of the behavior of these
cells from different sources. The aim of the present study was
to compare the amount of CD34+ cells with Pgp activity,
measured by efflux of Rho 123, in the hematopoietic
population obtained from different sources.

Materials and methods

Samples. Human hematopoietic cells from BM (n=14), UCB
(n=11), normal PB (n=5) and mobilized PB (n=8, following
10 μg/kg/day of G-CSF-filgrastim treatment for 5 days) of
healthy donors were obtained from the Instituto Nacional de
Câncer (INCA). This study had the informed consent from
the healthy donors, and the protocol was approved by the
local ethics committee. 

Rhodamine 123 efflux assay and immunophenotyping. The P-
glycoprotein activity was determined by means of Rho 123
(Sigma) efflux, as this fluorescent dye is a substrate for Pgp
(27,28). Aliquots of cell suspension (1x106 cells/ml) were
incubated with 200 ng/ml of Rho 123 dye in the presence or
absence of the Pgp inhibitor, verapamil (VP) (Sigma) at a
concentration of 10 μM for 30 min at 37˚C in a humidified
atmosphere of air and 5% CO2. After washing, cells were
incubated in a Rho 123-free medium supplemented with 10%
foetal bovine serum (Gibco), in the presence or absence of VP
for 90 min. Finally, cells were washed and incubated with

anti-CD34 phycoerythin (PE)-labeled monoclonal antibody
(Becton Dickinson) for 30 min at 4˚C combined with anti-
CD45 Peridinin chlorophyll protein (PerCP)-labeled
monoclonal antibody (Becton Dickinson) (the pan-leukocyte
marker CD45 is differentially expressed in the leukocyte
subpopulations). Then, the cells were resuspended in 1 ml of
lysing solution (for total lyses of erythrocytes) for 1 min,
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Figure 1. Detection of CD34+ cells. The first stage (A) involved gating
CD45+ cells, which was followed (B) by analyzing the CD34+ population
among the CD45+ cells. The third stage (C) involved gating the CD45low to

intermediate population among CD34+/CD45+ cells. The last stage (D) refers to
the characteristic light scatter properties of the population gated in C.

Figure 2. Percentage of CD34+ cells present in different sources of stem
cells. BM, bone marrow (n=14); UCB, umbilical cord blood (n=11); mob PB,
peripheral blood following treatment with G-CSF (n=8) and n PB,
peripheral blood without mobilization (n=5). The dots represent different
individuals, and the horizontal line, the median value. 
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washed and resuspended in phosphate-buffered saline
containing 0.1% sodium azide and 0.5% bovine serum
albumin. Cells were used for the analysis of antigen expression
and for studies of Pgp activity.

Flow cytometric study. Data acquisition and analysis were
performed using a FACScalibur (Becton Dickinson) equipped
with a 488-nm argon laser. To investigate dye efflux in
CD34+/CD45+ cells, this cell subset was further identified
using multiple gating methods, according to the ISHAGE
protocol for enumeration of CD34+ HSC (35). CD34+ cells

are rare events. A gating strategy that uses light scattering
parameters and CD34/CD45 fluorescence aids ensures
accurate identification and enumeration. From the gated CD34/
CD45 population, the CD34+ cells were identified in a CD34
vs SSC dot plot (Fig. 1). Rho 123 efflux was calculated based
on the percentage of dye-effluxing cells in the VP-free
experiment, compared with cells treated with VP.

Statistical analysis. The Mann-Whitney non-parametric test
was performed to assess the statistical differences between
groups, where p-values ≤0.05 were considered statistically
significant.

Results

Samples from different sources were analysed for their content
of CD34+ cells. The median values of CD34+ cells were 1.48%
for BM, 0.48% for UCB, 0.67% for mobilized PB and 0.03%
for normal PB (Fig. 2, Table I). BM had significantly higher
numbers of CD34+ cells compared to UCB (p=0.0001),
mobilized PB (p=0.0002) and normal PB (p=0.0001). There
was no difference between UCB and mobilized PB (p=0.27),
but normal PB had less CD34+ cells compared to UCB
(p=0.0009) and mobilized PB (p=0.0016).

The next step involved establishing the frequency of cells
showing Pgp transport activity, i.e., accumulation of low
amounts of the dye (Rholow). The median values obtained were
6.14% among BM cells, 9.83% in UCB, 3.91% in mobilized
PB and 12.87% in normal PB (Fig. 3). Statistical analysis
indicated that there was no difference between BM and UCB
(p=0.14), however, BM had significantly more cells compared
to mobilized PB (p=0.02) and less cells compared to normal
PB (p=0.007). When the proportion of UCB cells was
compared, there was a significant difference between this
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Table I. Comparison of the percentage of CD34+ cells present
in the different sources.
–––––––––––––––––––––––––––––––––––––––––––––––––

Source
–––––––––––––––––––––––––––
BM UCB mob PB n PB

–––––––––––––––––––––––––––––––––––––––––––––––––
% CD34+ cells/ 1.48 0.48 0.67 0.03
total leukocytes

% Rholow cells/ 26.20 71.11 61.55 56.92
CD34+ cells

% of cells among 0.39 0.34 0.41 0.02
leukocytes which are CD34+

and Rholow simultaneously
––––––––––––––––––––––––––––––––––––––––––––––––
Results are expressed as the median of the frequency (%) among
the cells of different sources. BM, bone marrow (n=14); UCB,
umbilical cord blood (n=11); mob PB, peripheral blood following
treatment with G-CSF (n=8) and n PB, peripheral blood without
mobilization (n=5).
–––––––––––––––––––––––––––––––––––––––––––––––––

Figure 3. Percentage of cells with Pgp activity (Rholow) present in different
sources of stem cells. BM, bone marrow (n=14); UCB, umbilical cord blood
(n=11); mob PB, peripheral blood following treatment with G-CSF (n=8)
and n PB, peripheral blood without mobilization (n=5). The dots represent
different individuals, and the horizontal line, the median value. 

Figure 4. Percentage of CD34+/Rholow cells present in different sources of
stem cells. BM, bone marrow (n=14); UCB, umbilical cord blood (n=11);
mob PB, peripheral blood following treatment with G-CSF (n=8) and n PB,
peripheral blood without mobilization (n=5). The dots represent different
individuals, and the horizontal line, the median value. 
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population and mobilized PB (p=0.03) but not between UCB
and normal PB (p=0.66). Mobilized PB had a significantly
lower number of Rholow cells compared to normal PB
(p=0.003). 

Mature cells such as CD8 lymphocytes and NK cells have
high Pgp activities, therefore it was important to establish the
amount of Rholow cells among the immature population. When
the frequency of Rholow cells was studied among the CD34+

population (Fig. 4, Table I) it was possible to observe a clear
enrichment of cells with Pgp activity; in this case, 26.20% in
the BM, 71.11% in UCB, 61.55% in mobilized PB and
56.92% in normal PB. The frequency in the BM was signifi-
cantly lower than that in the UCB (p=0.0001) and mobilized
PB (p=0.0002). When UCB was compared against mobilized
PB (p=0.44) and normal PB (p=0.14) no significant difference
was observed. 

Our results of Rho 123 accumulation and efflux, used to
determine Rholow cells, were based on the amount of extrusion
that could be blocked by the Pgp inhibitor verapamil (Fig. 5)
indicating that differences in the intensity of Rho 123
fluorescence were genuinely due to Pgp activity. 

Our data suggest that not all CD34+ cells have Pgp activity.
Furthermore, although UCB and mobilized PB had a lower

number of CD34+ cells compared to BM, the total amount of
CD34+ cells with Pgp activity was similar in the three tissues
(Table I). The different profiles may indicate the existence
of subpopulations of stem cells or different stages of
cellular differentiation detected by the extrusion of the dye
Rho 123.

Discussion

The study of hematopoietic stem cells is limited by the lack of
specific markers for HSC. Stem cell populations can be highly
enriched by a variety of methods that involve cell surface
marker expression or functional characteristics. One of these
methods involves the use of the fluorescent dye Rho 123 (26),
known as a Pgp substrate. In the current study we investigated
whether Rho 123 staining in combination with CD34 could
be useful in the identification of distinct populations of HSC
of the BM, UCB and mobilized PB.

The leukocytes obtained from different sources were
analysed with regard to CD34 expression, and the proportion
of CD34+ cells obtained from the different sources (BM, UCB,
mobilized and normal PB) were in accordance with that
described by other authors (8,35-37). 
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Figure 5. Rho 123 accumulation in CD34+ cells from different sources of stem cells. BM, bone marrow; UCB, umbilical cord blood; mob PB, peripheral
blood following treatment with G-CSF and n PB, peripheral blood without mobilization. (1) Auto-fluorescence of cells without Rho 123; (2) cells incubated
with 200 ng/ml of Rho 123 and left to extrude the dye and (3) cells incubated with 200 ng/ml of Rho 123 and the Pgp inhibitor verapamil (10 μM). This result
is a representative experiment of all the samples tested.
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When the frequency of Rholow cells was studied among the
CD34+ population of the BM, mobilized and normal PB, our
results were consistent with other studies (23,31,38,39). It
has been reported (38,39) that CD34+ cells from mobilized
PB retain less Rho 123 than those from the BM. A similar
trend was observed by us, with a clear difference between the
groups. Furthermore, we observed a significant difference
between UCB and BM CD34+ cells. However, UCB CD34+

cells displayed an increased capacity of Rho 123 extrusion,
much higher than that reported by other groups (32,40). This
discrepancy may be a reflection of the time left for Rho 123
extrusion. Zijlmans et al (26) described that increasing the
time of extrusion leads to an augmentation of the proportion
of Rholow cells. On the other hand, Hao et al (41) and
Mayani et al (42) reported an increased proliferative capacity
in CD34+ UCB cells compared to BM. Their results and ours
strongly indicate that there are significant functional differences
between these two populations. Using different assays, various
studies have reported the increased engrafting capacity of
UCB cells (43-45). 

A number of studies have demonstrated that the hemato-
poietic population that expresses CD34 and retains low levels
of Rho 123 is responsible for long-term repopulation
(31,33,34). Low levels of Rho 123 retention could not only
reflect extrusion of the dye through Pgp activity (27,28), but
also a quiescent state of the cells. The dye Rho 123
accumulates in the mitochondria (46) and, therefore, its
retention is also a reflection of mitochondria number and
activity, explaining why resting cells accumulate less dye. In
the present study, the low retention of Rho 123 was able to
be modified by the Pgp inhibitor, verapamil, indicating that
what was being measured was dye efflux and not mitochondria
function.

These results indicate that Rho 123 staining can be used
in combination with CD34 antigen to obtain subpopulations
of hematopoietic progenitors. Thus, a combination of
Rhodamine efflux and phenotypic selection provides an
efficient way to enrich immature cells, and these enriched
subpopulations should allow us to further characterize the
biology and clinical relevance of HSC. 
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