
Abstract. The clinical diagnosis of cutaneous melanoma
always calls for histological confirmation. In addition to the
recognition of the classic aspects of the neoplasm, immuno-
histochemistry is determinant, in particular in the assessment
of the size of the replicative compartment. Generally, the
proliferation rate is indicative of the neoplastic progression
and is related to the clinical growth rate of the neoplasm. It
allows to distinguish high risk melanomas showing a high
growth rate from those of lower malignancy associated
with a restricted growth rate. In melanoma, the recruitment
and progression of neoplastic cells in the cell cycle of
proliferation have lost some of their controls that are normally
processed by a series of key regulatory molecules. In addition,
the apoptotic pathway counteracting any hyperproliferative
activity is released of the dependency of specific regulated
molecular mechanisms. This review summarizes the current
knowledge on key molecular components involved in the
deregulation of the growth fraction, cell proliferation and
apoptosis in melanocytic neoplasms. The implication of
cyclins and of the mitogen-activated protein kinase pathways
are scrutinized. The involvement of neoplastic stem cells in
the metastatic process is also discussed.
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1. Introduction

Human malignant melanoma (MM) is the leading cause of
skin cancer death in Caucasians from Western societies (1,2).
The traditional classification and staging of sporadic MM
rely on the combination of gross clinical and microscopic
aspects (3,4). In some instances, the distinction with other
atypical melanocytic neoplasms, and the staging of MM may
prove to be difficult or uncertain (5). The refinement of such
assessments benefit from complementary immunohisto-
chemical investigations. The current progress in molecular
biology and morphology brings further information which
helps resolve a series of translational investigations (6-15). In
particular, it appears that amplifier proliferating neoplastic
melanocytes as well as melanocytic stem cells participate in
the neoplastic initiation and evolution.

Basically, most MM evolve through the so-called radial
growth phase encompassing slow-growing in situ and micro-
invasive malignancies in which the cure rate is high. Despite
a shift toward earlier recognition of melanoma, by the time of
diagnosis most MM have evolved to a point, known as vertical
growth phase or tumorigenic melanoma, characterized by a
rapid growth rate. In these neoplasms, cure is uncertain, and
prognosis depends upon certain attributes of the neoplasm
and the host. 

The MM neoplastic progression appears correlated with the
enlargement of the germinative compartment. The proportion
of neoplastic cells engaged in the cell cycle of proliferation is
increased as well.

Recent advances have been made in the understanding of
genetic and epigenetic alterations found in sporadic MM.
The altered genes encode regulatory components of the cell
cycle. The cell signalling pathways affected by these genes
and their biological outcomes support a model in which MM
progression requires changes initiating clonal expansion,
overcoming cell senescence and reducing apoptosis (16). The
issue is the initiation of a fast-growing vertical growth phase
in an expansile proliferative pattern with subsequent spreading
in an overt metastatic process. This condition contrasts with
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the model of accretive growth found in the radial growth
phase.

2. Growth fraction in melanocytic neoplasms

There is ample evidence that the size of the MM germinative
compartment is indicative of the neoplastic progression
(6,8,17-26). A landmark study was performed 25 years ago
using incorporations of tritiated thymidine (17). The MM
thickness appeared correlated with the proportion of neoplastic
cells in the S phase of proliferation. These findings were
confirmed by other observations identifying the proliferation
marker Ki-67 which is a nuclear antigen expressed in all
active phases of the cell cycle of proliferation (G1, S, G2 and
M), but absent in the resting phase (G0). Ki-67 immuno-
labeling was positive in <5% of nevocytes in most melanocytic
nevi, but it commonly increased up to 15% in melanocytomas
and it reached 15-30% or more in MM (3,7,13,14,20,23).
Accordingly, there are two main clinical applications for
using proliferation markers in this field, namely for distin-
guishing melanocytic nevi from MM, and for estimating the
clinical prognosis in MM patients (10,23-26).

A stochastic relationship seems to exist between the MM
growth fraction and tumor vascularity (27). However, clinically
growth-stunted MM appeared to be typically associated with
a poor blood vasculature (28). From these findings, it was
inferred that the extent of the blood microvasculature and the
size of MM growth fraction were mainly correlated in cases
with limited angiogenesis.

The MM growth fraction appears to be influenced by the
intratumoral and peritumoral infiltration by Factor XIIIa-
positive dendrocytes (21,29). There is circumstantial evidence
linking the density of Factor XIIIa-positive dendrocytes
and a low proliferative rate in MM cells. The biological and
molecular mechanisms supporting these findings remain
unsettled.

Globally, the findings on MM cell proliferation are in line
with the clinical concept distinguishing MM with high and
low growth rates, respectively, bearing different prognoses
(30). A huge number of primary and secondary molecular
changes have been reported in advanced MM compared to
melanocytes (16). A primary event in neoplastic progression is
clonally inherited, contributing to the eventual malignancy. It
occurs independently rather than as a secondary result of
some other oncogenic change. Such event is either genetic
(gene mutation, deletion, amplification or translocation), or
epigenetic (a heritable change other than in the DNA sequence,
generally transcriptional modulation by DNA methylation
and/or by chromatin alterations such as histone modification).
In clonal evolution of cancer, such a primary event initiates a
new, more progressed, clone with a growth advantage over
its neighbours, or an alternative selective advantage such as
migration (16,31). The products of genes subject to recurrent
primary clonal alterations in MM correspond to activated
or amplified genes, and conversely to other inactivated or
deleted genes. Hundreds of secondary changes have been
described in MM (32). Information on MM genomics and
epigenetic changes are accumulating (33-36). However, there
are still limitations to the interpretations (16). On the one
hand, genes have often been tested only for mutations,

rather than other events like deletion or amplification, so
frequencies of aberration may be underestimated. On the
other hand, some studies use only cell lines while others use
only uncultured lesional tissues, and the two commonly
provides different results.

3. Cyclins in melanocytic neoplasms

In the life of cells, there are three optional pathways: cells
may continuously proliferate, stay alive without further
divisions, or die by apoptosis. The decision as to whether a
proliferating cell is to proceed through the cycle is taken at
two cardinal points, also referred to as check-points: the
commitment to DNA replication at a point termed restriction
point and the commitment to mitotic division at the end of G2.
Throughout G1 phase, growth factors may influence the fate of
cells by binding to specific surface receptors, which in turn
activate a signalling cascade that regulates the transcription
of both immediate and delayed early response genes. Tran-
scription of these genes results in either differentiation or
proliferation, the latter being promoted by convergence of
receptor-mediated signals on to a ‘clockwork’ mechanism
that ensures an orderly progression through the cell cycle.
Once cells have entered S phase, they become refractory to
growth factor-induced stimuli, the subsequent cell cycle
events being governed by an intrinsic programme regulating
the progression through mitosis. Heteroprotein dimers
consisting of a protein kinase catalytic subunit and cyclin as
a regulatory protein constitute the basic clockwork of cell
cycle progression.

Similarly to many other malignancies, MM cells progress
through the deregulation of the mechanisms controlling
proliferation and escape from programmed cell death (37).
Each step in the cell cycle of proliferation is normally
controlled by the expression of a precise set of proteins. A
series of cyclin proteins bind and activate cyclin-dependent
kinases driving the various phases of the cell cycle (38). The
diverse cyclins C, D1 (CCND1 gene product), D2, D3 and E,
as well as CDK2, p16INK4a, p21CIP1 and p27KIP1 drive the cell
cycle of proliferation in its progression from G1 to S phase
(38). Cyclin A normally regulates the passage from S to G2

phase, and cyclin B from G2 to mitosis (38). 
Cyclin A, B, D1 and D3 are rarely expressed in melanocytic

nevi. By contrast, they are commonly present in MM (38). An
inverse correlation was reported between cyclin A expression
and the disease-free survival in some MM (39). The cyclin B
and D1 prognostic relevance remains unsettled in MM. It
should, however, be noted that the mutation GG-CCND1
(A8706-CCND1 polymorphism) in peripheral blood cells
represents a genetic predisposition to develop MM. Increased
cyclin D3 was reported to be associated with early relapse
and decreased survival in thin MM but not in thick MM (40).
Cyclin E expression appeared to be inversely related with
survival of MM patients (12,41).

Cyclin-dependent kinase inhibitors downregulate progress
through the cell cycle of proliferation (12,38). For instance,
p16 normally inactivates cyclin D/cdk4 complexes in most
melanocytic nevi (42-44). By contrast, p16 expression is
lost in the majority of invasive, recurrent and metastatic MM
(42-45). This feature is associated with decreased survival,
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although it is not yet proven to be an independent parameter
(38). 

The p21 protein inhibits cyclin/cdk complexes and
binds to PCNA, thus inhibiting DNA polymerase ‰Ô. It is
acknowledged that p21 is rarely present in melanocytic nevi
but it shows increased immunostaining in MM (38). Any
relationship between increased p21 immunoreactivity and the
disease outcome is unsettled. 

The p27 molecule inhibits the cyclin D/cdk4 and cyclin
E/cdk2 complexes, thus preventing the cell cycle progression
from G1 to S phase (46,47). A clear distinction is not estab-
lished in p27 expression between melanocytic nevi and MM.
Thicker MM, but not thinner MM, showing <5% labeling
index for p27 might be at increased risk for early relapse.
However, the extent of p27 expression has no effect on the
overall survival.

The gene encoding p53 protein is the most commonly
mutated gene in cancer. The normal wild-type p53 protein is
a 53-kDa tumor suppressor protein blocking the cell cycle at
G1 and G2 allowing DNA damage can be repaired (48). In
addition, it induces the expression of p21 that contributes
to inhibit DNA synthesis. Mutations of the p53 gene lead
to an abnormal p53 protein unable to inhibit the cell cycle.
As the normal p53 protein has a very short half-life, it is
not detected using immunohistochemistry. By contrast, the
mutated p53 protein has a longer half-life and is readily
disclosed using immunohistochemistry. Accordingly, p53
protein is not revealed in most melanocytic nevi but is
present in its mutated form in 25-60% of MM (10,49-51).
Overexpression of p53 has been shown in MM originating
from a precursor p53-negative melanocytic nevus (50).
Some melanocytomas show about 10% cell positivity for
p53 protein (52). A correlation was reported between p53
expression and the increased MM thickness (53). However,
no correlation was evidenced between p53 immunoreactivity
and likelihood of metastasis, recurrence and global MM
survival.

HDM2 is a 90-kDa zinc finger protein that binds to the
transcription activation domain of the p53 gene (54,55).
Increased HDM2 immunostaining might be an independent
prognostic factor paradoxically associated with decreased
recurrence rates and increased survival in MM (55). 

4. Mitogen-activated protein kinase pathway in melanocytic
neoplasms

The mitogenic intrinsic signalling pathway is representative
of the mitogen-activated protein kinase (MAPK) cascade,
including MAPK kinase (MEK), extracellular signal-regulated
protein kinase (ERK), p38 MAPK and Jun NH2-terminal
protein kinase (JNK) activation pathways (56). MAPK
activation results in the induction of transcription factor
AP-1, which regulates the expression of many genes involved
in the regulation of cellular growth and differentiation. The
MAPK signal transduction pathway is altered in MM (57).
The RAS/RAF/MEK/ERK signal transduction pathway is
a conserved pathway that regulates cell growth. Signalling
through this pathway is elevated in approximately 30% of
human cancers. RAS is mutated in approximately 15% of
human cancers.

MAPK signalling is initiated at the cell membrane, either
by receptor tyrosine kinase (RTK) binding ligands, or integrin
adhesion to the extracellular matrix. This latter event activates
the ras GTPase at the cell membrane inner surface (58,59).
GTP-bound ras binds effector proteins, leading to cell pro-
liferation, differentiation, and survival through activation of
various signalling pathways (58). It is considered that RAF and
phosphatidylinositol 3-kinase (P13K) are the best characterized
ras effector proteins. 

The RAF protein family represents serine/threonine kinases.
It includes three proteins, A-RAF, B-RAF and C-RAF
(corresponding to raf-1) coded by unique genes (60-62). RAF
is the primary link between ras and the MAPK pathway. It
activates the cascade of proliferative or survival signals
through phosphorylation of a variety of cytoplasmic targets
(10,63). RAF has long been identified as a proto-oncogene
(64). B-RAF is mutated in about 7% of human cancers, but
this mutation affects 45-70% of MM and some melanocytic
nevi as well (60,65,66). This pathway normally regulates
cell growth, survival, and invasion. Presence of a B-RAF
mutation in MM is statistically associated with some
characteristics including a thin neoplasm and a low Ki-67
index (65). Such MM occur more frequently in young adults,
on skin areas sporadically exposed to sunlight but heavily
exposed during infancy (29,64). By contrast, fast growing
MM rarely contain B-RAF mutations. 

Over 50 types of B-RAF mutations are located within the
kinase domain, with a single substitution (V600E) accounting
for 80% (60,67,68). The V600E mutant possesses 10.7-fold
kinase activity compared to wild-type B-RAF (60). The
presence of activating B-RAF mutations was reported in
up to 82% of melanocytic nevi, suggesting activation of the
MAPK pathway is a necessary event for MM development,
but it is not sufficient for malignant transformation (65).
The activated proteins stimulate constitutive signalling
growth of the cells and protect them from apoptosis. When
the activity of mutant B-RAF is blocked, cells stop growing
and die, suggesting that B-RAF is a valuable and important
therapeutic target for cancer treatments. The N-ras and B-RAF
mutations observed in MM demonstrate characteristic UV
radiation-induced changes, and the target of UV injury
leading to such mutations remains unclear (60,69). In addition
to MM, B-RAF mutations have been described in a number
of other malignancies (57). 

A-RAF, B-RAF and C-RAF make up the RAF family of
serine/threonine kinases. All RAF family members activate
the MAPK pathway, although each isoform possesses a
distinct expression profile with unique phosphorylation
targets and signalling effects (61). Since most melanocytic
nevi possess activating mutations of B-RAF, a single B-RAF
mutation is not sufficient to initiate human MM in vivo (65).
Histopathologic assessments suggest that the majority of MM
evolve de novo, without a precursor melanocytic lesion (69).
In general MM originating from a melanocytic nevus exhibit
both a B-RAF mutation or are both negative for the mutation
(70,71), supporting a possible evolutionary event. However,
a single mutation activating B-RAF is not sufficient to induce
malignancy. Rather a single B-RAF mutation appears to be a
senescence factor in melanocytes and in melanocytic nevi.
Oncogenesis is apparently initiated when a second event
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occurs, for instance the inactivation of the tumor suppressor
gene p16.

The genome-wide alterations in DNA copy number, and
B-RAF and N-ras mutations in primary human MM suggest
the role of B-RAF kinase in MM development and MM
heterogeneity (10). Increased B-RAF mutations are found in
nodular and superficial spreading MM, compared with acral
lentiginous MM and lentigo maligna (72-74). Mucosal MM
apparently have infrequent B-RAF mutations (73), suggesting
UV-associated MM might evolve from a divergent set of
genetic events from UV-protected sites. A direct relationship
possibly exists between UV radiation and B-RAF mutation.
Indeed, MM with the highest degree of B-RAF mutations
were those associated with intermittent sun exposure (72).
This relationship reveals a more profound correlation of UV
exposure to B-RAF/N-ras mutations and additional genetic
events in MM (38). The genome-wide changes in DNA copy
number and B-RAF/N-ras mutational status was determined
in different types of primary MM. The majority of cutaneous
MM developed on intermittent sun-exposed skin showed
mutations in B-RAF or N-ras (59 and 22%, respectively). MM
without either mutation often had increased copies of CDK4
or CCND1. Furthermore, no MM with CDK4 amplification
manifested concomitant N-ras or B-RAF mutations, or
CCND1 amplification. This finding suggests overlapping
functions of the MAPK pathway and the CCND1/CDK4
pathways with independent oncogenic functions in each
MM. The overall incidence of B-RAF or N-ras mutations
was significantly lower in MM developed on chronically sun
damaged skin (CSD-MM) and non-exposed sites, with B-RAF
and N-ras mutations being mutually exclusive. The MM
thickness had no influence on frequency of mutation (B-RAF
or N-ras) or amplification (CCND1 or CDK4). Deletion of
CDKN2A was prominent in mucosal and acral MM, which
also had the greatest incidence of CDK4 amplifications.
However, no CDK4 amplifications were present in samples
with homozygous CDKN2A deletions. Acral and mucosal
MM demonstrated the greatest number of genomic events. In
CSD-MM, B-RAF mutations were rare and CCND1 copy
gain predominated (75). Conversely, in MM without chronic
sun damage, mutant B-RAF and chromosome 10 (site of
PTEN) loss were both common. This genetic classification
might help to identify MM with high accuracy. 

An important link between germline mutations of the
melanocortin-1 receptor (MC1R) and B-RAF mutations
has been suggested (76). Although MC1R variants were
identified as risk factors for MM (77), the precise link to sun
exposure and genetic events in primary MM remains unclear.
MC1R variant alleles were found to be associated with MM
risk, specifically in MM developed outside sun-damaged skin.
This risk was associated with neoplasms harbouring B-RAF
mutations suggesting that germline events can largely influ-
ence genetic events leading to tumorigenesis in response to
environmental UV exposures. Thus, the heterogeneous nature
of primary MM and their genetic and environmental basis are
being clarified due to a simple subclassification (33).

The enhancement of mitogenic activity in skin cancers,
is possibly reflected by the difference of intrinsic mitogenic
signalling pathways (78). A signalling pathway involves
activation of the MAPK family, whose various members play

a complex role in the determination of cell growth. It appears
that p38 MAPK is activated by UV irradiation, cytokines,
hormones and some stresses such as osmotic shock and heat
shock. It has a prognostic value in some malignancies (79).

5. Stem cells in melanocytic neoplasms

Cancer stem cells (CSC) have been identified in hematological
malignancies and several solid cancers. Similar to physiological
stem cells, CSC are capable of self-renewal and differentiation,
and have the potential for indefinite proliferation, a function
through which they may cause tumor growth. Although
conventional anti-cancer treatments might eradicate most
malignant cells in a tumor, they are potentially ineffective
against chemoresistant CSC, which may ultimately be
responsible for recurrence and progression. MM shows tumor
heterogeneity, undifferentiated molecular signatures, and
increased tumorigenicity of MM subsets with embryonic-like
differentiation plasticity. This strongly suggests the presence
and involvement of MM stem cells in the initiation and
propagation of this malignancy (15,80-85).

6. Apoptosis in melanocytic neoplasms

Apoptosis is quite different from necrotic cell death and
represents one major mechanism involved in reducing the
expansile growth of melanocytic neoplasms. As a functional
counterpart of mitosis, apoptosis plays a crucial role and is
normally firmly regulated. Apoptosis is deranged in melano-
cytic neoplasms when the components and regulators of the
cellular apoptotic machinery are mutated or present in inap-
propriate amounts. Some MM cells undergo self-destruction
through programmed cell death, i.e. apoptosis (86). In these
neoplams, the molecular components of apoptosis include
positive (pro-apoptotic) and negative (anti-apoptotic) regulators
(14,87). The former include p53, Bid, Noxa, PUMA, Bax,
TNF·, TRAIL, Fas/FasL, PITSLRE, interferons (IFN), and
c-KIT/SCF. The latter anti-apoptotic regulators include
Bcl-2, Bcl-XL, Mcl-1, NF-κB, survivin, livin, and ML-LAP
(50,53,83). Alternatively, some molecules such as TRAF-2,
c-Myc, endothelins, and integrins may have either pro- or
anti-apoptotic effects. Some of these molecules are of potential
therapeutic use, such as: a) p53, which influences resistance
to chemotherapy; b) Mcl-1 and Bcl-XL, which can override
apoptosis; c) TRAIL, which has selective fatal effects on
neoplastic cells; d) downregulated NF-κB sensitizes cells to
TRAIL and TNF; e) PITSLRE kinases, whose alteration
appears to result in Fas resistance; f) interferons, which
sensitize cells to other factors; and g) survivin that inhibit
apoptosis.

Impaired regulation of apoptosis is known to be associated
with the development of various forms of cancer. Fas binding
to its ligand, Fas ligand (Fas-L) is expressed by MM cells
and has been suggested to play a role in MM escape from
immune surveillance (87). Apoptotic activity was found to be
minimal in MM and moderate in Spitz melanocytomas. In
contrast, melanocytic nevi demonstrated significant levels of
apoptosis in the deep parts of the tumor. Fas was found to be
expressed by all Spitz melanocytomas, most melanocytic
nevi and approximately half of the MM. Fas expression was
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also significantly more pronounced in Spitz melanocytoma
cells as compared with the two other neoplasms. Fas-L was
shown to be more expressed and more frequent in MM cells
as compared to nevus cells.

6. Conclusion

The links between the clinical evolution, cell proliferation/
apoptosis and key molecular alterations are progressively
elucidated in MM. These events represent key factors
supporting the distinction of different MM types, including
the growth-stunted, the slow-growing accretive growth and
the fast-growing expansile proliferative neoplasms.
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