
Abstract. The impact of chromosome architecture in the
formation of chromosome aberrations is a recent finding of
interphase directed molecular cytogenetic studies. Also
positive correlation of translocation frequencies and spatial
proximity of chromosomes was described. Thus, disease
specific chromosomal translocations could be due to tissue
specific genomic organization. However, no three-dimensional
interphase fluorescence in situ hybridization (FISH) studies
for the nuclear architecture of bone marrow (BM) cells have
previously been done. In this study, BM of three secondary
acute myelogenous leukemia (AML) cases with trisomy 8
and otherwise normal karyotype were evaluated. Bone
marrow cells of one AML and one ALL (acute lymphoblastic
leukemia) case, peripheral blood lymphocytes and human
sperm, all of them with normal karyotype, served as controls.
Multicolor banding (MCB) probes for chromosomes 8 and 21
were applied in suspension-FISH (S-FISH). Interestingly, in
myeloid bone marrow cells chromosomes 8 (di- and trisomic)
and 21 tended to co-localize with their homologue chromo-
some(s), rather than to be separated. Thus, the co-localization
of chromosomes 8 and 21 might promote a translocation
providing a selective advantage of t(8;21) cells in AML-M2.
In summary, the concept that tissue specific spatial proximity
of chromosomes leads to enhanced translocation frequencies
was further supported.

Introduction

In the interphase nucleus, chromosomes are located in specific
regions, which are called ‘chromosome territories’ (1-5). In this

connection, chromosome size and gene density are discussed to
have an impact on the nuclear position of chromosomes (6-10).
Furthermore, non-random positioning in interphase nuclei
is known to be of importance for genomic stability and
formation of chromosome aberrations. Tissue specificity of
chromosomal translocations could be due to tissue specific
genome organization (11,12) and a positive correlation between
spatial proximity of chromosomes/genes in interphase nuclei
and translocation frequencies was shown (5,10-13). Three-
dimensional (3D) fluorescence in situ hybridization (FISH)
analysis has became a major tool for studying the higher
order chromatin organization in the cell nucleus (15-21).

Trisomy 8, the most frequently occurring numerical
chromosome aberration in acute myeloid leukemia (AML)
and myelodysplastic syndromes (MDS), can be associated
with other karyotypic abnormalities or occur as sole abnor-
mality. A variety of hematological diseases are connected with
trisomy 8, indicating a non-specific role in leukemia patho-
genesis (22-25). Little is known about the prognostic impact
of trisomy 8 as the sole change in AML and MDS (26).
However, another frequent cytogenetic abnormality involving
chromosome 8, the reciprocal translocation t(8;21) usually
correlates with AML-M2 (27-30).

Up to now no studies on the 3D nuclear architecture of
bone marrow (BM) cells, neither normal nor malignant ones
were done, even though, recently, comparable studies in
thyroid cancer cells were undertaken (31). Here we studied the
(relative) 3D position of chromosomes 8 and 21 in inter-
phase nuclei to each other. BM cells derived from three
secondary AML cases with free trisomy 8 and one ALL and
AML case, each, with normal karyotype were studied in
comparison to peripheral blood lymphocytes and human
sperm. The well established approach of interphase
chromosome-specific multicolor banding (ICS-MCB) (19)
combined with suspension FISH (S-FISH) (17) was chosen
for this study.

Material and methods

Interphase cells. In the present study interphase cells were
used, prepared according to standard procedures for chromosome
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harvesting (32,33). Interphases were obtained from BM
(cases 1-5), peripheral blood lymphocytes (case 6) or a human
sperm sample (case 7). BM cells were obtained from patient
material, which were residual from cytogenetic diagnostics;
patients gave informed consent for further use of this material
for research. Peripheral blood lymphocytes and human sperm
sample were obtained from healthy volunteers. A summary
of the corresponding material applied, the number of evaluated
cells and the obtained results are given in Table I. All karyo-
types were determined by standard GTG-banding.

Molecular cytogenetics
Multitude multicolor banding (mMCB). For cases 1-3 the
integrity and presence of normal chromosomes without any

cryptic rearrangements was proven by multitude multicolor
banding (mMCB) (34). Fourteen to 27 metaphases were
evaluated per case (see Table I).

Multicolor banding (MCB) and suspension FISH (S-FISH).
Multicolor banding (MCB) probe sets for chromosomes 8
and 21 (35,36) were applied in suspension-FISH (S-FISH) as
previously reported (17,20,21,37). Images of 3D-preserved
interphase nuclei were captured on a Zeiss Axioplan micro-
scope and analyzed by Cell-P (Olympus) software. The
number of evaluated cells is given in Tables II and III.

Evaluation. For the 3D-evaluation, position and distance of
homologous chromosomes were determined. The interphase
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Table I. Overview on the 7 cases, studied material and karyotypes.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Case number Age (y) Material Karyotype after GTG or mMCB*

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 30 bone marrow (sec. AML from MDS) 46,XY,+8[21]/46,XY[4]*

2 83 bone marrow (sec. AML from MDS) 46,XY,+8[24]/46,XY[3]*

3 57 bone marrow (sec. AML from MDS; 46,XY,+8[13]/46,XY[1]*

in blast crisis)
4 63 bone marrow (AML in remission since 46,XX[20]

6 years after diagnosis AML-M2)
5 46 bone marrow (ALL-patient) 46,XY[20]
6 25 stimulated peripheral blood-lymphocytes 46,XX[20]

(healthy)
7 30 sperm sample (healthy) na-donor 46,XY[20]
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
ALL, acute lymphocytic leukemia; sec AML, secondary acute myelogenous leukemia; MDS, myelodysplastic syndrome; na, not available;
y, years.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table II. Localization of the homologous chromosomes 8 and 21 in 15-66 studied interphase nuclei per case (see also Table III).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Cells with disomy 8
Case number Chromosome 8 (%) Chromosome 21 (%)

––––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––
t n o t n o

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 - 100 - - 66.7 33.3
2 7.1 78.6 14.3 28.6 64.3 7.1
3 6.6 66.7 26.7 27.3 63.6 9.1
4 3.2 77.4 19.4 38.7 54.8 6.5
5 - 83.3 16.7 30.0 70.0 -
6 6.7 53.3 40.0 20.0 66.7 13.3
7 na na na na na na
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Cells with trisomy 8
Case number Chromosome 8 (%) Chromosome 21 (%)

–––––––––––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––
t n t-n o o-n o-t t n o

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 3.7 44.4 44.4 - 7.5 - 2.2 70.3 7.5
2 2.6 26.3 55.3 - 5.3 10.5 33.3 48.2 18.5
3 - 38.6 29.5 - 2.4 29.5 40.7 59.3 -
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
-, no such nuclei found; n, near by each other; na, not available; o, on the opposite sides of the nucleus; t, close together.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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nucleus was divided into two spheres, i.e. periphery (P) and
center (C); 50% of the nucleus radius was defined as ‘center’.
Thus, analyzed chromosomes could be allocated either as C
or P. Similar as described in (20) the relative positions of the
studied chromosomes to each other were recorded as ‘close
together’ (t), ‘near by each other’ (n) or ‘on the opposite
sides of the nucleus’ (o) for two homologue chromosomes. In
cells with three chromosomes 8 this nomenclature was
combined to ‘o-n’, ‘o-t’ or ‘t-n’ - for examples see Fig. 1. As
in this study the relative positions of chromosomes 8 and 21
to each other were studied, this leads to the possible combi-
nations shown in Figs. 2 and 3.

Statistics. Statistical analysis was performed using Student's
t-test, One Way ANOVA (Analysis of Variance) and Holm-
Sidak method. Statistical significance was defined as p<0.05.

Results

In all investigated cases (apart from case 7) standard GTG-
banding was applied for initial determination of the karyo-
type present in the studied patients/ tissues. The mMCB
applied additionally in the three studied cases with trisomy 8
did not reveal any cytogenetic changes.

In all investigated cases chromosome 8 is predominantly
positioned in the periphery (P) of interphase nuclei (Fig. 4);

according to statistical tests this was a significant finding
(One Way ANOVA and Holm-Sidak method: F=8.045;
p<0.001). In cases with trisomy 8 the additional copy of
chromosome 8 tended to be located in periphery rather than
central (detailed data not shown, but visible in Fig. 4).
Overall, the localization of chromosome 21 is in all seven
studied cases was ~50% in periphery and 50% central. In one
case with trisomy 8 (case 1) and the studied ALL BM cells
(case 5) a slight tendency of a more central localization was
observed (Fig. 4). In the other five cases chromosome 21 was
located more frequently in the periphery.

In general, in all analyzed cases (including interphase
cells with disomy and trisomy 8, excluding sperm sample),
homologue chromosomes 8 are located primarily in close
proximity, i.e. t, n or t-n (Table II). There is no significant
difference between BM cells with normal and abnormal
karyotype (One Way ANOVA: F=1.690; p=0.112). Comparing
peripheral blood lymphocytes (case 6) with BM cells (cases
1-5) chromosome 8 had a higher co-localization rate in the
latter. Additionally, in all the studied cases (apart from
haploid sperm) homologue chromosomes 21 were situated
near each other or close together in 66.7 to 100% of the
studied cells.

In sperm (case 7), stimulated peripheral blood lympho-
cytes (i.e. T-lymphocytes, case 6) and in BM-cells from ALL
(case 5) the co-localization rate of chromosomes 8 and 21
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Table III. Co-localization of chromosomes 8 and 21 in interphase nuclei.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Cells with disomy 8 (%)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

One no. 21 is near Two no. 21 ‘n’/’t’ are near
––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––

Case no. One chr. 8 Two chr. 8 One chr. 8 Two chr. 8 Two no. 21 Absolute no. Overall 
(in ‘n’ or ‘t’) (in ‘n’ or ‘t’) separated of no. 21 evaluated

from two no. 8 localized no. 21
with no. 8

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 100.0 - - - - 3 3
2 32.1 1.8 21.4 21.4 10.7 43 56
3 18.2 - 9.1 9.1 63.6 8 22
4 22.6 3.2 38.7 16.1 19.4 50 62
5 20.0 1.7 30.0 6.7 41.6 35 60
6 16.7 3.3 26.7 6.7 46.6 16 30
7 26.7 - - - 73.3 9 15
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Cells with trisomy 8 (%)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

One no. 21 is near Two no. 21 ‘n’/’t’ are near
––––––––––––––––––––– ––––––––––––––––––––––––––––––––

Case no. One chr. 8 Two chr. 8 One chr. 8 Two chr. 8 Three chr. 8 Two no. 21 Absolute no. Overall 
(in ‘n’ or ‘t’) (in ‘n’ or ‘t’) (in ‘n’ or ‘t’) separated of no. 21 evaluated

from three localized no. 21
no. 8 with no. 8

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 33.3 27.8 11.1 3.7 14.8 9.3 49 54
2 18.5 13.0 14.8 29.6 7.4 16.7 45 54
3 5.5 24.1 18.5 22.2 3.7 26.0 40 54
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Abbreviations see Table II.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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was as expected (Table IV). However, in all studied AML-
cases, with exception of disomic cells of case 3, a statistically
significant difference between random and observed co-

localization of chromosomes 8 and 21 was detected (t-test,
case 1: p=0.005 (disomy), p=0.002 (trisomy); case 2: p=0.006
(disomy), p=0.002 (trisomy); case 3 p=<0.001 (trisomy). Thus,

MANVELYAN et al:  CO-LOCALIZATION OF CHROMOSOMES 8 AND 21338

Figure 1. Modes of localization of homologue chromosomes 8 (brown and green pseudo-colors staining the short and the long arms, respectively) in bone
marrow interphase cells (in blue, two shades are without any specific meaning) are depicted surrounded by edge lines of cubes as provided by the applied
CELL-P software. Disomic cells: (A) close together (= t); (B) near each other (n); (C) on the opposite sides of the nucleus (= o). Trisomic cells: (D) t-n; (E) t-
o; (F) n-o.

Figure 2. Examples of co-localization of chromosomes 8 (pseudo-colored as described in Fig. 1) and 21 (red and yellow pseudo-colors) in bone marrow
derived interphase cells (depiction as in Fig. 1): (A) Three copies of chromosome 8 and two copies of chromosome 21; all homologous chromosomes are well
separated. (B) Three copies of chromosome 8 and two copies of chromosome 21; both chromosome 21 are well separated with two chromosomes 8, located in
position ‘t’. (C) Two copies of chromosome 8 and 21, each; all chromosomes are well separated.
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spatial proximity of chromosomes 8 and 21 is different in
BM-cells of the myeloid line in interphase nuclei than in
other cell types.

Discussion

Exclusion of cryptic rearrangements in the studied cases with
trisomy 8. The presence of further cryptic rearrangements in
the three studied cases with trisomy 8 was excluded by mMCB.

This finding is in concordance with other previous studies,
which, however, only were focused on chromosome 8 (26,38).
The usefulness of this approach was proven previously
(39,40).

Position of chromosomes 8 and 21 in interphase nuclei.
Chromosome 8 is with statistic significance predominantly
positioned in the periphery (P) of interphase nuclei (Fig. 4).
The position of chromosome 8 in BM cells and peripheral
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Figure 3. Examples of co-localization of chromosomes 8 and 21 in human sperm: in (A) chromosomes 8 and 21 are co-localized and in (B) they are well
separated. Depiction as described in Fig. 2; yellow and green for chromosome 8 and orange, violet and pink pseudo-colors for chromosome 21 (orientation
short to long arm).

Figure 4. The percentage of chromosomes 8 (blue) and 21 (purple) detected in periphery of the interphase nuclei in the seven studied cases is depicted.
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blood-lymphocytes is in concordance with the data of our
previous study determined in haploid human sperm (21). The
additional chromosome 8 was located in periphery rather
than central. If this is general behavior when a trisomy is
present cannot be answered yet. Observed position of chromo-
some 21 was in general in concordance with the literature
(20,21).

Orientation of homologue chromosomes to each other.
Homologue chromosomes 8 are located primarily in close
proximity. If there is really a higher rate of co-localization in
blood lymphocytes (case 6) than in BM cells (cases 1-5) needs
to be substantiated by further studies. In all here studied
diploid cases (cases 1-6) homologue chromosomes 21 behaved
as postulated for acrocentrics and co-localized to each other
(20,21).

Co-localization of chromosomes 8 and 21 in interphase
nuclei. Correlation between spatial proximity of chromosomes/
genes in interphase nuclei and translocation frequencies was
shown previously: chromosomes located in proximity undergo
translocation events more frequently than distantly located
ones (11,13-14). To test this hypothesis for the reciprocal
translocation t(8;21) usually correlated with AML, here a 3D
analysis for co-localization of chromosomes 8 and 21 was
done (Table III and IV). A significant enhanced co-localization
rate was found in all studied AML-cases, with exception of
disomic cells of case 3, compared to controls. Thus, spatial
proximity of chromosomes 8 and 21 is different in BM-cells
of the myeloid line in interphase nuclei than in other cell types.
It is not clear why the disomic cells of case 3 showed different
interphase architecture compared to the other AML-cases and
even to the trisomic cells of the same case. However, this
patient was studied during blast crisis (Table I), which might
be connected to this phenomenon.

In conclusion, the results of this pilot study indicate the
following: (A) in concordance with previous studies (26,38),
no further cytogenetic changes resolvable by FISH-banding
techniques are present in cases with trisomy 8. (B) Even
though in this study we could not distinguish malignant and
non-malignant BM cells it is obvious, that chromosomes 8
and 21 are predominantly co-localized in myeloid BM cells
compared to stimulated peripheral blood-lymphocytes,
lymphoid BM-cells and sperm. (C) Among myeloid malignant
BM cells there could possibly exist two groups, one with
predominant co-localization of chromosomes 8 and 21 (cases
1, 2, 4 and 5), and one without that predominance (case 3).
The latter observation could also be important in connection
with the blast crisis present at the time of studying the corres-
ponding patient. (D) Co-localization of chromosomes 8 and
21 might promote a translocation between these two chromo-
somes providing a selective advantage of t(8;21) cells in
AML-M2, but not in other cell types.

Overall, further studies in BM cells are necessary for
delineation of the tissue specificity of interphase architecture
in this cell type as in cancer in general. At present even a
clinical impact on malignancies of 3D-chromosome positioning
can becomes more and more likely as supported by recent
comparable findings in thyroid cancer (31).
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