
Abstract. Recent investigations indicate that hepatitis C virus
(HCV) infection is closely associated with hepatocytic lipid
metabolism and induces hepatic steatosis. However, the actual
lipid metabolism in HCV-infected liver has not been extensively
investigated in humans. In this study, we evaluated the
expression of lipid metabolism-associated genes in patients
with HCV infection by real-time PCR. Sterol regulatory
element-binding protein (SREBP)-2 expression was unchanged
and low density lipoprotein receptor expression was markedly
reduced by 90% in HCV-infected liver. The expression of
apolipoprotein B100, microsomal triglyceride transfer ptotein
and ATP-binding cassette G5 was significantly increased.
Up-regulation of cholesterol synthesis-associated genes,
including HMG-CoA reductase, HMG-CoA synthase, farnesyl-

diphosphate synthase and squalene synthase, confirmed
enhanced de novo cholesterol synthesis. The expression of
cholesterol 7·-hydroxylase and farnesoid X receptor was
enhanced, while bile salt export pump expression was
unchanged. Fatty acid synthase expression was increased
which was accompanied by increased expression of liver X
receptor · and SREBP-1c. In summary, the regulation of lipid
metabolism was impaired and cholesterol and fatty acid
synthesis continued to increase without negative feedback in
HCV-infected liver. These changes may be beneficial for HCV
replication. 

Introduction

A close association between hepatitis C virus (HCV) infection
and lipid metabolism was previously reported. For example,
the low density lipoprotein receptor (LDLR) is a target for
HCV entry into hepatocytes (1,2), therefore, ß-lipoproteins
influence HCV proliferation. Serum HCV-Ag levels are
negatively correlated with serum ß-lipoproteins (3) and LDL-
cholesterol levels are correlated with the outcome of HCV
treatment with interferon (IFN) (4,5). HCV core protein induces
hepatic lipid accumulation by activating sterol regulatory
element-binding protein (SREBP)-1c (6,7). In addition, liver
microsomal triglyceride transfer protein (MTP), a key enzyme
for the assembly of very low density lipoprotein (VLDL),
may be involved in HCV-related steatosis, and hepatic MTP
expression and steatosis showed significant negative correlation
in patients with chronic hepatitis C (8-11). Approximately 50%
of patients with chronic hepatitis C have hepatic steatosis
which enhances disease progression (12-14). Host metabolic
factors as well as viral factors should be involved in the
pathogenesis of hepatic steatosis. However, the actual lipid
metabolism in HCV-infected liver has not been extensively
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investigated in humans. Therefore, we evaluated the expression
of lipid metabolism-associated genes in HCV-infected liver. 

Materials and methods

Tissue samples were obtained by liver biopsy from 70 patients
(males/females, 29/41; age, 56.1±11.5 years old) with chronic
hepatitis C (genotype 1b, n=45; 2a/2b, n=25), who were
admitted to the Kyushu Medical Center in 2007-2008. For a
control, normal liver tissue was obtained from 10 living donors
of liver transplantation whose liver function tests and histo-
logical findings were completely normal. Written informed
consent was obtained from all patients in this investigation.
Gene expression was examined by real-time RT-PCR. The
PCR primer sets are listed in Table I. 

Total RNA was prepared from the tissue samples with
Trizol reagent (Invitrogen, Carlsbad, CA, USA), and cDNA
was synthesized from 1.0 μg RNA with GeneAmp RNA PCR
(Applied Biosystems, Branchburg, NJ, USA) using random
hexamers. Real-time RT-PCR was performed using LightCycler-
FastStart DNA Master SYBR Green 1 (Roche, Basel,
Switzerland) according to the manufacturer's instructions.
The reaction mixture (20 μl) contained LightCycler-FastStart
DNA Master SYBR Green 1, 4 mM MgCl2, 0.5 μM of the
upstream and downstream PCR primers, and 2 μl of first-strand
cDNA as a template. To control variations in the reactions,
all PCR data were normalized against ß-actin expression.
Continuous variables were compared using the Wilcoxon
signed-rank test. P<0.05 was considered statistically significant.
The results are expressed as means ±SD.

Results

Expression levels of cholesterol metabolism-associated genes
in HCV-infected liver were compared with those in normal
controls. The results of real-time PCR are shown in Figs. 1
and 2. Serum LDL-cholesterol is taken into hepatocytes via
the LDLR. For secretion, cholesterol is packed into VLDL
together with triglyceride and apoB100 by MTP. Cholesterol
is also secreted into bile via ATP binding cassette (ABC) G5/8.
SREBP-2 synchronously activates the gene expression of
LDLR and HMG-CoA reductase (HMGR), a key enzyme of
cholesterol synthesis. Physiologically, cholesterol accumulation
in hepatocytes down-regulates SREBP-2 activity, thus
decreasing cholesterol synthesis/uptake. Surprisingly, in HCV-
infected liver, HMGR expression was increased by >5-fold,
while SREBP-2 expression was unchanged (Figs. 1 and 2). In
contrast, LDLR expression was markedly reduced by 90%
(Fig. 1). The expression of apoB100 and MTP was increased
by >3-fold and ABCG5 expression was also increased (Fig. 1).
Up-regulation of other cholesterol synthesis-associated
genes, including HMG-CoA synthase, farnesyl-diphosphate
synthase and squalene synthase, confirmed enhanced de novo
cholesterol synthesis (Fig. 2). Cholesterol 7·-hydroxylase
(CYP7A1) is a key enzyme involved in bile acid synthesis
and its expression is negatively regulated by farnesoid X
receptor (FXR). Bile acid is transported into bile by bile salt
export pump (BSEP), the expression of which is positively
regulated by FXR. Liver X receptor · (LXR·), whose agonists
include oxysterols, up-regulates another transcriptional factor,
SREBP-1c, to promote fatty acid production via fatty acid
synthase (FAS). In the HCV-infected liver, CYP7A1 expression
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Table I. Primer sets of real-time PCR.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes                                     Forward (5'→3') Reverse (5'→3')
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
LXR· GCCGAGTTTGCCTTGCTCA TCCGGAGGCTCACCAGTTTC 
SREBP-1c GCTGTCCACAAAAGCAAATCTCT GTCAGTGTGTCCTCCACCTCAGT 
SREBP-2 ACAACCCATAATATCATTGAGAAACG TTGTGCATCTTGGCGTCTGT 
LDLR CAACGGCTCAGACGAGCAAG AGTCACAGACGAACTGCCGAGA 
BSEP CTTCATCATGGACCTGCCACA GGATGAGGGCTCTGGCGATA 
FXR ACCTCGACAACAAAGTCATGCAG ATTGGTTGCCATTTCCGTCA
CYP7A1 AGCATTTGTGAATACATGGCTGGA TTCACAAGCAAGCACTGGTGAAC 
ABCG5 ATTGTGGTTCTCACCATTCACCAG GGTTTGAATGTTCAGGACAAGGGTA 
ApoB TCAAGAGTTACAGCAGATCCATCAA TCAGAATGGAAGTCCTTAAGAGCAA 
MTP AGCACCTCAGGACTGCGAAGA CAGAGGTGACAGCATCCACCA 
HMGR GCCTGGCTCGAAACATCTGAA CTGACCTGGACTGGAAACGGATA 
HMGS GTATGCCCTGGTAGTTGCAGGAG TGTTGCATATGTGTCCCACGAA
FDPS GCATGTATCTACCGCCTGCTGA TCCAGGGTCTGCCCAATCTC
SS CGTGCAGTGCCTGAATGAACTTA GGCAGCCAAAGTGGCAATG
NPC1L1 CCCTGCCCAAGGACTCGTA AGTTGTAGCCCAAGGTGGTAACA 
FAS GAACTCCTTGGCGGAAGAGA GGACCCCGTGGAATGTCA
ß-actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
LXR, liver X receptor; SREBP, sterol regulatory element-binding protein; LDLR, LDL receptor; BSEP, bile salt export pump; FXR, farnesoid
X receptor; CYP7A1, cholesterol 7·-hydroxylase; ABCG5, ATP-binding cassette G5; ApoB, apolipoprotein B; MTP, microsomal triglyceride
transfer protein; HMGR, HMG-CoA reductase; HMGS, HMG-CoA synthase; FDPS, farnesyl-diphosphate synthase; SS, squalene synthase,
NPC1L1, Niemann-Pick C1 like 1; FAS, fatty acid synthase.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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was enhanced by 4-fold, which was accompanied by increased
expression of FXR, while BSEP expression was unchanged
(Fig. 1). FAS expression was increased by ~3-fold and was
accompanied by increased expression of LXR· and SREBP-1c
(Fig. 1). 

Discussion

Expression pattern of examined lipid metabolism-associated
genes in the liver of chronic hepatitis C is summarized in Fig. 3.
In our investigation, the regulation of lipid metabolism was
impaired in HCV-infected liver. It is probable that HCV
infection induces intra-hepatic accumulation of cholesterol,
which results in decreased LDL-cholesterol uptake and
increased lipoprotein and cholesterol output. Nevertheless,
de novo cholesterol synthesis and fatty acid synthesis continued
to increase without negative feedback (Fig. 2). We cannot
explain the phenomena clearly but the same discrepancy was
found in nonalcoholic fatty liver disease (15). The expression
patterns of the tested genes were also apparent in a preliminary
evaluation in an HCV replicon system (data not shown). 

These changes seem to be needed or are beneficial for
HCV replication. Considering the enhanced cholesterol
synthesis in HCV-infected liver, it is plausible that HMGR
inhibitors (statins) elicit inhibitory effects on viral replication.
Statins were recently reported to suppress HCV replication
and, in a clinical trial on peg-IFN plus ribavirin combination
therapy, fluvastatin showed synergistic antiviral effects
(16,17). In addition, geranylgeranyl-diphosphate and farnesyl-
diphosphate, which are produced through the de novo
cholesterol synthesis pathway, are reported to be essential for
viral replication (18). They are needed to activate small
GTPases such as Rho and Ras, therefore, HCV may need
lipids not only for components of virus particles but also for
the modulation of cell signaling pathways. It is also expected

that bisphosphonate has antiviral effects because bisphos-
phonate inhibits farnesyl-diphosphate synthase, the
expression of which was enhanced in HCV-infected liver.
Furthermore, eicosapentaenoic acid (EPA) was reported to
inhibit HCV replication in the replicon system and to
suppress SREBP-1c activity (19,20). Therefore, EPA might
elicit antiviral effects via the inhibition of SREBP-1c. We are
now performing a clinical trial using the lipid modulators,
statins, bisphosphonate and/or EPA, in combination with
peg-IFN plus ribavirin therapy. 
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Figure 1. Expression levels of cholesterol metabolism-associated genes in
HCV-infected liver. SREBP, sterol regulatory element-binding protein; LDLR,
LDL receptor; MTP, microsomal triglyceride protein; ApoB, apolipoprotein B;
ABCG5, ATP-binding cassette G5; NPC1L1, Niemann-Pick C1 like 1; LXR·,
liver X receptor ·; CYP7A1, cholesterol 7·-hydroxylase; FXR, farnesoid X
receptor; BSEP, bile salt export pump; FAS, fatty acid synthase. *Significant
difference (p<0.05) between patients with chronic hepatitis C and normal
controls. 

Figure 2. (A) Real-time RT-PCR analysis of HMG-CoA reductase (HMGR),
HMG-CoA synthase (HMGS), farnesyl-diphosphate synthase (FDPS), and
squalene synthase (SS) gene expression in HCV-infected liver. *Statistically
significant differences (p<0.05) compared with normal liver (100%). (B)
Cholesterol synthesis pathway in hepatocytes and its related enzymes.
Arrows indicate significant upregulation of expression levels in HCV-
infected liver compared with normal control.

Figure 3. Schema showing the interactions between cholesterol metabolism-
associated factors. Arrows (⇑ and ⇓) represent significant difference of
expression levels between patients with HCV infection and normal controls.
LDLR, LDL receptor; SREBP, sterol regulatory element-binding protein;
NPC1L1, Niemann-Pick C1 like 1; ApoB, apolipoprotein B; MTP, microsomal
triglyceride protein; ABCG5/G8, ATP-binding cassette G5/G8; LXR·, liver
X receptor ·; CYP7A1, cholesterol 7·-hydroxylase; FXR, farnesoid X
receptor; BSEP, bile salt export pump; FAS, fatty acid synthase.
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