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PTEN/pAkt/pS3 signaling pathway correlates with
the radioresponse of non-small cell lung cancer
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Abstract. The sensitivity or resistance of cancer cells and
normal tissues to ionizing radiation plays an important role in
the clinical setting of lung cancer treatment. However, to date
the exact molecular mechanisms of intrinsic radiosensitivity
have not been well explained. In this study, we compared the
radiosensitivity or radioresistance in two non-small cell lung
cancers (NSCLCs), H460 and A549, and investigated the
signaling pathways that confer radioresistance. H460 cells
showed a significant G,/M arrest after 12 h of irradiation
(5 Gy), reaching 60% of G,/M phase arrest. A549 cells also
showed a significant G,/M arrest after 12 h of exposure;
however, this arrest completely disappeared after 24 h of
exposure. A549 has higher methylated CpG sites in PTEN,
which is correlated with tumor radioresistance in some cancer
cells, than H460 cells, and the average of the extent of the
methylation was ~4.3 times higher in A549 cells than in
H460 cells. As a result, PTEN expression was lower in A549
than in H460. Conducting Western blot analysis, we found
that PTEN acted as a negative regulator for pAkt, and the pAkt
acted as a negative regulator for p53 expression. According
to the above results, we concluded that the radiosensitivity
shown in H460 cells may be due to the higher expression of
PTEN through p53 signaling pathway.

Introduction

Of the numerous public health problems, lung cancer is one of
the leading causes of death throughout the world (1-3). Patients
with lung cancer have a <15% rate of survival over 5 years
with current therapeutic modalities; this statistic has changed
only minimally in the last 25 years, underscoring the need for
new therapeutic strategies. Thus, understanding the molecular
mechanisms involved in the pathogenesis of lung cancer may
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provide greater opportunities to improve therapeutic methods
for this fatal disease (4.5).

For almost 100 years, radiotherapy with ionizing radiation,
either alone or in combination with chemotherapy, has been
widely used, but radioresistance of some human tumors to
ionizing radiation and injury to normal tissues are the primary
disadvantages that have an impact on the curative effect of
clinical radiotherapy (6). The sensitivity or resistance of cancer
cells and normal tissues to ionizing radiation plays an
important role in the clinical setting. However, to date the
exact molecular mechanisms of intrinsic radiosensitivity
have not been clarified. Numerous oncogenes and anti-
oncogenes (tumor-suppressor genes) seem to be responsible
for the intrinsic radiosensitivity of a tumor and their cross-
talk plays an important role (6). Oncogenes, such as ras, myc,
raf, cox-2, PTEN, PI3K/Akt, and mutated p53, are correlated
with tumor radioresistance in many cells, whereas the most
important tumor-suppressor gene, wild-type p53, is correlated
with tumor radiosensitivity (7-27).

Although chemotherapy is often used to treat patients
with non-small cell lung cancer (NSCLC), it offers only a
small improvement and cell lines derived from these tumors
exhibit an intrinsic resistance to both chemotherapy and
radiotherapy in vitro compared with other types of cancer
cells (28). In addition, great differences in response exist
between NSCLCs with the same histology (29). Therefore, it
is necessary to determine appropriate strategies to improve
treatment efficacy, especially with respect to a curative
approach in radiotherapy (30,31). In this study, we compared
the radiosensitivity or radioresistance in two NSCLCs, H460
and A549, which have a functional p53, and investigated the
signaling pathways that confer radioresistance.

Materials and methods

Cell culture and irradiation. All NSCLC cell lines used in the
study were obtained from American Type Culture Collection
(ATCC; Manassas, VA, USA) and were grown in RPMI-
1640 medium supplemented with 10% fetal bovine serum
(FBS; Hyclone Laboratories, Waltham, MA, USA) and
penicillin/streptomycin. Cells were incubated at 37°C in a
humidified atmosphere with 95% air/5% CO,. Cells were
inoculated at a density of 1x10° cells in a T-25 flask and
incubated for 1 day, followed by irradiation with a dose of
10 Gy using a ®°Co y-ray at a dose rate of 0.2 Gy/min.
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c¢DNA synthesis and PCR amplification. Total RNA was
isolated from H460 and A549 using the Qiagen RNA
extraction kit (Qiagen, Valencia, CA, USA). To generate
first-strand cDNA from the total RNA (1 ug) using oligo dT,
a cDNA synthesis kit (MBI Fermentas, Burlington, ON,
Canada) was used. Resultant cDNAs served as templates for
PCR amplification with forward and reverse primers as
follows: PTEN-F, 5'-~ACGGGAAGACAAGTTCATGTAC;
PTEN-R, 5'-ACAGTAGAGGAGCCGTCAAA; B-actin-F,
5'-ATGTGCAAGGCCCGCTTCG; B-actin-R, 5'-TTAAT
GTCACGCACGATTTCC. For amplifying GC-rich PTEN
template high, we added a specific buffer, i-GC capture
solution (Intron Biotechnology, Korea), to the PCR mixture.
The PCR conditions for PTEN were: denaturing at 95°C for
30 sec, followed by 35 cycles at 95°C for 30 sec, at 58°C for
30 sec, at 72°C for 1 min, and a final extension at 72°C for
5 min. The amplified PCR products were analyzed by agarose
gel (1%) electrophoresis, and photographed under UV light.

Western blot analysis. Anti-pS3 and anti-PTEN antibodies for
Western blot analysis were purchased from Santa Cruz Bio-
technology (Santa Cruz, CA, USA) and Akt, phospho-Akt
(pAkt), and B-actin were purchased from Cell Signaling
Technology (Beverly, MA, USA). All reagents used in this
study were reagent grade or better. Protein concentration was
determined using a Lowry kit (Bio-Rad, Hercules, CA, USA).
Equal amounts of protein were separated on 12% SDS-PAGE
and transferred to a nitrocellulose membrane (Hybond ECL;
Amersham Pharmacia, Piscataway, NJ, USA). The blots were
blocked for 2 h at room temperature with blocking buffer
[10% nonfat milk in PBS buffer containing 0.1% Tween-20
(TBS)]. The membrane was incubated at room temperature
for 1 h with specific antibodies. After washing with TBS, the
membrane was incubated with a horseradish peroxidase-
labeled secondary antibody and visualized using the Westzol
enhanced chemiluminescence detection kit (Intron Bio-
technology, Gyungki-do, Korea).

Flow cytometric detection. Irradiated and non-irradiated cells
were collected, washed with PBS, and fixed with 70% ethanol
at 4°C for 2 h in the dark. Fixed cells were washed with PBS
and stained with propidium iodide (50 ug/ml). The DNA
content was measured with a FACScan (EPICS XL, Beckman
Coulter Counter, Fullerton, CA, USA). A minimum of 10,000
cells was counted for each sample. The percentage of cells in
each cell phase was determined by Phoenix Multi-cycler
Software (Phoenix Flow System, San Diego, CA, USA).

Sodium bisulfite modification. Bisulfite-modified genomic
DNA (gDNA) was prepared using the EZ DNA Methylation-
Gold kit (Zymo Research, Orange, CA, USA) according to
the manufacturer's instructions. The bisulfite reaction was
carried out on 400 ng gDNA, the reaction volume was adjusted
to 20 ul with sterile water, and 130 x1 CT conversion reagent
was added. The sample tubes were placed in a thermal cycler
(M1J Research, Waltham, MA, USA) and the following steps
were performed: 10 min at 98°C and 2 h 30 min at 64°C, and
then stored at 4°C. The resultant DNA was purified using
reagent contained in EZ DNA Methylation-Gold kit (Zymo
Research). The converted samples were added to a Zymo-Spin
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IC™ column containing 600 ul of the M-Binding buffer and
mixed by inverting the column several times. The column was
centrifuged at full speed for 30 sec and the flow-through
discarded. The column was washed by adding 200 1 M-Wash
buffer and centrifuged at full speed and then 200 1 M-desul-
phonation buffer was added to the column and incubated at
room temperature (20-30°C) for 15-20 min. After incubation,
the column was centrifuged at full speed for 30 sec. The
column was washed by adding 200 x1 M-Wash buffer and
centrifuged at full speed (this step was repeated once more).
The converted gDNA was eluted by adding 20 x1 M-Elution
buffer into the column. DNA samples were finally stored at
-20°C until further use.

Pyrosequencing analysis. PCR reaction was carried out in a
volume of 50 p1 with <20 ng converted gDNA, 5 ul 10X Taq
buffer, 5 U Hot/Start Taq polymerase (Enzynomics, Daejeon,
Korea), 4 ul of each 2.5 mM dNTP mixture, 2 1 of 10 pmol/ul
Primer-S, and 2 gl of 10 pmol/ul biotinylated-Primer-As.
The amplification was carried out according to the general
guidelines suggested by pyrosequencing: denaturing at 95°C
for 15 min, followed by 45 cycles at 95°C for 40 sec, at 55°C
for 40 sec, at 72°C for 40 sec, and a final extension at 72°C
for 10 min. PCR (5 pl) was confirmed by electrophoresis in a
3% agarose gel and visualized by ethidium bromide staining.
A ssDNA template was prepared from 20-25 ul biotinylated
PCR product using streptavidin Sepharose® HP beads
(Amersham Biosciences, Uppsala, Sweden) following the
PSQ 96 sample preparation guide using multichannel pipettes.
Then 15 pmol of the respective sequencing primer set was
added for analysis. Sequencing was performed on a PyroMark
ID system with the Pyro Gold reagents kit (Biotage,
Charlottesville, VA, USA) according to the manufacturer's
instructions without further optimization. The methylation
percentage was calculated by the average of the degree of
methylation at 5 or 6 CpG sites formulated in pyrosequencing.

Microscopy and analysis of cell survival fraction. To compare
the differences of morphology between H460 and A549, cells
were visualized by light microscopy (Leica Microsystems,
Westchester, IL, USA). Images were captured with a Cannon
digital camera system (model: Power Shot S45).

Results

Comparison of G,/M arrest and cytotoxicity in H460 and
A549. We first compared the change of cell cycle in two
NSCLCs, H460 and A549, after exposing cells to y-radiation.
Results of typical experiments are shown in Fig. 1A and B.
H460 cells showed a significant G,/M arrest after 12 h of
irradiation, reaching up to 60% of G,/M phase arrest. A549
cells also showed a significant G,/M arrest after 12 h of
exposure; however, this disappeared after 24 h of exposure.
Moreover, irradiated H460 cells showed a significant cyto-
toxicity, unlike A549 cells that showed great tolerance to
radiation at 10 Gy (Fig. 2A). This lower cell survival in H460
cells may come from cell detachment, because numerous
floating cells (indicated by arrows) in the region of supernatant
appeared in the irradiated H460 cells (Fig. 2B). In contrast,
no floating cells were seen in the irradiated A549 cells.
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Figure 1. Induction of G,/M arrest in H460 by irradiation. (A) FAScan analysis in H460 and A549. (B) Comparison of each cell cycle fraction in H460 and

A549. Dark gray, G,/M phase; bright gray, S phase; black, G1 phase.

Analysis of methylation in the region of CpG islands in H460
and A549. As previously noted, PTEN is correlated with tumor
radioresistance in certain cancer cells. Thus, we investigated
whether PTEN participates in the signaling pathway for
radioresistance in the two NSCLCs. We used the bisulfite
pyrosequencing method for methylation analyses of the PTEN
gene. Each primer was designed using PSQ assay design
program (Biotage), and the sequences of primers are listed in
Fig. 3A. We selected five CpG sites (positions 1-5) as shown
in Fig. 3A, and bisulfite-modified gDNA was prepared using
EZ DNA Methylation-Gold kit (Zymo Research) as noted in
Materials and methods, in which the Y sequence (depicted as
boxes) means the methylated sited in H460 and A549 through
positions 1-5. After conducting PCR amplification, the methy-
lation percentage was calculated by averaging the degree of
methylation at 5 CpG sites formulated in pyrosequencing
(Fig. 3B). As shown in Fig. 3C, the higher methylated CpG
sites in all the positions tested were detected in A549 cells
rather than in H460 cells, and the average of the extent of the
methylation was ~4.3 times higher in A549 cells than in H460
cells. We also confirmed the expression level of PTEN in

H460 and A549 cells by RT-PCR analysis. As shown in
Fig. 3D, PTEN was highly expressed in H460, but not in
A549 cells.

Determination of the signaling pathways involved in radio-
response. A signaling pathway for PTEN through p53 has
been established. We investigated whether the pathway
would be associated with the differences in radioresistance in
both NSCLCs. As expected, PTEN acts as a negative regulator
for pAkt, and the pAkt acts as a negative regulator for p53
expression (Fig. 4). We concluded that the radiosensitivity
shown in H460 cells may be due to the PTEN expression
through p53 signaling pathway.

Discussion

The combination of modalities for cancer treatment offers
improvements in the survival of patients compared with
individual therapeutic approaches (32). These therapeutic
benefits have been achieved with combinations of chemo-
therapy and radiotherapy in a variety of cancers (32). The
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Figure 2. Comparison of cell cytotoxicity. (A) Comparison of surviving fractions after irradiation in H460 and A549 cells. (B) Microscopic views after

irradiation. Cells after irradiation were harvested and resuspended in PBS.

photographed and are indicated by arrows.

cytotoxicity of most chemotherapeutic agents as well as that
of radiation is highly dependent on the phase of the cell
cycle; for example, the ability of anti-microtubule agents to
block cell cycle progression in the G,/M phase is the biologic
basis for combination of these agents with radiation (32,33).
The G,/M phase is the one most sensitive to ionizing radiation;
thus, many research efforts have focused on the combination
of radiotherapy methods that arrest cells in the G,/M phase
by using specific chemicals and then irradiating the cells
to increase the radiosensitivity potential (11-13,34,35).
However, although differences in radioresponse between
various small cell lung cancers (SCLCs) and NSCLCs are
known (29), little has been determined between different
NSCLCs.

One factor known to increase tumor cell resistance to
radiation, the importance of PI3K/AKT targeting for over-
coming resistance of tumors to radiotherapy, has been tested
in vitro and in vivo and the results indicate this cascade is a
promising target (24-26). The activation of Akt plays a critical

Floating cells from both total cell culture and the supernatant (spt) were

role in fundamental cellular functions such as cell proliferation
and survival by phosphorylation of a variety of substrates
(36-38). Constitutively active Akt results in augmented
resistance against apoptotic cellular insults, such as growth
factor deprivation, UV irradiation, or loss of matrix attachment
(39). Akt activation is found in many types of human tumors
including breast cancer, lung cancer, melanoma, and leukemia
(4041).

Human p53 is a 393-amino acid nuclear protein that acts
biochemically as a transcription factor and biologically as a
tumor suppressor (42). As a key regulator of cell growth and
cell death, p53 is activated by many environmental stimuli,
including DNA-damaging agents. Activated p53 acts as a
guardian of the genome by inducing growth arrest to allow
cells to repair the damage or apoptosis if the damage is too
severe and irreparable (43.,44). Thus, it is no surprise that p53
is frequently inactivated via multiple mechanisms during
human carcinogenesis. The most common mechanism is the
point mutation at the p53 gene, which occurs in 50% of human
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Figure 3. Pyrosequencing of 5 CpG islands on PTEN. (A) Original sequence of PTEN and bisulfite-converted sequences. Each Y shown in red sequences
indicates the methylated position in both cell lines. (B) Diagram of pyrosequencing. Each colored box indicates the position of the five Ys shown in panel A.
(C) Comparison of fractions in the methylated CpG positions. The last bars indicate the means of all the methylated positions, 1-6. (D) RT-PCR analysis of
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Figure 4. Western blot analysis. Cells were grown for 48 h after irradiation and
harvested.

cancers (45). Moreover, in certain cancer cells that bear wild-
type p53, p53 is often inactivated by a variety of mechanisms.
One common mechanism is Mdm2-mediated p53 binding,
ubiquitination, and degradation (46). As noted above, p53
status and cancer radiosensitivity have been widely studied.
Loss of p53 function, as in p5S3 mutation, increases resistance
to radiation in many human cancers (7-13,34 47).

In this study, we found that the A549 cells were more
resistant compared to H460 cells. We also found that p53
expression was increased by radiation, meaning that cells
encountered severe stress due to irradiation. However,
approaches to endure the stress were somewhat different in
the two NSCLCs. The extent of p53 induction was lower in
A549 than in H460 and this difference in p53 induction by
irradiation must be the determinant for the radiosensitivity in



522

both lung cancer cell types. The decreased expression level
of p53 in A549 compared to in H460 must come from the
higher induction of pAkt in A549 than in H460 according to
the Western blot experiments. Pyrosequencing has been
widely used for determining the content of the methylated
CpG island in many genes with a high GC rate. Thus, we
compared the extent of methylation between two PTEN genes,
known to be negative regulators of pAkt, existing in two
cancer cell types. As expected, all the selected 5 CpG positions
in PTEN were more methylated in A549, and we concluded
that the transcriptional expression of the PTEN gene in A549
was lower than in H460. In conclusion, the radioresistance
that has been shown in A549, results from the highly
methylated PTEN.
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