
Abstract. (-)-Epigallocatechin gallate [(-)-EGCG] has been
implicated in cancer chemoprevention and has been shown as
an inhibitor of tumor proteasomal chymotrypsin-like activity
in vitro and in vivo. However, EGCG is subjected to rapid
biotransforming modifications such as methylation by catechol-
O-methyltransferase (COMT) that limits its action. We
recently reported that structure 7, an EGCG analog which
should be resistant to COMT-mediated methylation and
inactivation in cells, was able to inhibit the activity of purified
20S proteasome and cellular 26S proteasome. However, the
involved molecular mechanism is unknown. Herein, we
applied computational solution to understand the possible
interaction between EGCG analogs including structure 7 and
the proteasome ß5 subunit which is responsible for the
chymotrypsin-like activity. We report that the ester carbonyls
at C2 and C3 carbon atoms may be the active sites for
nucleophilic attack in structure 7 and 5. Equally spaced
carbon atoms in COMT-resistant structure 7 give more stable
conformation and lower docked free energy than other EGCG
analogs. The absence of a second gallate group in structure
16 and 21 significantly decreases the ability to inhibit the
proteasome.

Introduction

To facilitate protein binding, a ligand must exhibit correct
shape and interaction properties complementary to the residues
exposed towards the binding pocket of a target protein (1).
Performing molecular docking of these ligands, which interact
with active site of large macromolecules, has become a
valuable strategy for predicting the preferred orientation of a
ligand to a macromolecule to form a stable complex (2-6).
Herein, we use the computational modeling application to
analyze the interaction between synthetic analogs of naturally
occurring green tea polyphenols and the 20S proteasome.

Proteasomes are large protein complexes whose main
function is to degrade unneeded or damaged proteins by
proteolysis, a chemical reaction that breaks peptide bonds.
The cellular 26S proteasome contains one 20S core particle
structure and two 19S regulatory caps that dock onto ends of
the 20S proteasome (7). Although the three catalytic ß subunits
have a common mechanism, they have different substrate
specificities, which are considered chymotrypsin-like (CT),
trypsin-like (T), and peptidyl-glutamyl peptide-hydrolyzing
(PHGH)-like (8). These variations in specificity are the result
of interatomic contacts with local residues near the active
site of each subunit. The mechanism of proteolysis by the
ß subunits of the 20S core particle is through a threonine-
dependent nucleophilic attack. The S1 pocket of proteasomal
ß5 subunit is defined by the hydrophobic residues, Ala 20,
Ala 49, Val 31, Ile 35, Met 45, Gln 53, which plays a signi-
ficant role for binding of several types of inhibitors (8).

Polyphenols constitute one of the most ubiquitous natural
compounds which are most commonly found in normal
dietary intake (9). Polyphenols are present in tea, fruits and
vegetables and have been reported to possess anti-cancer
(10,11), anti-inflammatory (12,13) antiulcer, antidiarrheal
and anti-oxidant (14) activities.

Many epidemiological studies have suggested that tea
consumption confers cancer-preventive effects (15-18). Green
tea is an aqueous infusion obtained from the dried green tea
leaves Camellia sinensis. The major components of green tea
include epicatechin (EC), epigallocatechin (EGC), epicatechin
gallate (ECG), and epigallocatechin-3-gallate (EGCG). Other
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components include three other flavonoids, known as
kaempferol, quercetin, and myricetin (15). Moreover, studies
indicate that EGCG is the most abundant and biological
active catechin with respect to anticancer activity in several
human cancers. The effect of EGCG has been tested on
various diseases including the topical treatment of genital
warts (19).

We reported that the carbonyl carbon of green tea poly-
phenols, EGCG, is the site of nucleophilic attack in the
inhibition of the proteasome (20). Most recently we also
reported that structure 7 (Fig. 1), an EGCG analog which
should be resistant to COMT-mediated methylation and
inactivation in cells, was able to inhibit the activity of purified
20S proteasome and cellular 26S proteasome (21). However,
the involved molecular mechanism is unknown. Herein, we
applied computational solution to understand the possible
interaction between EGCG analogs including structure 7 and
the proteasome ß5 subunit which is responsible for the
chymotrypsin-like activity. We performed silico modeling
experiments using these EGCG analogs and found that
carbonyl carbons are indeed highly susceptible for
nucleophilic attack and may be involved in inhibiting the
proteasomal chymotrypsin-like activity presumably by
formation of a covalent bond at the N-terminal threonine.
Importantly, equally spaced carbon atoms in COMT-resistant
structure 7 gives it a more stable conformation and lower
docked free energy than other EGCG analogs.

Materials and methods

Molecule building and nucleophilic susceptibility analysis.
CAChe workstation (Fujitsu, Inc.) was used for the con-
struction of chemical structures. After being constructed, the
molecules were then subjected to geometry optimization
using PM5 geometry in water as the parameter. Nucleophilic
susceptibility analysis was determined by using PM5 geometry
and PM5 wave function in water and is saved as PDB format
using CAChe conversion filters. Surface analysis was also
performed. A colored ‘bull's-eye’ with a white center denotes
atoms that are highly susceptible to nucleophilic attack. The
PDB files generated in CAChe were imported to AutoDock
for molecular docking (20).

Molecular docking of synthetic EGCG analogs to proteasome
ß5 subunit. In silico docking was performed on a Linux Red
Hat 9.0 based platform using AutoDock 3.0. The AutoDock
suite of programs, which was used for the docking calculation,
employs an automated docking approach, allowing ligand
flexibility as described to a full extent elsewhere (22).
AutoDock has been compared with various other docking
programs and has been found to be able to locate docking
modes that are consistent with X-ray crystal structure (23-26).

The Eukaryotic yeast 20S proteasome used in this study
were selected from the protein databank (27) (ref. no. 1JD2)
and used for all docking studies presented herein. The yeast
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Figure 1. Structure of four EGCG analogs.
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20S proteasome is structurally similar to mammalian 20S
proteasome, and the chymotrypsin active site between the two
species is highly conserved (28,29). The default parameters
were used to prepare 20S proteasome and the ligand, except
where noted. The energy scoring grid was prepared as a
40x40x40 Å box centered on the ß5 catalytic Thr1, and the
ligand was limited in search space during docking. Atomic
solvation parameters were assigned to the proteasome using
default parameters. Among the different search algorithm
offered by AutoDock 3.0., we chose Lamarckian genetic
algorithm which search both globally and locally. Genetic
algorithms allow the exploration of a large conformational
space (which is basically spanned by the protein and ligand
jointly), by representing each spatial arrangement of the
protein and ligand with a particular energy. The number of
the genetic algorithm runs, which was set to 100, and the
maximum number of energy evaluations, which was set to
5 million (the population size was retained at 50). Genetic
algorithm was quite suitable for solving docking problems
because of their usefulness in solving complex optimization
problem.

For mutation, crossover and elitism the default parameters
were used. Even for local search method, the pseudo-Solis and
wets was included by using the default parameters. AutoDock
is designed to predict how small molecules, such as substrates
or drug candidates, bind to a receptor of known 3D structure.
AutoDock reports the docked energy that we have referred as
final docked free energy. It includes the ligand internal energy,
or the intermolecular interaction energy of the ligand.

The emphasis was given to the docked free energies since
the number of rotatable bonds in our inhibitor is relatively
constant and we also believe that the internal energy of ligand
should not be neglected. In Table I, we indicate the number
of multiple clusters, cluster rank of the docking mode selected,
their intermolecular energy, internal energy of ligand along
with the torsional energies and the docked free energies of the
docked mode selected. Dockings were chosen by fulfilling two
criteria we used for resolving the docking of (-)-EGCG and
related compounds to the ß5 subunit. Briefly, the carbonyl
carbon of the ester function attached to C-ring should lie within
4 Å of the N-terminal threonine (a distance suitable for
nucleophilic attack). The probability of adopting the inhibitory
conformation was the number of genetic runs (out of 100) in
which the molecule docked into the active site and fulfilled
the above criteria.

The resultant structure files were visualized and analyzed
by using PyMOLv0.99 (30) (DeLano Scientific LLC, San
Carlos, CA) visualization program.

Results

We recently reported that structure 7 (Fig. 1), which should be
resistant to COMT-mediated methylation and inactivation in
cells, was able to inhibit the activity of purified 20S proteasome
and cellular 26S proteasome (21). However, the involved
molecular mechanism is unknown. To build upon our under-
standing of how structure 7 inhibits the proteasome, we did
automated docking to explore the computational interaction
between this EGCG analog and ß5 subunit of proteasome.
We also examined 3 other structures: 5, 16 and 21. Each of
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the four analogs (Fig. 1) was first examined for sites of
nucleophilic susceptibility. Analysis revealed that structure 5
and 7 possessed two sites with similar susceptibility whereas
structure 16 and 21 possessed a single site (Fig. 2), suggesting
that these sites could be attacked, and subsequently covalently
bound, by the OH group of N-Thr of proteaosmal ß5 subunit
(22). For better understanding of the possible chemical nature
of these four analogs to inhibit the chymotrypsin-like activity of
the proteasome, each was docked to the active site of the
proteasome ß5-subunit, which is responsible for the chymo-
trypsin-like activity (22).

After docking these EGCG analogs to the ß5 chymotrypsin
active site using 50 genetic algorithms runs, AutoDock reports
the best docking outputs (lowest docked free energy) for each
GA run and also performs a cluster analysis in which the
total number of clusters represents the reliability of docking
results based on similarity of final docked conformation. The
final docked energy was the sum of the internal energy of the
ligand and the intermolecular energy. We analyzed different
multiple clusters out of which we chose a specific cluster
rank. The criteria of choosing these ranks were based upon i)
the distance from the carbonyl carbon to N terminal Thr must
be within 4 Å; ii) the calculated docked free energy values
that are favorable for binding of (-)-EGCG analogs to the
proteasome. The lower the docking energy is and the larger
the cluster is, the greater the possibility is predicted (22).

Docking of EGCG analog structure 7. In structure 7, we
analyzed 20 different multiple conformation clusters along

with single clusters. Preference was given to multiple con-
formation clusters, from which we chose cluster rank 1 having
10 conformations. This was found consistent with our criteria
of selection. As obtained from the AutoDock report, the final
docked energy was found to be minimum in our selected
cluster (-12.29 kcal/mol, Table I). This places the ester bonds
of structure 7 oriented directly over the N terminal Thr at a
distance of 3.09 and 2.88 Å from the oxygen atom of Thr OH,
respectively (Fig. 3). This orientation and conformation of
structure 7 is well suited for nucleophilic attack. The distance
of the hydrophobic portion of aromatic ring to the hydro-
phobic residues Val 31, Ala 49, Ala 20, Met 45, Gln 53, Ile
35 in the S1 pocket of ß5-subunit were within favorable
distances.

In structure 7, B- and G-rings are symmetrical to each
other having the two hydroxyl groups in meta-substitution at
3' and 5' carbon atoms. The presence of two OH groups on
each ring gives more stable conformation and there exists a
good probability that these two OH moieties or groups in any
of these rings may interact with the amino acids in the active
site to form hydrogen bonds. These interactions further help
in getting the carbonyl atoms very close to the N-terminal of
active site of the proteasome. Since identical B- or G-rings
having equally spaced OH atoms and carbonyl groups,
structure 7 has higher probability of adopting a more stable
conformation. To confirm the favorable binding mode of
structure 7 to the proteasomal chymotrypsin active site, we
analyzed hydrogen bond (H-bond) formation. There are four
polar hydrogen atoms and two carbonyl oxygen atoms on
structure 7 that are available for H-bonding in which only 2
are actively participating in H-bond formation (to Lys 33
4.19 Å and to Ser 96 2.72 Å).

Predicted values obtained from the AutoDock were further
compared with the observed experimental free energies
values. From experimental data we found that structure 7
inhibited the proteasomal chymotrypsin-like activity with an
IC50 value of 29 μM (21).

Docking of other EGCG analogs. Like structure 7, structure
5 also consists of A, C, B and G rings (Fig. 1), suggesting that
it may act as a more potent inhibitor of the proteasome. The
only difference between the two structures is the presence
of three (instead of two) OH groups on both B and G rings in
structure 5. In our docking studies, structure 5 was oriented
in the similar mode as structure 7; we analyzed 29 single
conformation clusters and 20 multiple conformation clusters
for structure 5 (Table I). Out of all the multiple clusters, the
carbonyl carbons of cluster rank 7 were at the closest proximity
of 2.99 and 3.08 Å to hydroxyl oxygen atom of N terminal
Thr (Table I), favoring an effective nucleophilic attack of the
proteasome (Fig. 3).

Both structure 5 and 7 had almost a similar number of
multiple conformation clusters and equal distances from N
terminal threonine, but the docking energy for structure 5
was a little higher than in structure 7 (-12.11 kcal/mol vs.
-12.29 kcal/mol; Table I). Though the orientation and
conformation of both the structures were quite similar, the
presence of three OH groups on B and G rings in structure 5
may render intramolecular steric hindrances, thus conferring
a slightly higher free energy of docking in comparison with
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Figure 2. Structures 5, 7, 16 and 21 were drawn in Quantam CAChe software.
After that nucleophilic susceptibility analysis was performed using PM5
Geometry and wave function in water. The bull's eye indicated the
nucleophilic susceptibilty region in the structures. Absence of one gallate
group decreases the nucleophilic susceptibilty in structures 16 and 21, as there
is only one susceptibile region as compared to two in structures 5 and 7.
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structure 7. There were six polar hydrogen atoms and two
carbonyl oxygen atoms in structure 5. Although it is possible
for all of them in structure 5 to form hydrogen bonds with ß5
subunit of proteasome, only two have high potential to do so
(Lys 33 4.11 Å and Ser 96 2.77 Å).

Structure 16 lacks one gallate group which is replaced
with a hydroxyl group. This significantly decreases its
potency against the 20S proteasome (Fig. 1). This was further
substantiated when we investigated for final docked free
energy of structure 16. In this case, we analyzed all nine (single
and multiple) clusters and we found that there was only one
cluster which meets the criteria. Additionally, the vast majority
of clusters were not able to place carbonyl carbon within the
4 Å of the N-terminal threonine, a distance suitable for
nucleophilic attack. AutoDock reports the final docked energy
to be minimum in our selected cluster (-8.07 kcal/mol)
(Table I) which meets the preset criteria. This places the ester
carbon at an appropriate distance of 4.01 Å (Fig. 3).

Structure 16 allows the OH groups on its gallate ring to
form two potential hydrogen bonds while the OH group on
the C ring, farther out of the S1 pocket, has one OH group

that might form one hydrogen bond. However, although this
conformation might be good for hydrogen bonding, it places
the G and A-C rings, out of the S1 pocket of the proteasome.
The distance of hydrophobic portion of structure 16 to the
hydrophobic amino acid residues on the S1 pocket was more
than 4 Å, supporting the hypothesis that there was no hydro-
phobic interaction between structure 16 and the S1 pocket.
Consistent with its high docked free energy, it inhibits the
proteasome to a lesser extent in comparison with structures 7
and 5.

Structure 21 is similar to structure 16 as both lacks one
gallate moiety, and this observation is highlighted by showing
a dramatic change in docking results. Along with absence
of one gallate group, structure 21 also lacks one hydroxyl
group on its ring G (Fig. 1), suggesting that it might be a poor
proteasome inhibitor. Loss of one gallate moiety and one
hydroxyl group significantly decreases binding of this structure
to the active site of proteasome. The distance of hydrophobic
amino acid residues on the S1 pocket to the hydrophobic
portion on structure 21 was found to be <4 Å and docked
energy was found to be higher as compared to other structures
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Figure 3. Binding modes of compounds into the ß5-subunit of proteasome. Docking was performed by using AutoDock 3.0 software. The resultant files were
analyzed and visualized by using PyMol v. 0.99. (A) The carbonyl carbons of structure 5 were at distance of 3.08 and 2.99 Å having energy of -12.11 kcal/
mol, that is suitable for nucleophillic attack. (B) In structure 16 the distance was 4.01 Å in the cluster having 13 conformations. The lowest docked energy
was found to be -8.07 kcal/mol. (C) The distance of the two carbonyl carbons of structure 7 and hydroxyl of N-terminal Thr was 3.09 and 2.88 Å in cluster
having ten conformations with docking energy -12.29 kcal/mol. (D) The distance was 3.46 Å in structure 21 having docked energy of -5.68 kcal/mol in the
cluster having 5 conformation.
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(Table I). The carbonyl carbon is ~3.46 Å away from the
hydroxyl of Thr (Fig. 3). The extent of inhibitory potencies
was also evaluated on the basis of free energy of binding that
equals to the sum of intermolecular energy and torsional free
energy. Contrary to torsional free energy, intermolecular
energy (-8.23 kcal/mol for structure 21 vs. -9.58 kcal/mol for
structure 16; Table I) and ligand internal energy (+2.56 kcal/
mol for structure 21 vs. +1.51 kcal/mol for structure 16)
was found to be increased in structure 21. As a final effect
free energy of binding was also increased from -8.65 kcal/
mol in structure 16 to -7.30 kcal/mol in structure 21, thus
giving a net increase in docked energy (-5.68 kcal/mol).
Consistent with this finding, structure 21 was a very poor
inhibitor of the proteasome in comparison with the other
structures.

Discussion

Recently, proteasome inhibition has been developed as a
viable favorable therapeutics strategy in the treatment of
cancer. It has been shown that proteasome inhibition is
associated with induction of apoptosis in tumor, but not in
normal cells (31). Previously, we reported that green tea
polyphenols with an ester bond, such as (-)-EGCG, possess
proteasome-inhibitory properties (20). It is suggested that the
lower the docking energy is and the larger the cluster is, the
greater the inhibitory potency is predicted (22). The current
docking data (Fig. 3) are consistent with the order of the
potencies of these four analogs to inhibit the chymotrypsin-
like activity of purified 20S proteasome. Since the analogs
presented herein are structurally similar to (-)-EGCG and
(-)-ECG, we hypothesized that two of these compounds may
act as proteasome inhibitors which may contribute to their
cancer-preventative properties (32).

In our previous studies on EGCG, we reported that
EGCG is susceptible to nucleophilic attack and bind to
hydroxyl group of N-terminal threonine of ß5 subunit thus
resulting in inhibition of the proteasomal activity (22). By
analyzing the electron density (Fig. 2) we determined that the
compounds possess a site susceptible for nucleophilic attack
at the C-2 and C-3 positions in structure 5 and 7 and the C-3
position in structure 16 and 21 while C-2 OH may alter the
ability of these structures to inhibit the proteasome (Fig. 1).
Next, we docked the four analogs to the ß5 subunit of the
proteasome and found that these compounds are suitable for
nucleophilic attack. The order of the docking energy is
therefore: structure 7 < structure 5 < structure 16 < structure 21.

One of the key differences between structures 5 and 7 vs.
structures 16 and 21 is the absence of a gallate group at the
C2 position which is replaced by hydroxyl group, suggesting
that removal of the gallate group decreases the probability
of favorable binding to the active site of ß5-subunit. This
hypothesis is further supported by our previous study
suggesting that absence of gallate group may cause decreased
inhibition to the chymotrypsin-like activity of 20S proteasome
(22). When compared with the experimental data, we found
that structures 5 and 7 inhibited the proteasomal chymotrypsin-
like activity with IC50 values of 19 and 29 μM, respectively
(21). Although structure 7 was less potent to inhibit purified
20S proteasome, our previous results showed that it was more

potent to inhibit cellular proteasome in cell lysate that contains
a COMT activity compared with structure 5. In addition, a
specific inhibitor of COMT could increase the action of
structure 5, but not structure 7, further indicating that structure 7
was relatively resistant to COMT modification. These results
suggest that structure 7 could overcome the disadvantage of
EGCG which is easily subject to methylation by COMT (21). 

By computational molecular modeling we estimated the
internal energy of ligand, docked intermolecular energy and
the torsional energy (Table I). Among them the inter-
molecular energy plays a significant role for the final free
energy of binding and docked free energy. Herein, we found
that the major intermolecular interactions may be due to the
hydrophobic interaction and hydrogen bonding. Highly
susceptible structures have more hydrophobic interactions
when compared to other structures, with the hydrophobic
amino acid residues in the ß5-subunit of proteasome.

Collectively, consistent with prediction from the docking
results, our data demonstrates that i) absence of one gallate
group dramatically decreases the inhibitory potency of the
ligand, ii) the change from 3,4,5-trihydroxy to 3,5-dihyroxy
in the B and G gallate rings has only a small effect in the final
docked energy, consistent with the small difference in the
inhibition of purified proteasome. On the other hand, other
processes such as metabolic methylation by COMT could
substantially modify the proteasome-inhibitory ability of
EGCG and its analogs. The current finding that structure 7
has more stable conformation and lower docked free energy
than other analogs suggests that this COMT-resistant EGCG
analog has a great potential to be developed into a novel
anti-cancer agent for cancer prevention and therapy.
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