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Abstract. Prostate cancer is one of the leading causes of 
cancer-related deaths among males. Although use of the micro-
nutrient selenium in prostate cancer clinical trials is limited, 
the outcomes indicate that selenium is a promising treatment. 
Furthermore, selenium inhibits prostate cancer through 
multiple mechanisms, and it is beneficial in controlling the 
development of this disease. This review highlights the latest 
epidemiological and biomolecular research on selenium in 
prostate cancer, as well as its prospects for future clinical use.
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1. Introduction

Cancer is a devastating disease and currently is the cause of 
more than 7 million deaths worldwide each year. Cancer is the 
uncontrolled growth and spread of cells, and it can affect 
almost any tissue in the body (1). Among all cancers, prostate 
cancer is the fifth most common (2), and the second most 
common cancer in men worldwide (2-4).

The worldwide geographical distribution of prostate cancer 
varies. Rates are lower in Asian countries and much higher in 
North America, Australia and Europe. In 2002, the incidence 
per 100,000 individuals in China was 75- and 50-fold lower 
than the incidence in North America and Australia, respectively 
(2). In American men, prostate cancer is the most common 

cancer, with an estimated 218,890 new cases and 27,050 
deaths in 2007 (5).

This distribution may be correlated with racial differences, 
which is believed to play a role in prostate cancer development 
(6,7). The highest prevalence of prostate cancer is in the 
African-American population, whereas there is a much lower 
risk in Asian populations (8). However, recent publications 
have reported that in Asian countries, prostate cancer incidence 
has rapidly increased in the last three decades (9,10).

Due to this high incidence, the identification of a compound 
that may inhibit cancer development is becoming an important 
objective for scientists. Currently, hundreds of chemicals have 
been and are being evaluated for their anticancer activity. 
Among them, selenium has been reported to be successful in 
epidemiological, in vitro and in vivo experiments, including 
experiments with prostate cancer. In this review, we discuss 
the recent developments in selenium research as both an alter-
native and combination treatment option in the management 
of prostate cancer.

2. Epidemiology

The promising effects of selenium against prostate cancer 
were triggered by the findings of Clark and co-workers in 
1996, who reported a strong inverse association between 
selenium and prostate cancer after the supplementation of 
free-living people with selenized brewer's yeast for a mean of 
4.5 years. They reported a 63% reduced risk in prostate cancer 
among subjects taking selenium supplements (11). This result 
was supported by a later study in 2005 that found that selenium 
supplementation combined with vitamin E induced proteomic 
changes that were associated with a prostate cancer-free status 
(12). In 2006, Sabichi and co-workers conducted a randomized, 
controlled, short-term trial of selenomethionine supplemen-
tation and reported that selenium taken as an oral supplement 
accumulates preferentially in the prostate gland which may 
contribute to its anticancer effects (13).

Blood and toenail selenium status has also been associated 
with prostate cancer incidence. Several studies have reported 
an inverse correlation between blood selenium levels and 
prostate cancer and have suggested that selenium may reduce 
the risk of prostate cancer (14-16). Similar reports have been 
published based on measurements of toenail selenium (17,18), 
a well-accepted biomarker of long-term selenium status (19,20).
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Aside from these results, however, conflicting results have 
also been reported. Studies in the UK and the US suggested 
that there was no strong association between nail and serum 
selenium and prostate cancer risk (21-23). A recent SELECT 
study (selenium and vitamin E cancer prevention), the largest 
cancer chemoprevention trial ever conducted, is a long-awaited 
randomized placebo-controlled trial study that involved 
35,533 men in North America; the study showed that selenium 
or vitamin E alone or in combination did not lower prostate 
cancer incidence (24). In this study, selenium was supplemented 
in the form of selenomethionine, which is the major selenium 
compound in selenized yeast, the material used in Clark's study 
(11). Notably, the result was predicted by Drake (25) based on 
a lack of the enzyme required to convert selenomethionine to 
its active form, methylselenol, in humans. Moreover, a later 
analytical study reported that the selenomethionine distribution 
in the supplement used in Clark's study accounted for only 
27% of the total selenium (26). Thus, it is possible that the 
effect of selenium in Clark's supplementation study was not 
caused by selenomethionine, but rather by other selenium 
compounds or the combination of selenium-containing 
compounds in the yeast (26,27). Therefore, the negative results 
of the SELECT study do not discredit any preventive properties 
of selenium against prostate cancer. Indeed, from three meta-
analysis studies on articles that examined the association 
between selenium and prostate cancer, all suggested that 
selenium intake may reduce the risk of prostate cancer 
(4,28,29).

3. The mechanism of selenium in prostate cancer 

Signaling pathways
Androgen receptor signaling. Androgen receptor (AR) signaling 
is one of the key factors in prostate cancer development and 

progression. AR is a transcription factor of the nuclear receptor 
family (30) that mediates androgen by activating the androgen 
response element (ARE) (31). 

Testosterone becomes an active androgen after conversion 
into dihydrotestosterone (DHT) by the enzyme 5α-reductase 
(32). Active androgen then binds with AR, leading to its nuclear 
translocation and interactions with AREs to activate androgen-
responsive gene transcription (31,32). Aside from active androgen, 
AR signaling was also found to be induced by interleukin 
(IL)-6 and oncostatin M in in vitro experiments (33,34).

Several selenium compounds are known to disrupt AR 
signaling in prostate cancer cells. In in vitro experiments using 
human prostate cancer cells, methylseleninic acid (MSeA), a 
methylselenol precursor, was reported to reduce androgen 
signaling at multiple stages by increasing AR protein degra-
dation at both the mRNA and protein levels and by reducing 
AR nuclear translocation (35-37). Furthermore, MSeA also 
reduced AR-mediated gene expression, including prostate-
specific antigen (PSA) expression (35-39). Another methylselenol 
precursor, selenomethionine (SeMet), was found to decrease 
AR activity in the LNCaP human prostate cancer cell line 
(40). Additionally, Se-methylselenocysteine (Se-MSC) signifi-
cantly inhibited LNCaP tumor growth in LNCaP-induced 
mice by decreasing AR expression in tumor tissues and serum 
PSA levels (41).

Selenite, an inorganic form of selenium, has also been 
reported to disrupt AR signaling. Husbeck and co-workers 
(39) found that selenite inhibited AR signaling by decreasing 
AR expression and activity through a redox mechanism. 
Moreover, unlike MSeA, selenite also inhibited IL-6-mediated 
AR signaling in the LNCaP human prostate cancer cell line 
(42). Taken together, as summarized in Fig. 1, these reports 
describe a potential role of selenium in the disruption of AR 
signaling in prostate cancer.

Figure 1. Reported mechanisms of how selenium (Se) inhibits the androgen receptor and PI3K/Akt signaling.
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Insulin-like growth factor signaling. Insulin-like growth factor 
(IGF) signaling involves IGF ligands (IGF-I and IGF-II), IGF 
receptors (IGF-IR and IGF-IIR) and IGF binding protein 
(IGFBP) (43). IGFBP-3 is the binding protein that regulates 
IGF (44). Once released from IGFBP-3, IGF activates the IGF 
receptor to induce downstream signaling cascades, thereby 
controlling cell proliferation and cell survival (43). The ability 
of the IGF receptor to induce downstream signaling cascades 
comes from IGF-IR. Upon binding with IGF-I, IGF-IR induces 
downstream signaling via Ras/Raf/mitogen-activated protein 
kinase (MAPK) and/or phosphatidylinositol 3-kinase (PI3K)/
Akt (43-46). However, IGF-IIR bound with IGF-II still lacks 
tyrosine kinase activity and does not transduce signals (47), so 
its precise function in tumorigenesis and tumor growth is still 
unclear (48). IGF-I is a mitogenic ligand that is overexpressed 
in prostate cancer and is associated with prostate cancer risk 
(49,50); therefore, down-regulation of IGF-IR signaling may 
be a promising target for the chemoprevention of prostate 
cancer.

Schlicht and co-workers (51) identified 154 genes that 
showed similar levels of differential expression upon SeMet 
treatment in the human PC-3 and rat PAII prostate cancer cell 
lines. Their analysis and data mining showed that IGFBP-3 
was up-regulated by SeMet in both cell lines. Moreover, 
SeMet and MSeA have also been reported to down-regulate 
IGF-IR gene expression in LNCaP cells (52). Although further 
research is still needed, their findings suggest that restoration 
of IGFBP-3 by selenium may inhibit prostate tumorigenesis 
by disrupting the IGF-IR signaling pathway.

Toll-like receptor signaling. Toll-like receptors (TLR) have 
gained interest in recent years since being identified as one of 
the important mediators of inflammation. Furthermore, they 
are able to recognize many microbial pathogens with various 
adaptor proteins and activate different transcription factors. 
Activation of TLR-dependent signaling leads to activation of 
the immune response, as well as the expression and release of 
various cytokines and associated molecules (53). Recent studies 
have shown that sequence variations in the TLR4 gene and 
TLR6-TLR1-TLR10 gene cluster are associated with prostate 
cancer risk (54-56). However, the functional role of TLR variants 
in the growth and development of prostate cancer remains to 
be established (57).

There are limited reports on the ability of selenium 
compounds to affect the TLR signaling pathway, especially in 
prostate cancer. However, MSeA has been reported to 
up-regulate TLR2 gene expression in PC-3 cells (58). TLR2 is 
known as the death receptor in apoptosis (59). Up-regulation 
of TLR2 stimulates apoptosis through adaptor molecules via a 
pathway that involves caspase-8 (59). This report may lead to 
additional details on the role of selenium and TLR signaling 
in prostate cancer chemoprevention. 

Phosphatidylinositol 3-kinase (PI3K)/Akt signaling. 
Up-regulation of PI3K/Akt is important for the growth of 
many types of cancers, including prostate cancer. PI3K 
converts phosphatidylinositol-4,5-biphosphate (PIP2) to 
phosphatidylinositol-3,4,5-triphosphate (PIP3), which recruits 
phosphoinositide-dependent kinase 1 (PDK1) and Akt to the 
cell membrane. This recruitment partially activates Akt by 

phosphorylation at Thr308 by PDK1. Full activation of Akt 
occurs after a second phosphorylation by another kinase at 
Ser473. It is still unclear which kinase is responsible for 
Ser473 phosphorylation; however, several kinases have been 
reported to play an important role in this event, including 
integrin-linked kinase (ILK), MAPKAP kinase and rictor-
mTOR kinase. Through its downstream actions, Akt activation 
mediates cancer cell proliferation, motility, survival and 
angiogenesis. Phosphatase and tensin homologue (PTEN) is 
known to negatively regulate PI3K/Akt signaling by blocking 
the conversion of PIP2 to PIP3. However, in cancer cells, 
PTEN is either absent or nonfunctional, resulting in a high 
level of PIP3 and hyperactivation of Akt (60).

As reported by Wu and coworkers (61), in PC-3 cells, 
MSeA is capable of reducing the activity of PI3K by 30%, 
which leads to a decrease in Akt and PDK1 membrane 
localization. Furthermore, MSeA inhibits Akt phosphorylation 
at both Thr308 and Ser473 (61) and up-regulates PTEN gene 
expression in PC-3 cells (58). In DU-145 cells, Berggren and 
co-workers found increased PTEN activity and decreased Akt 
phosphorylation at Ser473 after the cells were treated with 
selenite (62). Inhibition of Akt phosphorylation at Ser473 in 
DU-145 cells was also reported after the cells were treated 
with MSeA (63,64) and SeMet (64). 

We recently reported that the addition of selenium to 
broccoli sprouts, which generates Se-MSC as the major selenium 
compound, induces the down-regulation of phosphorylated 
Akt and downstream phosphorylated mTOR in LNCaP cells 
(65). As expected, this down-regulation was not noted in LNCaP 
cells treated with normal broccoli sprout extract that contained 
only sulforaphane as the active anticancer agent. In recent 
years, the PI3K/Akt signaling pathway has been shown to play 
a major role in cancer development and survival. Thus, as 
shown for selenium in Fig. 1, the PI3K/Akt pathway may be a 
fruitful target for cancer therapy.

Cell cycle pathway
Cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors 
(CKIs). Interactions between cyclins, CDKs and CKIs are 
known to play critical roles in the cell cycle. Among the CDKs, 
CDK2, CDK4, CDK6 and CDK1 are the most frequent kinases 
that are deregulated in prostate cancer (57). CDKs can be 
activated by association with cyclin, by phosphorylation of its 
T-loop threonine by CDK-activating kinase and by dephospho-
rylation of threonine 14/tyrosine 15 by cdc25 phosphatase (66).

CDK activation by specific cyclins regulates different phases 
of cell cycle progression and finally induces uncontrolled cell 
proliferation and survival (67). For example, association of 
CDK4 and CDK 6 with D-type cyclin accelerates the early 
and mid-G1-phase progression (68,69), and CDK2 interacting 
with cyclin E promotes the late G1 and G1-S transition (70-72). 
CDK2 interacting with cyclin A is responsible for S-phase 
and early G2 phase progression (73-75), and CDK1 interacting 
with cyclin B promotes the G2-M transition (76,77).

However, these cyclin-CDK complexes are negatively 
regulated and controlled through associations with CKIs 
(67,78). There are two families of CKIs; the first family is the 
cip/kip family. This family includes p21/cip1, p27/kip1 and 
p57/kip2 (66). p21/cip1 is known as the universal inhibitor of 
CDKs because of its ability to be involved in all phases of the 
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cell cycle (79). p27/kip1 is involved in cell cycle regulation during 
the G1-S transition (80), whereas the specific role of p57/kip2 
in cell cycle progression is still poorly understood.

The second family of CKIs is the INK4 family, which 
includes p15 (INK4b), p16 (INK4a), p18 (INK4c) and p19 
(INK4d) (66). This family specifically inhibits CDK4 and 
CDK6 activity (81,82), thereby inducing G1 arrest in the cell 
cycle by competing with the cyclin D and CDK4/CDK6 
association (66,82). The modulation of cyclin-CDK-CKI 
association, as shown for selenium in Fig. 2, is promising in 
prostate cancer treatment.

Chronic treatment with selenite was reported to induce 
p21 and p27 protein expression followed by G2/M phase arrest 
in LNCaP cells (83), whereas in DU-145 cells, 24 h of exposure 
to selenite decreased cyclin D protein expression (63). SeMet 
has also been shown to induce G2/M cell cycle arrest by tyrosine 
phosphorylation of CDK1 in LNCaP, PC-3 and DU-145 cells 
(84). Moreover, SeMet also down-regulates cyclin D (85) and 
induces p21 and p27 protein expression in LNCaP cells (86,87).

Studies using MSeA reported a decrease in cdc25 and 
increases in p19, p21 and p57, followed by G1 phase arrest in 
LNCaP cells (36). In PC-3 cells, MSeA also decreased cyclin A, 
CDK1, CDK2 and CDK4, and increased p19 and p21 gene 
expression (58). However, in DU-145 cells, MSeA down-
regulated cyclin D expression and up-regulated p27 and p21 
expression levels (63).

Retinoblastoma-E2F. Another important cell cycle regulator 
is retinoblastoma (Rb). Rb is a known tumor suppressor that 
functions by inhibiting the E2F-mediated gene transcription 
that is required for cell cycle progression (88). Hypophosphory-
lated Rb is recognized as an active Rb because of its ability 
to sequester E2F family transcription factors. However, phos-
phorylation of Rb by CDKs (CDK 4/6-cyclin D or CDK 
2-cyclin E) inactivates Rb, thereby releasing E2Fs. Free E2Fs 

then heterodimerize with their DNA-binding partners leading 
to transcriptional activation of growth-promoting genes (88-91).

There are three Rb proteins (Rb/p110, Rb1/p107 and Rb2/
p130) and six E2F families (E2F1-6) that heterodimerize with 
two DNA-binding partners (DP1 and DP2) to form 12 different 
DNA-binding transcriptional regulators that are needed for 
entry from the G0 to S phase (90,92,93). Upon entering the S 
phase, Rb is kept inactivated by CDK/cyclin throughout the 
remainder of the cell cycle (94,95) until mitosis, when Rb 
activity is reset by phosphatase activity (93). High levels of 
E2F have been observed in cancerous cells (96); therefore, 
targeting the modulation of Rb and E2F expression may 
inhibit cancer cell growth by inhibiting S phase entry (97).

In vitro experiments using MSeA have been shown to 
modulate Rb-E2F expression by increasing Rb1 gene expres-
sion in PC-3 cells (58). MSeA has also been reported to 
decrease E2F1 gene expression, followed by G2/M phase 
arrest in LNCaP cells (36,52). These findings suggest that the 
modulation of Rb-E2F expression is one of the potential 
targets of selenium in its inhibition of prostate cancer growth 
(Fig. 3).

Apoptotic targets
Nuclear factor-κ B (NF-κB) pathway. NF-κB is a family of 
transcription factors consisting of NF-κB1 (p50/p105), NF-κB2 
(p52/p100), RelA (p65), RelB and c-Rel (98). In its inactivated 
form, NF-κB is sequestered by inhibitory-κB (IκB) in the 
cytoplasm. However, when IκB is phosphorylated at specific 
serine sites by IκB kinases (IKKs), NF-κB is free and active. 
Free NF-κB translocates to the nucleus and binds to the κB 
sites of a wide spectrum of genes that are involved in cell 
proliferation, tumor angiogenesis and metastasis (99-101). 
NF-κB is reportedly active in androgen-independent prostate 
cancer; thus, NF-κB activation could be a potential target in 
controlling prostate cancer growth and malignancy.

Figure 2. Mechanisms of selenium inhibit prostate cancer cell cycle by altering cyclins, CDKs and CKIs.
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Selenite and MSeA have been reported to inhibit the IKK 
activity in DU-145 cells, thereby inhibiting the activation of 
NF-κB-mediated transcription (102). Using an oligonucleotide 
array, Dong and co-workers reported that treatment of PC-3 
cells with MSeA was able to decrease NF-κB1 gene expression 
(58). In LNCaP cells, MSeA is able to prevent the binding of 
NF-κB to its DNA response element, resulting in a reduction 
in the transcription rates of NF-κB-regulated genes (103). 
Furthermore, Zhao and Brooks found an up-regulation of IκB 
and down-regulation of NF-κB2 gene expression in LNCaP 
cells treated with SeMet (52). Taken together, these results 
showed that selenium compounds may target the NF-κB activa-
tion pathway in prostate cancer growth and malignancy (Fig. 3). 

Bcl-2 family proteins. Bcl-2 family proteins are known to play 
important roles in apoptosis. Based on structural and functional 
features, they can be divided into three subfamilies: an anti-
apoptotic protein subfamily that contains the 1-4 homology 
domains (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, Bfl1 and Bcl-B), a multi-
domain pro-apoptotic protein subfamily that contains the 1-3 
homology domains (Bax, Bak and Bok) and a BH3-only 
pro-apoptotic protein subfamily that contains only the BH3 
domain (Bim, Bad and Bid) (104).

During mitochondrial apoptosis, cytochrome-c is released 
from the mitochondria to the cytosol upon stimulation from 
death stimuli. Cytochrome-c then associates with Apaf-1 and 
pro-caspase-9 to form the apoptosome, which induces apoptosis 
through the activation of caspase-3 and PARP cleavage 
(104,105). Bcl-2 family proteins regulate this mitochondrial 
apoptosis by controlling the permeabilization of the mito-
chondrial membrane. The balance between Bcl-2 family proteins 
is the key factor determining cell survival or apoptosis. Upon 
death stimulation, pro-apoptotic bax/bak proteins are activated 
and mediate pores in the outer mitochondrial membrane that 

facilitate the release of cytochrome-c, which leads to apoptosis. 
However, it has been reported that in cancerous cells, the balance 
of Bcl-2 family proteins is disrupted, and anti-apoptotic Bcl-2 
is overexpressed. Overexpression of the anti-apoptotic Bcl-2 
protein will block the activation of pro-apoptotic proteins; 
hence, the cells become resistant to apoptotic death (104-106).

Inorganic selenite has been reported to decrease Bcl-2 
expression and increase Bax protein expression in prostate 
cancer cells lines (LNCaP, DU-145 and LAPC-4) and primary 
prostate epithelial cell cultures of cancerous subjects. This 
phenomenon leads to a decrease in the Bcl-2:Bax ratio, a release 
of cytochrome-c and the activation of mitochondrial apoptosis 
(107-111). Furthermore, two methylselenol precursors, MSeA 
and SeMet, have also been found to decrease the ratio of these 
pro-apoptotic and anti-apoptotic protein expression levels. 
MSeA decreased Bcl-2 anti-apoptotic protein levels and 
increased the Bax, Bak and Bid pro-apoptotic proteins of 
LNCaP, DU-145 and PC-3 cells (112), while SeMet increased 
the Bax pro-apoptotic protein levels in LNCaP cells (87). 
These findings may suggest that the Bcl-2 protein families 
play key roles in selenium-induced mitochondrial apoptosis. 

Inhibitor of apoptosis protein (IAP). IAP proteins consist of 
nine family members: X-linked IAP, cIAP1, cIAP2, melanoma 
IAP, IAP-like protein 2, neuronal apoptosis inhibitor protein, 
livin, appolon and survivin (113,114). They play important roles 
in the regulation of cell cycle progression and inhibition of 
apoptosis (115). Survivin, the smallest (16.5 kDa) member of 
the family, is overexpressed in many types of cancer, including 
prostate cancer (116). Survivin prevents apoptosis by directly 
binding to caspase-3 and caspase-7 and blocking their activa-
tion (117). Thus, survivin expression is associated with cancer 
cell malignancy and survival. The activity of survivin can be 
inhibited by Smac/DIABLO (118), which is released from the 

Figure 3. Reported mechanisms of retinoblastoma and NF-κB signaling inhibition by selenium in prostate cancer.
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mitochondria together with cytochrome-c. Due to its rare 
expression in normal tissues (except embryonic tissues) and 
overexpression in cancerous tissues, survivin is a promising 
target for cancer therapy.

To our knowledge, research on the effect of selenium on 
survivin expression in prostate cancer is still limited to MSeA. 
MSeA was reported to repress survivin gene expression in 
PC-3 cells in an oligonucleotide array experiment (58). Later, 
Chun and co-workers confirmed that MSeA down-regulated 
survivin protein expression in PC-3 and C4-2 cells by preventing 
the binding of Sp1 transcription factor to the promoter of 
survivin (119). Moreover, in combination with tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL), a cytotoxic 
agent that preferentially induces apoptosis, MSeA also induces 
the translocation of Smac/DIABLO from the mitochondria to 
the cytosol of DU-145 cells, thereby enhancing the efficacy of 
TRAIL (120). These results show that the down-regulation of 
survivin expression is one of the selenium-mediated anticancer 
mechanisms.

Angiogenesis targets
Angiogenesis has been proven to play an important role in 
cancer growth. Although it is strictly regulated by physiological 
conditions, it has been reported that unregulated angiogenesis 
occurs under pathological conditions, including cancer (121). 
Angiogenesis supplies cancerous cells with nutrients and 
oxygen, removes their waste products and facilitates cancer cell 
metastasis (122,123). Therefore, the growth of a cancer cell 
should be inhibited if it is located more than 100 µm from a 
blood vessel (124).

Angiogenesis begins when cancerous cells synthesize and 
secrete pro-angiogenic factors, such as vascular endothelial 
growth factor (VEGF), basic fibroblast growth factor (bFGF) 
and IL-8, among others (125). Secreted proangiogenic factors 
will activate nearby endothelial cells by binding to specific 
receptors on the cell surface (121). Upon activation, multiple 
signaling pathways are activated in endothelial cells that lead 
to the production of matrix metalloproteinases (MMPs), a 
special class of degradative enzymes that break down the extra-
cellular matrix support material that fills the spaces between 
cells (126). Breakdown of this extracellular matrix allows for 
the migration and growth of endothelial cells (126,127). 

Although there are several reports addressing the ability 
of selenium to decrease cancer cell angiogenesis, research on 
prostate cancer angiogenesis properties is still limited to MSeA. 
MSeA treatment of DU-145 cells decreased both cellular and 
secreted VEGF concentrations in a dose-dependent manner 
(128). Furthermore, in PC-3 cells, MSeA exposure decreased 
VEGF and bFGF gene expression (58). Because angiogenesis 
plays a key role in cancer development, selenium-based anti-
angiogenic therapy may become an attractive method of 
preventing cancer cell growth and metastasis.

4. Conclusions and future challenges

Prostate cancer has become one of the most common cancers 
and is one of the leading causes of cancer-related deaths, 
particularly in developed countries (5). The existence of an 
agent with multiple anticancer mechanisms, such as selenium, 
will be beneficial in controlling the development of this disease. 

Furthermore, selenium concentrations have been reported to 
be associated with prostate cancer incidence, leading to the 
idea of selenium supplementation for prostate cancer preven-
tion. As previously mentioned, recent epidemiological studies 
that have reported the failure of selenium to lower prostate 
cancer incidence do not directly discredit the potential of 
selenium in prostate cancer prevention and therapy because of 
the type of selenium compound used in those studies.

Although selenium anticancer trials are some of the most 
successful, its chemical form is critical to its biological activity 
(1). Methylselenol is believed to be the critical metabolite in 
selenium chemoprevention (129-131). Since methylselenol is 
highly reactive, methylselenol precursors such as SeMet and 
Se-MSC are important both in in vitro and in vivo experiments 
(41,52,87). SeMet and Se-MSC conversion to methylselenol, 
however, requires enzymatic conversion by the enzyme 
β-lyase, which is 800 times less prevalent in human tissues 
than in mouse tissues (132). This may explain why the results 
of SeMet and Se-MSC anticancer studies in humans were not 
as impressive as in vivo experiments. Although researchers 
have now turned to other Se compounds such as MSeA, which 
do not need enzymatic conversion to methylselenol, or selenite, 
which does not need to be converted to methylselenol for its 
anticancer properties (25), more substantial research on 
selenium compound metabolism in human tissues is necessary. 
Only then will the results of the in vitro, in vivo and human 
trials be consistent. Understanding the biochemical transfor-
mation of each selenium compound in the human body is a 
critical step in the use of selenium as an option in prostate 
cancer management.
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