
INTERNATIONAL JOURNAL OF ONCOLOGY  40:  721-730,  2012

Abstract. Better understanding of the underlying biology 
of malignant gliomas is critical for the development of early 
detection strategies and new therapeutics. This study aimed to 
define genes associated with survival. We investigated whether 
genes selected using random survival forests model could be 
used to define subgroups of gliomas objectively. RNAs from 50 
non-treated gliomas were analyzed using the GeneChip Human 
Genome U133 Plus 2.0 Expression array. We identified 82 genes 
whose expression was strongly and consistently related to patient 
survival. For practical purposes, a 15-gene set was also selected. 
Both the complete 82 gene signature and the 15 gene set subgroup 
indicated their significant predictivity in the 3 out of 4 indepen-
dent external dataset. Our method was effective for objectively 
classifying gliomas, and provided a more accurate predictor of 
prognosis. We assessed the relationship between gene expres-
sions and survival time by using the random survival forests 
model and this performance was a better classifier compared to 
significance analysis of microarrays.

Introduction

Glioblastoma, which is pathologically the most aggressive form 
of glioma, has a median survival range of only 9-15 months (1,2). 
Advances in basic knowledge of cancer biology and surgical 
techniques, chemotherapy, and radiotherapy, have led to little 
improvement in survival rates of patients suffering from glio-
blastoma (1). Poor prognosis is attributable to difficulties in early 
detection and to a high recurrence rate after initial treatment. 
Therefore, it is important to devise more effective therapeutic 

approaches, to reveal more clearly the biological features of 
glioblastoma, and to identify novel target molecules for diagnosis 
and therapy of the disease. Several histological grading schemes 
exist, and the World Health Organization (WHO) system is 
currently the most widely used (3). A high WHO grade correlates 
with clinical progression and decreased survival. However, there 
are still many individual variations within diagnostic categories, 
resulting in a need for additional prognostic markers. The inad-
equacy of histopathological grading is evidenced, in part, by the 
inability to recognize these patients prospectively.

Recently, microarray technology has permitted development 
of multi-organ cancer classification including gliomas (4-6), 
identification of glioma subclasses (7-15), discovery of molecular 
markers (16-23) and prediction of disease outcomes (24-27). 
Unlike clinicopathological staging, molecular staging can predict 
long-term outcomes of any individual based on the gene expres-
sion profile of the tumor at diagnosis, helping clinicians make an 
optimal clinical decisions. The analysis of expression profiles of 
genes in clinical materials is an essential step towards clarifying 
the detailed mechanisms of oncogenesis and the discovery of 
target molecules for the development of novel therapeutic drugs.

In the present study, we describe an expression profiling 
study on a panel of 50 patients with glioma for the identification 
of genes predictive of overall survival using random survival 
forests model, with validation in independent data sets.

Materials and methods

Samples. Tissues were snap-frozen in liquid nitrogen within 
5 min of harvesting, and stored thereafter at -80˚C. Clinical 
stage was estimated from accompanying surgical pathology 
and clinical reports. Samples were specifically re-reviewed by a 
board-certified pathologist in Niigata University according to the 
WHO 2000 criteria, using observation of sections of paraffin-
embedded tissues that were adjacent or in close proximity to the 
frozen sample from which the RNA was subsequently extracted. 
The histopathology of each collected specimen was reviewed to 
confirm the adequacy of the sample (i.e., minimal contamina-
tion with non-neoplastic elements), and to assess the extent of 
tumor necrosis and cellularity. Informed consent was obtained 
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from all patients for the use of the samples, in accordance with 
the guidelines of the Ethics Committee on Human Research, 
Niigata University Medical School (Protocol no. 70). Overall 
survival was measured from the date of the first operation for 
diagnosis. Survival endpoints corresponded to dates of death or 
last follow-up.

RNA extraction and array hybridization. Approximately 100 mg 
of tissue from each tumor was used to extract total RNA using 
the Isogen (Nippongene, Toyama, Japan) method, following the 
manufacturer's instructions. The quality of RNA obtained was 
verified with the Bioanalyzer System (Agilent Technologies, 
Tokyo, Japan) using RNA Pico Chips. Only samples with 
28S/18S ratios >0.7 and with no evidence of ribosomal peak 
degradation were included in the study. Six micrograms of 
RNA were processed for hybridization on the GeneChip Human 
Genome U133 Plus 2.0 Expression arrays (Affymetrix, Inc., 
Tokyo, Japan), which comprised ~47,000 genes. After hybrid-
ization, the chips were processed using a Fluidics Station 450, 
a High-Resolution Microarray Scanner 3000, and a GCOS 
Workstation Version 1.3 (Affymetrix, Inc.).

Validation of differential expression by real-time quantita-
tive PCR. Quantitative PCR (QPCR) was performed on a 
StepOne Real-Time PCR Systems (Applied Biosystems, 
Tokyo, Japan) using the TaqMan Universal PCR Master 
Mix (Applied Biosystems) according to the manufacturer's 
protocol. The TaqMan Gene Expression Assay Mix contained 
primers and TaqMan probes: Hs99999905-m1 (GAPDH), 
Hs00933163-m1 (PIK3R1), Hs00934330-m1 (SERPING1), 
and Hs00162558-m1 (TAGLN) from Applied Biosystems. 
Total RNA (5 µg) was subjected to reverse-transcription into 
cDNA using Super-Script II (Invitrogen, Tokyo, Japan). One 
microliter of this cDNA was used for QPCR. Validation was 
performed on a subset of tumors that were part of the original 
tumor data set assessed. Assays were done in duplicate. The 
raw data produced by QPCR referred to the number of cycles 
required for reactions to reach exponential phase. Expression of 
GAPDH was used for normalization of the QPCR data. Mean 
expression fold change differences between tumor groups were 
calculated using the 2-∆∆CT method (28). Mean expression fold 
changes between short- (survival time <2 years; n=30) and long-
term (survival time >2 years; n=14) survivors were compared.

Immunohistochemistry. Five-micron sections from formalin-
fixed, paraffin-embedded tissue specimens were used for 
immunohistochemistry. Immunohistochemistry for PIK3R1 
(antibody dilution 1:200; Abcam, Tokyo), SERPING 1 (M81)
(antibody dilution 1:50; Abcam) and TAGLN (SM22α) (anti-
body dilution 1:200; Abcam) was performed as described 
previously (21). Staining intensity was classified as none or 
weakly positive (0 point), moderately positive (1 point), or 
strongly positive (2 points). Averages of three independent 
measurements were calculated to the first decimal. Observers 
were not aware of case numbers.

Statistical analysis. To rank genes, the Cox score for each gene 
was obtained from the univariate Cox proportional hazards 
regression model. To obtain stable scores, we took the mean 
of scores computed from the 5-fold cross-validated samples. 

We excluded genes with low scores (p>0.0025). Genes that 
passed the filter criteria were considered for further analysis. 
All statistical analysis was performed in the R software (29) and 
Bioconductor (30). To select predictors for survival time, we first 
set filtered gene expressions and phenotypes [age, WHO grade, 
Karnofsky performance status score (KPS), and gender] to be 
initial candidates and iteratively fitted random survival forests 
model (31), at each iteration building a new forest after discarding 
those predictors with the smallest variable importances. For 
parameters in random survival forests model such as the number 
of tree and the number of valiables selected randomly at each 
node, we gave the default setting in the rsf function within the 
randomSurvivalForest package before the selection. We selected 
the set of predictors with the smallest 5-fold cross-validated error 
rate, which is one minus the Harrell's concordance index (32) and 
the ‘1 s.e. rule’ used in the classification trees literature (33). That 
is, the error rate plus its 1 s.e. was used as the threshold for the 
selection. The cross-validated error rate was computed in each 
set of predictors.

We classified samples into two survival groups by a Ward's 
minimum variance cluster analysis, with its inputs being 
ensemble cumulative hazard functions for each individual for 
all unique death time-points estimated from the fitted random 
survival forests model. The Kaplan-Meier method (34) was used 
to estimate the survival distribution for each group. A log-rank 
test was used to test the difference between survival groups. For 
the purpose of comparison, the same analysis was conducted for 
two different groups based on WHO grade and gene expression 
clustering. The relationship between the grouping by the random 
survival forests model and gene expressions for the selected to 
genes was visualized by a heatmap.

GSEA (gene set enrichment analysis) was performed by the 
GSA method (35) on KEGG (Kyoto Encyclopedia of Genes 
and Genomes) pathway (36). The pathways used in this analysis 
were selected to the one which the selected genes belong. We 
picked up pathways with FDR = 0.3.

To quantify the accuracy of prediction, we utilized inde-
pendent test data sets from four studies (25,26,37,38). Firstly, 
ensemble mortalities for each individual in the test data were 
computed using the random survival forests model fitted to our 
data set with selected genes. Secondly, the relationship between 
computed ensemble mortalities and survival times in the test 
data was analyzed using Harrell's concordance index. Predictive 
accuracy was assessed using a weighted combination of p-values 
for the index, with weights being based on the sample sizes of the 
studies. These were implemented using the concordance.index 
and test.hetero.test functions within the survcomp package 
(39). Since, there were some missing genes in the test data, the 
genes were treated as missing values and imputed through the 
proximity approach (40). For signatures found in other studies 
(25,26,37), we perfumed the overlap analysis, and applied 
random survival forests with the signatures and compared based 
on survival curves described above. For this analysis, a p<0.05 
was considered to indicate statistical significance.

Results

Patients characteristics. Fifty non-treated glioma specimens 
[five astrocytoma (grade II), seven anaplastic astrocytoma, six 
anaplastic oligoastrocytoma or oligodendroglioma (grade III), 
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and 32 glioblastoma (grade IV), corresponding to the WHO 
criteria] were obtained from patients who underwent surgical 
resection between 2000 and 2005. The mean age of the patients 
was 65 (range, 18-80). Thirty-four patients were males, and 16 
were females. The preoperative Karnofsky Performance Status 
(KPS) was at least 50 in 48 (96%) patients. For anaplastic astro-
cytoma and glioblastoma, after maximum surgical resection 
of the tumor, patients had a course of external beam radiation 
therapy (standard dose of 60 Gy to the tumor with a 2-cm margin) 
and 1st line chemotherapy with nimustine, and temozolomide at 
recurrence. For grade II astrocytoma, after surgical resection of 
the tumor, patients had standard dose of 60 Gy radiation therapy 
to the tumor with a 2-cm margin at initiation and chemotherapy 
with temozolomide at recurrence. In most anaplastic oligoden-
droglioma cases, patients were treated by radiotherapy with 
chemotherapy of the modified PCV regimen (procarbazine, 
nimustine and vincristine). Patients were monitored for recur-
rences of the tumor during the initial and maintenance therapy 
by magnetic resonance imaging (MRI) or computed tomog-
raphy (CT). Treatments were carried out at the Department of 
Neurosurgery, Niigata University Hospital. The median survival 
time with grade II was 57 months, grade III 29.5 months, and 
Grade IV 13.5 months, respectively. The median follow-up for 
survivors was 4.7 years (range 3.7-8.3).

Selection of predictive genes. Eighty-two genes and no pheno-
types were selected as the predictor. Table I shows the list of 
the genes with the obtained variable importances (VI). The 
scatter plot (Fig. 1) shows the relationship between estimated 
ensemble mortalities and expressions for six selected genes 
(LOC100128292, TBX19, VEGFA, PIK3R1, TAGLN, and 
SERPING1). The heatmap (Fig. 2) consists of patients clustered 
by the estimated ensemble mortalities in the column and genes 
clustered by their expressions in the row. For patients with poor 

survival (represented by the blue bar at the top), the upper located 
genes are overexpressed while the lower are underexpressed. 
For patients with good survival (represented by the red bar at the 
top), there were no clear distinguishing patterns. However, the 
expression pattern in patients with very good survival (located 
in the right cluster) was reversed from the patterns observed in 
the poor survivors. Thus, from the heatmap, the selected genes 
might be effective in distinguishing between poor and very 
good survivors.

Survival analysis using the selected gene classifiers reveals a 
prognostic value for tumor subtype. Kaplan-Meier curves (Fig. 3) 
were drawn for groups classified by WHO grades III and IV 
(Fig. 3A), by the clustering analysis based on the gene expres-
sions selected by the SAM (significance analysis of microarrays) 
(41) with FDR (false discovery rates) <0.0005 (Fig. 3B), and by 
random survival forests model (Fig. 3C). The corresponding test 
statistics (Q) and p-values (p) for the log-rank test were Q=8.6, 
p=0.0034 for WHO grade, Q=14.4, p=0.0001 for the SAM, and 
Q=45.6, p<0.0001 for random survival forests model with the 
82-gene set. These results show that the random survival forests 
model is more useful than the direct use of gene expressions.

GSEA. The six pathways were identified as: focal adhesion, 
glycosaminoglycan degradation, leukocyte transendothelial 
migration, complement and coagulation cascades, starch and 
sucrose metabolism, and other glycan degradation.

Survival analysis using the selected gene classifiers in indepen-
dent data sets. The results for the accuracy of prediction are 
summarized in Table II. The computed Harrell's concordance 
indexes (their 95% confidence intervals and p-values) are shown. 
The p-value of the combined tests was p<0.0001, which indi-
cates that the selected set of genes was significantly predictive.

Figure 1. Marginal plots for the six genes. Values on the vertical axis represent the expected number of deaths for a given gene expression and the horizontal axis 
represents the gene expression value. Each point corresponds to an individual, patients with a higher value on the vertical axis have a higher risk. Lines represent 
a LOWESS (locally weighted scatterplot) smoothing to show the relationship between predicted values by random survival forests model and gene expressions 
based on the scatter plot. 
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Table I. Identification of survival related 82 genes.

Probe Symbol Description VI

1562598_at LOC100128292a Hypothetical LOC100128292 0.0051 (0.00674536) 
242769_at ESTs 0.0051 
206838_at TBX19a T-box 19 0.0042 (0.00590219) 
1563453_at cDNA DKFZp686J113 (from clone DKFZp686J113) 0.0034 
222477_s_at TM7SF3a Transmembrane 7 superfamily member 3 0.0034 (0.0134907) 
235691_at LOC729970a Similar to hCG2028352 0.0034 (0.00337268) 
238596_at C10orf4a Chromosome 10 open reading frame 4 0.0034 (-0.00252951) 
200776_s_at KIAA0005 KIAA0005 gene product 0.0025 
220459_at MCM3APASa MCM3AP antisense RNA (non-protein coding) 0.0025 (0.00421585) 
223319_at GPHNa Gephyrin 0.0025 (-0.00505902) 
225867_at VASNa Vasorin 0.0025 (-0.00505902) 
232975_at HCG18a HLA complex group 18 0.0025 (0.00252951)
200820_at PSMD8a Proteasome (prosome, macropain) 26S subunit, non-ATPase, 8 0.0017 (-0.00421585) 
201590_x_at ANXA2a Annexin A2 0.0017 (-00337268) 
203234_at UPP1a Uridine phosphorylase 1 0.0017 (0.0109612) 
205918_at SLC4A3a Solute carrier family 4, anion exchanger, member 3 0.0017 (-0.00084317) 
211976_at FLJ22515 fis 0.0017 
212171_x_at VEGFAa Vascular endothelial growth factor A 0.0017 (0.0193929) 
212240_s_at PIK3R1a Phosphoinositide-3-kinase, regulatory subunit 1 (α) 0.0017 (0.0084317)
218540_at THTPA Thiamine triphosphatase 0.0017 
221839_s_at UBAP2 Ubiquitin associated protein 2 0.0017 
225367_at PGM2 Phosphoglucomutase 2 0.0017 
201798_s_at MYOF Myoferlin 0.0008 
203957_at E2F6 E2F transcription factor 6 0.0008 
206172_at IL13RA2 Interleukin 13 receptor, alpha 2 0.0008 
213011_s_at TPI1 Triosephosphate isomerase 1 0.0008 
213309_at PLCL2 Phospholipase C-like 2 0.0008 
215566_x_at LYPLA2 Lysophospholipase II 0.0008 
218145_at TRIB3 Tribbles homolog 3 (Drosophila) 0.0008 
219194_at SEMA4G Sema domain, immunoglobulin domain (Ig), transmembrane

domain (TM) and short cytoplasmic domain, (semaphorin) 4G
0.0008 

228253_at LOXL3 Lysyl oxidase-like 3 0.0008 
231967_at PHF20L1 PHD finger protein 20-like 1 0.0008 
238021_s_at CRNDE Colorectal neoplasia differentially expressed (non-protein coding) 0.0008 
238563_at ESTs 0.0008 
239144_at B3GAT2 β-1,3-glucuronyltransferase 2 (glucuronosyltransferase S) 0.0008 
240806_at RPL15 Ribosomal protein L15 0.0008 
243024_at ZNF789 Zinc finger protein 789 0.0008 
244688_at ESTs 0.0008 
1553645_at CCDC141 Coiled-coil domain containing 141 0.0000 
1554340_a_at C1orf187 Chromosome 1 open reading frame 187 0.0000 
1559529_at PTK2 PTK2 protein tyrosine kinase 2 0.0000 
203620_s_at FCHSD2 FCH and double SH3 domains 2 0.0000 
203834_s_at TGOLN2 Trans-golgi network protein 2 0.0000 
203930_s_at MAPT Microtubule-associated protein tau 0.0000 
205547_s_at TAGLN Transgelin 0.0000 
207198_s_at LIMS1 LIM and senescent cell antigen-like domains 1 0.0000 
211956_s_at EIF1 Eukaryotic translation initiation factor 1 0.0000 
215952_s_at OAZ1 Ornithine decarboxylase antizyme 1 0.0000 
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Further optimization of gene set predictor. To optimize the 
multigene predictor for application in clinical samples, the 
top 15 genes were selected on the basis of the strength and 
significance of their survival association as presented in Table I 
with asterix and bold, by applying the random survival forests 
model again from 82-gene set with symbol name. P-values 
for the 15-gene set selected using Kaplan-Meier curves were 
p<0.0001 (Q=30) (Fig. 3D), but were slightly worse compared 
with the entire 82-gene set. In 13 grade III cases, 1 patient was 
in the poor-prognosis group (Fig. 3C) and 2 were in the poor-
prognosis group (Fig. 3D). In 32 grade IV cases, 14 patients 
were in the good-prognosis group (Fig. 3C) and 12 were in the 
good-prognosis group (Fig. 3D).

The 15-gene profile was tested for prediction of outcome in 
the independent data set groups (Table II). Kaplan-Meier curves 
comparing groups classified by the fitted random survival forests 
model with the 15-gene model in these data set are shown in 
Fig. 4. Our signature was validated in 3 out of 4 independent 
studies, although neither the 82 nor the 15 gene list was predictive 
in the Freije dataset. The p-value of combined tests was p<0.0001, 
which indicates that the selected set of genes was significantly 
predictive. There were no differences of expression in 15 selected 
genes between anaplastic astrocytomas and anaplastic oligo-
astrocytoma or anaplastic oligodendroglioma (data not shown). 
Thus, 15 genes that have been identified as a predictor for better 
prognosis could not be the one just overexpressed in oligoden-

Table I. Continued.

Probe Symbol Description VI

217936_at ARHGAP5 Rho GTPase activating protein 5 0.0000 
218454_at PLBD1 Phospholipase B domain containing 1 0.0000 
220988_s_at C1QTNF3 C1q and tumor necrosis factor related protein 3 0.0000 
226186_at TMOD2 Tropomodulin 2 (neuronal) 0.0000 
229178_at PRTG Protogenin homolog (Gallus gallus) 0.0000 
230826_at MMD2 Monocyte to macrophage differentiation-associated 2 0.0000 
233117_at FLJ14328 fis, clone PLACE4000252 0.0000 
238360_s_at ESTs 0.0000 
55662_at C10orf76 Chromosome 10 open reading frame 76 0.0000 
200827_at PLOD1 Procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 -0.0008 
202185_at PLOD3 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 -0.0008 
202709_at FMOD Fibromodulin -0.0008 
208740_at SAP18 Sin3A-associated protein, 18 kDa -0.0008 
217933_s_at LAP3 Leucine aminopeptidase 3 -0.0008 
225986_x_at CPSF2 leavage and polyadenylation specific factor 2, 100 kDa -0.0008 
226547_at MYST3 MYST histone acetyltransferase (monocytic leukemia) 3 -0.0008 
227407_at TAPT1 Transmembrane anterior posterior transformation 1 -0.0008 
227719_at SMAD9 SMAD family member 9 -0.0008 
228906_at TET1 Tet oncogene 1 -0.0008 
230987_at ESTs -0.0008 
231031_at KGFLP2 Keratinocyte growth factor-like protein 2 -0.0008 
237817_at SSR3 Signal sequence receptor, γ (translocon-associated protein γ) -0.0008 
238603_at LOC254559 Hypothetical LOC254559 -0.0008 
201676_x_at PSMA1 Proteasome (prosome, macropain) subunit, α type, 1 -0.0017 
219648_at MREG Melanoregulin -0.0017 
221589_s_at ALDH6A1 Aldehyde dehydrogenase 6 family, member A1 -0.0017 
1554018_at GPNMB Glycoprotein (transmembrane) nmb -0.0025 
207805_s_at PSMD9 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 9 -0.0025 
212695_at CRY2 Cryptochrome 2 (photolyase-like) -0.0025 
241255_at ESTs -0.0025 
201576_s_at GLB1 Galactosidase, β 1 -0.0034 
200986_at SERPING1 Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 -0.0042 
202207_at ARL4C ADP-ribosylation factor-like 4C -0.0042 
224711_at YY1 YY1 transcription factor -0.0042 
VI, variable importance. aThe top 15 genes are shown in bold. Parenthesis in VI, the variable importance score based on reduced set of genes.
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Figure 2. Heatmap for the selected genes. The blue and red bars at the top indicate the two groups classified by the fitted random survival forests model. The heatmap 
consists of patients sorted by the estimated mortalities in the column and genes sorted by expressions in the row. The blue bar at the top represents classified patients 
as poor survivors. The red bar at the top represents classified patients as good survivors.

Figure 3. (A) Kaplan-Meier curves comparing WHO grades III and IV. (B) Comparison of groups classified by the clustering analysis based on the gene expres-
sions selected by the SAM. (C) Comparison of groups classified by the fitted random survival forests model with the 82-gene model. (D) Comparison of groups 
classified by the fitted random survival forests model with the 15-gene model.
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droglioma. The 15-gene profile only performed slightly worse 
than the 82 gene set in the Phillips et al (37), dataset. Therefore, 
the 15-gene set contains a subpopulation of genes that predict the 
survival of patients similarly to the 82-gene set.

Gene classifiers of particular biological interest. In addi-
tion to the identification of 82 genes, PI3KR1, TAGLN, and 
SERPING 1 were of particular biological interest and/or novelty. 
Their expression changes were validated by both QPCR and 
immunohistochemistry (Fig. 5). These genes were also found 
to be differentially expressed between short- (survival time 
<2 years) and long-term (survival time >2 years) survivors 
(p<0.01; Fig. 5A). A 15-gene set, was successfully validated 
by QPCR (data not shown). Representative immunohisto-
chemistry results for PI3KR1 showed positive staining on 
grade II and negative staining on grade IV tumors. TAGLN and 

SERPING 1 showed positive staining on grade IV and negative 
staining on grade II, III. PI3KR1, TAGLN, and SERPING1 
showed cytoplasmic staining (Fig. 5B).

Discussion

Several studies have been reported on gene expression profiles 
of malignant gliomas using SAM. Our study has a small number 
of samples, however, this is the first study using gene-gene inter-
actions in the gene expression prognostic classification context 
in glioma patients. We assessed the relationship between gene 
expressions and survival time by using the random survival 
forests model and it was a better classifier compared to SAM.

For this purpose, there may be several other choices for the 
statistical analysis. In Petalidis et al and Phillips et al studies 
(26,37), Pearson's correlation coefficient was used to assess 

Table IΙ. Performance of prediction in four independent data sets.

82 genes 15 genes

C. index SE 95% CI p-value C. index SE 95% CI p-value
TCGA (n=347) 0.5506 0.0188 0.5137 0.5874    0.0036 0.5547 0.0189 0.5177 0.5917    0.0019
Petalidis et al (26)
(n=57)

0.6671 0.0390 0.5907 0.7435  <0.0001 0.6771 0.0333 0.6119 0.7423  <0.0001

Phillips et al (37)
 (n=76)

0.6273 0.0400 0.5489 0.7057    0.0007 0.6213 0.0388 0.5452 0.6974    0.0009 

Freije et al (25)
(n=85)

0.5116 0.0384 0.4364 0.5869    0.3810 0.5478 0.0408 0.4678 0.6278    0.1209 

C. index, concordance index; SE, standard error; CI, confidence interval.

Figure 4. Kaplan-Meier curves comparing groups classified by the fitted random survival forests model with the 15-gene model in (A) TCGA, (B) Petalidis (26), 
(C) Phillips (37) and (D) Freije (25). 
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associations of individual genes with survival time. This disad-
vantage might be lack of consideration for censoring. As more 
appropriate method, the SAM and Rankproduct were able to 
deal with censoring. However, it is not possible to construct a 
functional form of genes representing the patient's prognosis 
used in the prediction. As discussed in Cordell et al (42), the 
functional form should contain gene by gene interaction terms. 
Although the multiple regression model such as the Cox regres-
sion model and partial least squares (PLS) used in Freije et al 
study (25) is applicable for this purpose, the correlation among 
genes may induce the multicolinearlity in the Cox model. 
The PLS is appropriate for the correlation but it is difficult to 
incorporate higher order interactions because of a finite sample 
size. The random forests method is classified into the tree-based 
method which has an advantage in detecting interaction. It has 
been developed to apply to data with several variables (genes) 
much larger than the number of patients. In this regard, the 
framework of random forests which overcomes this problem 
would be necessary in the analysis. In the overlap analysis, 
there may a few identified signatures. We consider the different 
approach to assess the relationship to survival time as the reason. 
We applied essentially the same method for variable selection to 

Diaz-Uriarte et al (43). In a recent report (44), other methods 
such as minimal depth and variable hunting were introduced 
and the applicability discussed (available in the recent version of 
randomSurvivalForest package). Their consideration was based 
on the open microarray datasets with relatively large sample 
size (the minimum was 78). Including the method in this paper, 
comparison between methods in small sample size would be 
helpful but beyond the scope of this report.

The primary role of the 82-gene and 15-gene panel for 
optimization of therapy would be to prospectively identify 
patients who are more likely to have durable survival to stan-
dard therapy. Eighty-two-gene set contains a large population 
of genes that predicts survival of patients, and the 15-gene set 
contains a subpopulation of genes that similarly predicts the 
survival of patients. Although these set of 15 and 82 genes were 
not particularly unique and that other subsets of genes would 
likely perform similarly. Among our candidate genes, two are 
of particular interest, VEGF and PI3KR1. Malignant gliomas 
display striking vascularity with high expression of vascular 
endothelial growth factor (VEGF), a key growth factor for 
new blood vessel formation (45). Also, recent clinical trials 
combining bevacizumab (an anti-VEGF-A antibody), with 

Figure 5. Expression of PI3KR1, TAGLN, and SERPING1 changes with tumor progression at both transcript and protein levels. (A) Validation of expression 
changes as assessed by QPCR expression technology. Mean expression fold changes between short- (survival time <2 years; n=30) and long-term (survival time 
>2 years; n=14) survivors. (B) Representative immunohistochemistry results for PI3KR1, TAGLN, and SERPING 1 on grade II, III, and IV tumors. PI3KR1, 
TAGLN, and SERPING1 showed cytoplasmic staining.



INTERNATIONAL JOURNAL OF ONCOLOGY  40:  721-730,  2012 729

chemotherapy reported very encouraging response rates (46). 
PI3K activates downstream target molecules such as AKT and 
the mammalian target of rapamycin (mTOR), which results in 
cell proliferation and survival of glioma cells (38,47). Ruano 
et al reported the activation of the PI3K/Akt pathway was 
survival-related in glioblastoma patients (48). The PI3K complex 
is activated by upstream signals from receptor tyrosine kinase 
(RTK), these consist of a p110α, encoded by PIK3CA, and a 
regulatory protein, p85α, encoded by PIK3R1. In a TCGA (38) 
cohort, nine PIK3R1 somatic mutations were detected among 
the 91 glioblastomas. It is speculated that spatial constraints due 
to these mutations might prevent inhibitory contact of p85α with 
p110α, causing constitutive PI3K activity. In our study, expres-
sion of PIK3R1 and patient survival were inversely co-related. 
Low expression of PIK3R1 might contribute to constitutive 
PI3K activity in malignant glioma. Thus, we are now trying to 
reveal the biological roles of the transcripts of these interesting 
candidate genes in glioma. Focal adhesion and leukocyte trans-
endothelial migration were characteristics of malignant glioma 
by GSEA analysis. These pathways are related to mesenchymal 
transformation of gliomas which is malignant phenotype of the 
disease (37,49).

Although our predictor was mainly based on cases from 
1st line nitrosourea-based chemotherapy, the results with four 
external data sets (25,26,37,38) where 1st line temozolomide-
based chemotherapy was carried out, support the universal 
performance of the predictor, irrespective of chemotherapeutic 
regimen. Survival benefit by chemotherapy is relatively small in 
most malignant gliomas; therefore it is important to elucidate the 
differences in the intrinsic biological characters of the tumors. In 
addition, genetic differences within malignant gliomas underpin 
the heterogeneity of these tumor types.

The value of gene-expression-based predictors for prognosis 
of malignant glioma patients will not be fully realized until 
additional therapies are available for patients destined to have 
poor survival following conventional chemotherapy. In this 
regard, expression profiles might not only predict the likelihood 
of long-term survival, but might also yield clues on individual 
genes involved in tumor development, progression, and response 
to therapy (37). Moreover, the ability to distinguish histologi-
cally-ambiguous gliomas will enable appropriate therapies to 
be tailored to specific tumor subtypes. Class prediction models 
based on defined molecular profiles allow classification of 
malignant gliomas in a manner that will better correlate with 
clinical outcomes. Therefore, identification of these molecular 
subclasses of glioma could greatly facilitate prognosis and our 
ability to develop effective treatment protocols.

In conclusion, we identified gene signatures associated 
with outcome in patients with glioma. Adaptation of subsets of 
these genes for use in clinical assays could result in improved 
outcome prediction. We have extended our observations in the 
validation of these signatures in independent data sets from 
other institutions. In conclusion, our profiling results will help 
to construct a new classification scheme that better assesses 
clinical malignancies.
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