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Abstract. In the post-genomic era, the main aim of cancer 
research is organizing the large amount of data on gene expres-
sion and protein abundance into a meaningful biological context. 
Performing integrated analysis of genomic and proteomic data 
sets is a challenging task. To comprehensively assess the corre-
lation between mRNA and protein expression, we focused on 
the gene set enrichment analysis, a recently described powerful 
analytical method. When the differentially expressed proteins 
in 12 colorectal cancer tissue samples were con sidered a collec-
tive set, they exhibited significant concordance with primary 
tumor gene expression data in 180 colorectal cancer tissue 
samples. We found that 53 upregulated proteins were signifi-
cantly enriched in genes exhibiting elevated gene expression 
levels (P<0.001, ES=0.53), indicating a positive correlation 
between the proteomic and transcriptomic data. Similarly, 
44 downregulated proteins were significantly enriched in 
genes exhibiting elevated gene expression levels (P<0.001, 
ES -0.65). Moreover, we applied gene set enrichment analysis 
to identify functional genetic pathways in CRC. A relatively 
large number of upregulated proteins were related to the two 
principal pathways; ECM receptor interaction was related to 
heparan sulfate proteoglycan 2 and vitronectin, and ribosome 
to RPL13, RPL27A, RPL4, RPS18, and RPS29. In conclusion, 
the integrated understanding of both genomic and proteomic 
data sets can lead to a better understanding of functional 

inference at the physiological level and potential molecular 
targets in clinical settings.

Introduction

The advent of genomic and proteomic technologies for the 
analysis of human tumor samples has now added an additional 
source of information to clinical cancer research (1). Genomic 
technologies have enabled rapid and sensitive screening for 
global and specific changes in gene expression that occur in 
hundreds of samples (2). Proteomic techniques based on mass-
spectroscopy have enabled us to characterize and quantify 
thousands of proteins, which are closely related to the phenotype 
of an organism (3). Several previous studies have individually 
analyzed proteomic and transcriptomic data. Understanding 
the relevance and consistency of each data set individually is 
difficult and time-consuming. A major task in the post-genomic 
era is organizing this large amount of data on gene expression 
and protein abundance into a meaningful biological context.

We previously reported individual studies of mRNA 
and protein expression profile using DNA microarray and 
proteomics in colorectal cancer (CRC) (4,5). We believe that 
these studies should be expanded into a global integrated 
analysis of mRNA and protein expression profiles. However, 
a major limitation is that a less than perfect correlation often 
exists between mRNA and protein expression (6,7). Variations 
between the mRNA level of a gene and its corresponding 
protein abundance can be as high as 30-fold (8). Potential 
biological reasons for the lack of correlation between mRNA 
and protein expression levels are: i) translational regulation, 
ii) differences in protein in vivo half-lives, and iii) differences 
with respect to the experimental platforms (9,10). In addi-
tion, possible reasons for this poor correlation may include 
methodological constraints that might affect the comparison 
of mRNA and protein levels. Previous studies have reported 
that the Pearson correlation coefficient and Spearman rank 
coefficient for these data ranged from 0.47 to 0.76 in bacterial 
and mammalian cells (11-13).

To comprehensively assess the correlation between mRNA 
and protein expression in CRC, in this study, we focused on a 
recently described powerful analytical method known as the 
gene set enrichment analysis (GSEA) (14). GSEA determines 
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whether members of a biological motif set (S) tend to occur 
toward the top (or bottom) of the gene list (L) by testing the 
coordinated over- or under-expression of gene sets using the 
Kolmogorov-Smirnov test over a weighted summation (14). 
We hypothesized that the GSEA approach, which was not 
controlled by different dynamic range, might be more suitable 
to evaluate the correlation between mRNA and protein levels 
than the traditional correlation coefficient analysis. Of note, 
GSEA revealed a relationship that had not been previously 
evaluated by traditional analysis.

We sought to identify potential biological regulatory 
pathways in humans in large sample size (180 CRCs data) 
using this GSEA application that is also known as the global 
analytical approach to evaluate regulatory gene sets associated 
with several biological mechanisms of cancer. We examined the 
relevance of these pathways in transcriptomic and proteomic 
analysis of upregulated proteins. Of note, several upregulated 
proteins have been found to be associated with genomic 
pathways playing an important role in carcino genesis. In 
conclusion, the integrated analysis of genomic and proteomic 
data sets can lead to a better understanding of functional 
inference at the physiological level and of potential molecular 
targets in clinical settings through identification of pathways 
and molecular subnetworks that are implicated in human CRC 
tissues.

Materials and methods

Tissue samples. CRC tissues and their adjacent normal colonic 
mucosal tissue counterparts used for 2-nitrobenzenesulfenyl 
(NBS) labeling were collected from 12 CRC patients who 
underwent surgical resection at Osaka University Hospital 
from 2003 to 2004 (clinicopathological features are described 
in Table I). For DNA microarray, samples of 180 CRC tissues 
and 40 normal colonic mucosal tissues were obtained from 
patients who underwent surgical resection at Osaka University 
Hospital from 2003 to 2006. After surgical resection, tissues 
were immediately stored at -80˚C prior to analysis. None of 
the patients received chemotherapy or radiotherapy before 
surgery. Necrotic tissue was excluded from the study and none 
of the adenomas contained a cancerous component. All normal 
tissues were histopathologically confirmed as cancer-free. 
All patients gave written informed consent; this study was 
approved by the Institutional Review Board for human tissue 
use at the Graduate School of Medicine, Osaka University.

Protein separation. Frozen tissue samples were homogenized 
in 500 ml of lysis buffer A (50 mM Tris-HCl at pH 8.0, 
100  mM NaCl, 5 mM EDTA, 1 mM PMSF, 1 mg/ml leupeptin, 
and 5 mg/ml aprotinin) on ice using a Sample Grinding kit 
(GE Healthcare, Buckinghamshire, UK). Homogenates were 
centrifuged at 100,000 x g for 60 min and supernatants were 
collected as the cytosolic fraction (CF). Pellets were washed 
twice with lysis buffer A and homogenized in 500 ml of lysis 
buffer B (2% CHAPS, 9 M urea, 50 mM Tris-HCl at pH 8.0, 
100 mM NaCl, 5 mM EDTA, 1 mM PMSF, 1 mg/ml leupeptin, 
and 5 mg/ml aprotinin); homogenates were centrifuged at 
100,000 x g for 60 min. Supernatants were collected as 2% 
CHAPS-soluble fraction (CSF). These fractionated samples 
were precipitated using the 2D-Clean-Up kit (Bio-Rad, 

Hercules, CA) and resuspended in 8 M urea and 5 mM EDTA. 
After centrifugation at 100,000 x g for 5 min, supernatants 
were collected and subjected to NBS reagent labeling. Protein 
concentration was determined using the BCA Protein Assay 
kit (Pierce, Rockford, IL) using BSA as a standard.

NBS reagent labeling, peptide fractionation, and MS measure-
ment. NBS reagent labeling was performed according to 
the manufacturer's protocol (13CNBS stable isotope labeling 
kit-N; Shimadzu Biotech, Kyoto, Japan). Normal and tumor 
tissue samples (100 mg each) were labeled with isotopically 
light and heavy NBS reagents, respectively. NBS-labeled 
samples were then mixed, reduced, alkylated, and digested 
by trypsin. NBS-labeled peptides were enriched from tryptic 
digests and fractionated using Phenyl-Sepharose, as previously 
described (15). The resulting seven fractions were combined 
into three fractions and subjected to reversed-phase liquid 
chroma tography (LC-10ADvp mHPLC system; Shimadzu), as 
previously described (16). Eluates were automatically deposited 
onto MALDI target plates by the LC spotting system (AccuSpot; 
Shimadzu). These samples were automatically analyzed by 
MALDI-TOF MS (AXIMA-CFR Plus; Shimadzu/Kratos, 
Manchester, UK) (16).

Table I. Characteristics of 12 CRC samples for proteomics and 
180 CRC samples for transcriptomics.

 12 CRC samples 180 CRC samples
 for proteomics for transcriptomics

Gender
  Male   8 111
  Female   4   69
Age
  Median (range) 68 (61-78) 67 (30-90)
Location
  Cecum   0 16
  A. Colon   3 23
  T. Colon   0 10
  D. Colon   1 10
  S. Colon   6 54
  Rectum   2 67
Tumor size (mm)
  Mean ± SD 4.4±1.8 6.7±9.9
Histological type
  Well   1   40
  Mod 11 134
  Por   0     4
  Muc   0     2
Stage
  0/I   2   18
  II   5   75
  III   5   87
  IV   0     0
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Relative quantification and identification of differentially 
expressed proteins in HCC. Relative quantification of each 
NBS-labeled peptide pair was performed using the NBS 
Analysis Software version 1.0 (Shimadzu), referring to a 
monoisotopic mass list from MASCOT Distiller version 1.1.2 
(Matrix Science), as previously described (16). Peptide pair 
ratios >1.5 fold or <0.66 fold were set as threshold values. 
The threshold value for the occurrence was set to 60% of all 
CRC patient samples in which peptide pairs were detected. 
In this manner, candidate peptides were selected and further 
subjected to MS/MS analysis (AXIMAQIT-TOF; Shimadzu/
Kratos) (16). Proteins were identified by the MASCOT MS/
MS Ion Search algorithm (version 2.0; Matrix Science) using a 
mass list generated by the MASCOT Distiller. The MASCOT 
search parameters were: trypsin digestion allowing up to two 
missed cleavages, fixed modifications of 12CNBS (or 13CNBS) 
and carbamidomethyl (C), variable modifications of oxida-
tion (M), peptide tolerance 0.3 Da, and MS/MS tolerance of 
0.5 Da. Search results with P<0.05 were defined as positive 
identifications.

Gene expression profiling. Total RNA was purified from 
180 CRC tissue samples using TRIzol reagent (Invitrogen, 
San Diego, CA), as previously described (17). Integrity of 
the RNA was assessed on the Agilent 2100 Bioanalyzer and 
RNA 6000 LabChip kits (Yokokawa Analytical Systems, 
Tokyo, Japan). Only high quality RNA with intact 18s and 
28s RNA were used for subsequent analysis. Forty RNA 
extractions from different normal colonic mucosal tissues 
were mixed and used as control reference. Extracted RNA 
samples were amplified with T7 RNA polymerase using the 
Amino Allyl MessageAmp™ aRNA kit (Ambion, Austin, TX) 
according to the manufacturer's protocol. The quality of each 
Amino Allyl-aRNA sample was checked on the Agilent 2100 
Bioanalyzer. Control and experimental aRNA samples (5 µg) 
were labeled with Cy3 and Cy5, respectively; these samples 
were then mixed, and hybridized on an oligonucleotide micro-
array covering 30,336 human probes (AceGene Human 30K; 
DNA Chip Research Inc. and Hitachi Software Engineering 
Co., Yokohama, Japan). Experimental protocol is available 
at http://www.dna-chip.co.jp/thesis/AceGeneProtocol.pdf. 
The microarrays were scanned on the ScanArray 4000 (GSI 
Lumonics, Billerica, MA). Signal values were calculated using 
the DNASIS Array Software (Hitachi Software Inc., Tokyo, 
Japan). Following background subtraction, data with low signal 
intensities were excluded from additional investigation. In each 
sample, the Cy5/Cy3 ratio values were log-transformed. Then, 
global equalization to remove a deviation of the signal inten-
sity between whole Cy3- and Cy5-fluorescence was performed 
by subtracting the median of all log (Cy5/Cy3) values from 
each log (Cy5/Cy3) value. Genes with missing values in >20% 
samples were excluded from further analysis; 24,537 genes out 
of 30,336 were analyzed.

Statistical integration of proteomics and transcriptomics. To 
investigate the correlation between mRNA and protein levels 
for a set of differentially expressed proteins, we used the 
Spearman rank coefficient and GSEA, a computational method 
that determines whether an a priori defined set of genes shows 
statistically significant and concordant differences between 

two biological states, as previously reported (14). In brief, 
using the gene expression profiles of the 180 CRC samples, 
the gene list L was ranked by calculating the mean expression 
level of each gene across all CRC samples. The differentially 
expressed proteins selected by NBS method were then mapped 
to their corresponding mRNAs and used as a test group set S  
against the ranked gene list L in GSEA analysis. Enrichment 
score (ES) of a test group set S characterizes whether the set 
S is randomly distributed across the list or falls mainly at the 
bottom or top of the list L. The null hypothesis that a test group 
set S randomly distributes across the ranked gene list L was 
tested with the Kolmogorov-Smirnov test, and the statistical 
significance value (nominal P-value) was estimated by 1000 
random permutations of the phenotype labels. In this study, 
the test group set (differentially expressed proteins set) with 
a P<0.05 of ES was considered to be statistically significant 
correlation between mRNA and protein expression.

Assessment of significantly regulated pathways in CRC. 
KEGG database (http://www.genome.jp/kegg/pathway.html) 
and GSEA 2.0.1 (a publicly available desktop application from 
the Broad Institute (http://www.broad.mit.edu/gsea/software/
software_index.html) (14) were employed to assess significantly 
regulated pathways in the 180 CRC gene expression data sets. 
In KEGG database, a test set size filter (min=15, max=500) 
was applied to 200 pathways. The enrichment score (ES) of a 
test set S and statistical significance value (nominal P-value) 
were estimated by permutations of the phenotype labels as 
described above. Test sets with a high significance (P<0.05) 
of ES were considered as potentially regulated pathways. We 
normalized the ES for each gene set to account for the size of 
the set, yielding a normalized enrichment score (NES). We then 
control the proportion of false positives by calculating the false 
discovery rate (FDR) (18) corresponding to each NES. FDR is 
the estimated probability that a set with a given NES represents 
a false positive finding; it is calculated by comparing the tails 
of observed and null distributions for NES.

Results

Proteomic profiling and identification of differentially 
expressed proteins in 12 CRC tissues. The NBS method was 
used for profiling protein expression in a set of tumor and 
normal tissue samples from 12 CRC patients. After a series of 
experiments, ~2,600-3,000 peak pairs were observed in each 
analysis. After relative quantification of each peak pair in each 
sample, 320 pairs were found to have significant alterations in 
protein expression and occurred with significant frequency in 
patients. After these peaks were subjected to MS/MS analysis, 
226 MS/MS spectra were obtained, and 156 search results were 
considered as positive identifications. In total, 128 proteins were 
confirmed as CRC-associated proteins. Of these, 71 proteins 
were upregulated and 57 proteins were downregulated in tumor 
tissue compared to those in normal tissue in CF and CSF 
analyses, respectively. Using UniPlot Protein database (http://
www.uniprot.org/) and matching Entrez Gene ID, we mapped 
these differentially expressed proteins to their corresponding 
mRNA counterparts. Finally, we focused on 53 upregulated and 
44 downregulated proteins, for which mRNA expression was 
determined by cDNA microarray analysis (Tables II and III).
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Table II. List of 53 upregulated proteins in CRC tissues and transcriptomic expression data.

Upregulated proteins in CRC tissues Symbol Entrez Average of 12 Average of 180 
  Gene ID CRCs Log2T/N CRCs Log2T/N
   ratio - proteomics ratio - transcriptomics

α1 acid glycoprotein ORM1 5004 1.19  -0.29 
β-tubulin TUBB  203068 0.79  0.32 
Apurinic endonuclease APEX1 328 1.00  0.15 
Calumenin  CALU  813 1.18  0.32 
Chaperonin1  HSPD1  3329 1.10  0.50 
Clathrin light polypeptide A  CLTA 1211 1.54  0.13 
Complement factor H  CFH  3075 0.88  -0.85 
Cysteine rich intestinal protein 1  CRIP1  1396 0.58  -0.30 
Cytokeratin 18 KRT18  3875 1.46  0.31 
Ezrin  EZR 7430 0.99  -0.38 
F-box protein 40 FBXO40  51725 1.30  0.00 
Fibrinogen γ FGG  2266 0.97  -0.07 
Galectin 1 LGALS1  3956 0.90  0.83 
Glutathione peroxidase 1 GPX1  2876 0.67  0.36 
Golgi complex-associated protein 1 ACBD3 64746 1.05  0.12 
Heat shock 70 kD protein 9B HSPA9  3313 1.10  -0.18 
Heat shock protein 27 HSPB1  3315 1.14  0.23 
Heparan sulfate proteoglycan 2 HSPG2  3339 0.98  0.06 
High density lipoprotein-binding protein HDLBP  3069 0.71  0.22 
HLA-C  HLA-C  3107 0.73  -0.35 
Hypothetical protein FLJ38663 C12orf65  91574 0.75  -0.38 
Inorganic pyrophosphatase  PPA1  5464 1.24  0.67 
Mitogen inducible gene 2 protein FERMT2  10979 0.71  -0.19 
Plastin 2 LCP1  3936 1.03  -0.09 
Plectin 1 PLEC1  5339 0.84  -0.07 
Proteasome subunit p58 PSMD3  5709 0.73  0.21 
Pyruvate kinase 3  PKM2  5315 0.93  0.36 
RAB22A  RAB22A  57403 0.78  0.11 
RACK1 GNB2L1  10399 0.83  0.13 
Radixin RDX  5962 0.84  -0.27 
RAN, member RAS oncogene family  RAN  5901 0.83  0.52 
Reticulocalbin 1 RCN1  5954 1.32  0.63 
Ribosomal protein L13 RPL13  6137 1.48  0.59 
Ribosomal protein L27a  RPL27A  6157 0.95  0.20 
Ribosomal protein L4 RPL4  6124 0.93  0.16 
Ribosomal protein S18  RPS18  6222 1.25  0.26 
Ribosomal protein S29  RPS29  6235 0.68  0.10 
Ribosome binding protein 1  RRBP1  6238 0.80  0.08 
S adenosylhomocysteine hydrolase  AHCY  191 1.22  0.77 
S100 calcium binding protein A9  S100A9  6280 1.06  0.68 
Solute carrier family 25, member 5  SLC25A5  292 0.84  -0.26 
Solute carrier family 3, member 2 SLC3A2  6520 0.85  0.41 
Splicing factor 3B, subunit 3  SF3B3  23450 1.24  0.34 
Splicing factor, arginine/serine-rich 3 (SRp20) SFRS3  6428 0.81  -0.13 
Transgelin  TAGLN  6876 0.80  0.18 
Transgelin 2  TAGLN2  8407 1.00  0.41 
Triosephosphate isomerase 1 TPI1  7167 0.99  0.21 
Ubiquitin-activating enzyme 1 UBE1 7317 0.90  0.24 
U5 snRNP-specific protein, 116 kD  EFTUD2  9343 1.19  0.34 
Vimentin VIM  7431 0.97  -0.09 
Vitronectin  VTN  7448 0.70  -0.02 
XTP3 transactivatied protein A XTP3TPA 79077 1.06 0.18
Zyxin ZYX  7791 1.03  0.63 
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Spearman rank coefficient between mRNA and protein 
expression in CRC. Fig. 1 illustrates our experimental design 
for correlation analysis. We initially investigated the extent to 
which expression data at the protein and mRNA levels were 
correlated in CRC using traditional correlation coefficient 
approach. The identified differentially expressed proteins, the 
expression ratios for these upregulated and down-regulated 
proteins, and the expression ratios for each corresponding 
mRNA transcript are provided in Tables II and III. Fig. 2A and 
B show the expression ratios of uniquely identified proteins 
plotted against ratios of the products of the corresponding genes 
at the mRNA level. A nonparametric correlation analysis of the 
experimental data using Spearman rank correlation method 
gave a correlation coefficient of 0.36 for up-regulated proteins 
data, and a correlation coefficient of 0.28 for down-regulated 
proteins data. This indicates a poor correlation between mRNA 
and protein expression ratios.

Evaluation of the correlation between mRNA and protein 
expression using GSEA. Next, we integrated proteomic data 
and global transcriptomic data to examine the correlation 
between mRNA and protein levels using GSEA approach. We 
focused on the 53 up-regulated and 44 down-regulated proteins 
shown in Tables II and III. To map these differentially expressed 
proteins to their corresponding mRNA counterparts, we used 
the Entrez Gene ID and UniPlot Protein database (http://www.
uniprot.org/). Then, 24,537 genes after processing were ranked 
according to their magnitude of differential gene expression 
in 180 CRC tissues, obtained by microarray and analyzed 
using GSEA to examine the distribution of the 53 up-regulated 
proteins. We found that the 53 up-regulated proteins were 
significantly enriched in genes exhibiting elevated gene expres-
sion levels (P<0.001, ES=0.53), indicating a positive correlation 
between proteomic and transcriptomic data (Fig. 3A). Similarly, 
the 44 down-regulated proteins were significantly enriched 
in genes exhibiting elevated gene expression levels (P<0.001, 
ES -0.65), indicating a positive correlation between proteomic 
and transcriptomic data (Fig. 3B).

Identification of characteristic genomic pathways and poten-
tial regulatory proteins associated with CRC tissues. After 

defining the differentially expressed proteins in 180 CRC 
tissues, the challenge was to objectively interpret potential 
biological mechanisms. We performed GSEA to identify 
functional genetic pathways (KEGG database; http://www.
genome.jp/kegg/pathway.html) that correlate with the entire 
ranked gene list from 180 CRC tissues, sorted by their 
magnitude of differential gene expression. Of the 200 gene 
sets that contained genes whose products were involved in 
specific metabolic and signaling pathways, 12 were signifi-
cantly enriched with nominal P<0.05, as shown in Table IV. 
Among the molecules within these 12 pathways in KEGG 
database, we found several up-regulated proteins obtained 
by NBS analysis. In particular, a relatively large number 
of up-regulated proteins were related to the principal two 
pathways; ECM receptor interaction was related to HSPG2 
and VTN, and ribosome to RPL13, RPL27A, RPL4, RPS18, 
and RPS29.

Figure 1. The schematic of our experimental design for correlation analysis. 
From NBS-based proteomics using 12 CRC tissues, expression data of 53 
up-regulated and 44 down-regulated proteins were obtained. From DNA 
microarray using 180 CRC tissues, 24,536 gene expression profiles were 
obtained. We investigated the correlation between mRNA and protein 
levels for a set of differentially expressed proteins, using the Spearman 
rank coefficient and GSEA.

Figure 2. Correlation between mRNA and protein expression levels in CRC, using the Spearman rank coefficient. Expression values are plotted on a log scale. 
The dotted lines indicate the correlation trend. (A) mRNA-protein correlation for expression values of 53 upregulated proteins. (B) mRNA-protein correlation 
for expression values of 44 down-regulated proteins.
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Discussion

The recent availability of platform technologies for high 
throughput transcriptomics and proteomics has led to inte-
grated approaches to cancer research. Integrated analysis of 

global scale transcriptomics and proteomics data can provide 
important insights into the biological mechanisms underlying 
complex physiological processes (19). However, it is difficult 
to accurately evaluate their correlation using the conventional 
correlation coefficient analysis, which deals with a fold change 

Table III. List of 44 down-regulated proteins in CRC tissues and trancriptomic expression data.

Down-regulated proteins in CRC tissues Symbol Entrez Average of 12 Average of 180 
  Gene ID CRCs Log2T/N CRCs Log2T/N
   ratio - proteomics ratio - transcriptomics

α1 acid glycoprotein ORM1 5004 1.19  -0.29 
ADP ribosylation factor like 10C ARL8B 55207 -0.97  -0.06 
Aldehyde dehydrogenase 2 ALDH2 217 -0.84  -0.05 
ATP synthase, H+ transporting,  ATP5H 10476 -1.44  -0.57 
mitochondrial F0 complex, subunit d
ATP binding cassette transporter ABCA12 26154 -1.09  -0.18 
subfamily A member 12 
Calreticulin CALR 811 -0.54  0.11 
Carbonic anhydrase Ⅱ CA2 760 -1.90  -2.65 
Carbonyl reductase 1 CBR1 873 -0.60  0.05 
Cathepsin S CTSS 1520 -0.81  -0.77 
Collagen type 12 α-1 COL12A1 1303 -0.69  0.23 
Creatine kinase-B CKB 1152 -0.67  -1.58 
Cysteine rich protein 1 CSRP1 1465 -0.92  -0.13 
Dynein light chain 1 DYNLL1 8655 -0.89  -0.04 
Endoplasmic-reticulum-lumenal protein 29 ERP29 10961 -0.72  -0.16 
Endoplasmic-reticulum-lumenal protein 46 TXNDC5 81567 -1.10  -0.35 
Enoyl CoA hydratase 1 ECHS1 1892 -1.18  -0.44 
Eukaryotic translation elongation factor 2 EEF2 1938 -0.95  0.27 
Eukaryotic translation initiation factor 3 subunit 6 EIF3S6 3646 -1.61  0.27 
FHL1 (skeltal muscle LIM-protein) FHL1 2273 -1.16  -0.37 
Gelsolin isoform a GSN 2934 -0.98  -0.68 
Glucosamine-fructose-6-phosphate aminotransferase 1 GFPT1 2673 -0.83  -0.19 
GTP-binding protein Rab1 RAB1A 5861 -0.64  -0.46 
Haptoglobin HP 3240 -1.04  -0.10 
Heterogeneous nuclear ribonucleoprotein A2 /B1 HNRPA2B1 3181 -0.72  0.02 
Hydroxymethylglutaryl-CoA synthase, mitochondrial HMGCS2 3158 -1.44  -0.94 
Isocitrate dehydrogenase 1 IDH1 3417 -2.91  -0.57 
JM5 protein WDR45 11152 -0.64  0.25 
Major vault protein MVP 9961 -0.56  -0.14 
Myeloperoxidase MPO 4353 -0.55  -0.04 
Myozenin 3 MYOZ3 91977 -0.73  -0.22 
NADH Ubiquinone oxidoreductase subunit B13 NDUFA5 4698 -1.15  -0.50 
Normal mucosa of esophagus specific 1 C15orf48 84419 -1.34  -1.88 
Olfactomedin 4 OLFM4 10562 -0.61  -0.49 
Phosphoenolpyruvate calboxykinase 2 PCK2 5106 -0.68  -0.55 
Phosphoglycerate mutase 1 PGAM1 5223 -1.59  -0.02 
Proline arginine-rich end leucine-rich repeat protein PRELP 5549 -1.40  -0.12 
Protein kinase C and casein kinase substrate in neurons 2 PACSIN2 11252 -0.66  -0.16 
Pyridoxine 5-prime-phosphate oxidase PNPO 55163 -1.72  -0.11 
Ras associated protein Rab5B RAB5B 5869 -0.70  -0.11 
Retinoblastoma binding protein 4, 7 RBBP4/RBBP7 5928/5931 -0.70  0.02 
Succinate dehydrogenase complex,  SDHA 6389 -0.71  -0.35 
subunit A, flavoprotein
Transferrin TF 7018 -0.85  -0.11 
UDP-glucose dehydrogenase UGDH 7358 -0.83  -1.03 
Valosin containing protein VCP 7415 -0.95  -0.09 
Villin 1 VIL1 7429 -2.18  -0.30 
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level in individual gene and protein expression. Most recent 
studies have either failed to find a correlation between protein 
and mRNA abundance (6) or have observed only a weak corre-
lation (9,12). The reason is that the correlation between protein 
abundance and mRNA expression level depends on various 
biological processes and technical factors. With regard to 
biological processes, transcription and translation do not have 
a linear and simple relationship (20). Regulatory proteins and 
sRNAs also act as translational modulators (21). The half-live 
of an individual protein and the protein turnover are undoubt-

edly influencing the correlation between mRNA and protein 
expression to a considerable degree (22).

In this study, we assumed that development of a sophisticated 
statistical approach was essential to overcome these limitations. 
To assess the correlation between mRNA and protein expres-
sion, we tried the novel approach of GSEA that deals with entire 
genes represented by an array as ranked gene list ordered by 
phenotypic correlation (14,23). As expected, the conventional 
Spearman rank coefficient showed only a weak correlation. In 
GSEA, when differentially expressed proteins were treated as 

Figure 3. Enrichment plots for (A) 53 up-regulated proteins and (B) 44 down-regulated proteins in 12 CRC tissues. Top, the running enrichment score for the 
protein set, as the analysis sweeps through the entire ranked list organized on the basis of their magnitude of differential gene expression in 180 CRC tissues. 
The score at the peak of the plot is the enrichment score (ES) for the protein set. Middle, members of the protein set appear in a ranked list of genes. Bottom, 
the value of the ranking metric along the list of ranked genes.

Table IV. Significantly enriched genomic pathways of the KEGG database.

KEGG pathways  Size NES NOM P-val FDR q-val  NBS up-regulated proteins 

ECM receptor interaction 73 2.44 <0.001 <0.001 HSPG2, VTN
Ribosome 59 2.40 <0.001 <0.001 RPL13, RPL27A, RPL4, RPS18, RPS29
Cell communication 99 2.13 <0.001 <0.001
Focal adhesion 167 1.97 <0.001 0.003  VTN, ZYX 
Toll-like receptor signaling pathway 78 1.78 <0.001 0.028
RNA polymerase 18 1.76 0.006 0.029
Cell cycle 100 1.67 0.004 0.068
Proteasome 22 1.65 0.023 0.071  PSMD3 
WNT signaling pathway 117 1.56 <0.001 0.120
Aminoacyl-tRNA biosynthesis 36 1.47 0.040  0.225
Folate biosynthesis 36 1.42 0.050  0.245
Cytokine cytokine receptor interaction 187 1.42 0.014  0.232

GSEA was performed using gene sets from KEGG database. List of the top 12 gene sets enriched in the ranked gene list of 180 CRCs with 
nominal P-value <0.05. The gene list is sorted by FDR q-val in ascending order. ES; enrichment score, NES; normalized enrichment score, 
FDR; false discovery rate.
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a collective set, significant concordance was observed with 
primary tumor gene expression data.

In the present study, NBS method also plays a role in 
improving the precision of correlation analysis. This method is 
based on stable isotope labeling of tryptophan residues by NBS 
reagents. As previously described (15,24), this novel method 
has two major advantages: it reduces the number of peptides 
by selecting NBS-labeled tryptophan-containing peptides 
from bulk tryptic digests and a special matrix is used for 
MALDI-TOF MS measurements that can detect NBS-labeled 
peptides with high sensitivity. Therefore, this method could 
improve proteome mining by increasing the dynamic range 
of detection, and it shows potential for quantitative proteome 
analysis (25,26).

As a following step, GSEA enabled us to identify 12 
potentially regulated genetic pathways in CRC. Cell-ECM 
(extracellular matrix) interaction is an essential mechanism 
in several biological processes, such as cell proliferation, 
migration, differentiation, apoptosis, as well as carcino-
genesis (27,28). CRC cells invade the stroma as coherent cell 
nests instead of single cells (29,30). Of the molecules within 
ECM interaction pathway, HSPG2 and VTN were revealed as 
potential key modulators by NBS-based proteomics. HSPG2, 
the large prominent heparan sulfate proteoglycan of extracel-
lular matrices, is known as a component that may participate 
in ECM interaction (31). Within the matrix, vitronectin can 
support cellular adhesion through interactions with integrins 
(32). In addition, vitronectin is a major component of the 
stroma of primary hepatocellular carcinoma and metastatic 
hepatic tumors including colorectal hepatic metastases (32,33).

The ribosome pathway is essential for protein synthesis. 
The increased overall ribosome biogenesis is a well-known 
common feature of active proliferation, and the proliferation 
rate of tumor cells is higher than that of normal ones (34). 
Ribosomal proteins (RPs) showed different expression patterns: 
not all RPs increased in the same tumor or tissue, and the same 
RP was expressed differentially in different tumors or different 
stages of diseases (35). In our study, of the molecules within 
Ribosomal proteins, RPL13, RPL27A, RPL4, RPS18, and 
RPS29 were up-regulated at the protein level. Previous studies 
on CRC revealed extraribosomal functions for these proteins 
including self-translation regulation, development regulation, 
and tumor suppressor gene regulation (36,37).

The assumption of GSEA is that functional gene sets 
with significantly high expression coherence suggest puta-
tive functionality. It must be noted that annotated functions 
of gene sets with higher expression coherence do not always 
directly correspond with the actual biological functions (38). 
Nonetheless, several physiological cellular responses require 
simultaneous participation of gene products, and genes with 
central roles are likely to have similar regulatory control and 
expression patterns (39,40). Comparative analysis also showed 
that coexpression patterns of many functionally related genes 
are conserved across diverse species (41). Thus, most gene 
sets with significantly high expression coherence, if not all, 
might represent key molecular functions of the corresponding 
expression profiles.

In conclusion, we performed an integrated analysis of 
mRNA and protein expression data in CRC. Overall, significant 
correlation was observed between changes in mRNA and protein 

levels that were consistent with the expectation that a substantial 
proportion of changes in protein would be a consequence of 
changes in mRNA levels rather than post-transcriptional effects. 
Our identified regulatory signatures of mRNA and protein levels 
might be able to enhance the understanding of carcinogenesis 
and cancer proliferation and lead to the elucidation of novel 
molecular targets in the clinical field.
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