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Abstract. The matrix metalloproteinase (MMP) family 
members play an important role in various physiological and 
pathological processes. Although MMP-1 (collagenase-1) has 
been shown to be involved in tumor invasiveness, the regu-
lation of its expression is still not fully elucidated and could 
implicate epigenetic mechanisms. The aim of this study was 
to analyze the effects of the Histone Deacetylase Inhibitor 
(HDI) trichostatin A (TSA) and the inhibitor of DNA 
methylation 5-aza-2'-deoxycytidine (5-azadC) on the 
proMMP-1 expression in the human HT1080 fibrosarcoma 
cell line. Real-time RT-PCR revealed that 5-azadC or 5-azadC 
+ TSA but not TSA alone, despite global histone H4 hyper-
acetylation, increased proMMP-1 mRNA levels. This 
transcription activation was correlated with chromatin 
decondensation determined by nuclear texture image analysis 
technique. Western blot analysis of cell culture conditioned 
media revealed a significant increase in proMMP-1 secretion 
after 5-azadC or 5-azadC + TSA treatment compared to 
untreated cells. These results suggested that epigenetic 
mechanisms could be involved in proMMP-1 gene expression 
including chromatin supra-organization changes. Indeed, 
although the proMMP-1 gene promoter does not appear to 
contain CpG islands, its expression can be induced by the 
demethylating agent 5-azadC. Further experiments revealed 
that inhibition of protein neosynthesis by cycloheximide 
decreased 5-azadC-induced proMMP-1 mRNA, suggesting 
that epigenetically regulated intermediate molecules could be 
involved in proMMP-1 expression regulation in these cells.

Introduction

Matrix metalloproteinases (MMPs) are zinc depending endo-
peptidases involved in the modeling and remodeling of tissue. 

The degradation of Extra Cellular Matrix (ECM) macromole-
cules such as collagens, fibronectin, laminin, and proteoglycans 
by MMPs plays a crucial role in physiological and pathological 
processes (1). MMP-1 (collagenase-1) is the most ubiquitous 
interstitial collagenase and is able to initiate the breakdown of 
types I, II and III collagens (2,3). Matrix modeling by MMP-1 
is considerably implicated in embryonic development, tissue 
morphogenesis and wound repair (4). Furthermore, MMP-1 
overexpression is associated with several pathological conditions 
such as irreversible degradation of cartilage, tendon and bone 
in arthritis, and tumor invasion and metastasis (5-7). Trans-
criptional activation of proMMP-1 has been extensively studied, 
whereas the mechanisms involved in its expression remain 
largely unclear (7,8).

Accumulating evidence highlights the important role of 
epigenetic mechanisms in the regulation of various genes that 
determine the biologic behavior of cells (9-11). DNA methylation 
and post-translational modifications of histones appear as two 
of the main mechanisms of chromatin remodeling regulating 
the accessibility of DNA to transcriptional machinery (12). 
DNA methylation/demethylation, which involves DNA methyl-
transferases (DNMTs) and demethylases, occurs on the C5 of 
cytosine in CpG islands often located in or near the promoter 
region of approximately 50% of genes. In malignancies, DNA 
methylation is frequently dysregulated. By interfering with 
the transcription initiation, the methylation of CpG islands 
inhibits gene expression and then represses suppressor tumor 
genes (13). The covalent modifications of the nucleosome core 
histones H3, H4, H2A and H2B consist in the addition on their 
N terminal tails of various groups (methyl, acetyl, phosphoryl, 
ubiquitin, etc). The most characterized modification is the 
acetylation/deacetylation catalyzed by the Histone Acetyl 
Transferases (HATs) and the Histone Deacetylases (HDACs). 
The transfer of acetyl group modifies the affinity between DNA 
and histones and then modulates chromatin condensation. 
Thereby, acetylation of histones may induce the activation of 
gene transcription (14). Furthermore, there is substantial 
evidence that a key link exists between cytosine methylation 
and post-translational modification of histones (15-17).

It has been established that the proMMP-1 gene expression 
requires chromatin remodeling in part via histone post-
translational modifications (18-22). A previous study showed 
that proMMP-1 gene expression induced by TPA in T98G 
cells involved a dynamic and ordered recruitment of enzymes 
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allowing H3/H4 acetylation, H3K4 di-and trimethylation, H3S10 
phosphorylation and chromatin opening (22). Furthermore, it 
was shown that the production of MMP-1, in rheumatoid 
arthritis, is mediated by small ubiquitin-like modifier (SUMO) 
which triggers HDAC4 allowing histone hyperacetylation and 
gene expression (20,21). However, the potential role of DNA 
methylation in the regulation of proMMP-1 expression remained 
unclear.

The aim of this study was therefore to analyze the effects 
of the inhibitor of DNA methylation 5-aza-2'-deoxycytidine 
(5-azadC) and the Histone Deacetylase Inhibitor (HDI) tricho-
statin A (TSA) on the proMMP-1 expression, both at the 
mRNA and protein levels. By using nuclear texture image, 
the relationships between higher-order chromatin supra-
organization and proMMP-1 gene expression were also 
analyzed.

Materials and methods

Cell culture and treatment. Human fibrosarcoma HT1080 
cells (ATCC, CCL-121) were grown at 37˚C in RMPI medium 
supplemented with 10% fetal calf serum (FCS), 100 U/ml 
penicillin and 100 µg/ml streptomycin in a humidified 95% 
air, 5% C02 atmosphere. Before stimulation, cells were washed 
twice with PBS, and then incubated in serum-free medium for 
24 h. Cells were treated or not 2 or 5 µM of 5-aza-2'-deoxycy-
tidine (5-azadC) and/or 100 ng/ml of trichostatin A (TSA) 
and/or 10 µg/ml of cycloheximide (CHx) for the indicated 
times.

ProMMP-1 gene expression analysis. After stimulation, cells 
were washed twice in ice-cold PBS and total RNAs were 
isolated using TRIzol reagent (Invitrogen). For quantitative 
RT-PCR, 1 µg of RNA was reverse transcribed using MMLV 
reverse transcriptase (Invitrogen), and each cDNA sample was 
analyzed by real-time PCR using Platinium SYBR Green 
qPCR SuperMix-UDG kit (Invitrogen) on the LightCycler 
system (Roche Diagnostics). ProMMP-1 transcripts were 
amplified using the following primers: proMMP-1 forward 
5'-GAGCAAACACATCTGACCTACAGGA-3'; proMMP-1 
reverse 5'-TTGTCCCGATGATCTCCCCTGACA-3'. Relative 
quantification was performed by using the housekeeping gene 
β2macroglobulin as a reference: β2m forward 5'-ATCTTCAA 
ACCTCCATGATG-3'; β2m reverse 5'-ACCCCCACTGAAAA 
AGATGA-3'.

ProMMP-1 Western blot analysis. Cells culture media were 
harvested and concentrated using Amicon Ultra centrifugal 
filters (Millipore). Total proteins (35 µg) were heated 5 min at 
100˚C in Laemmli sample buffer, separated on 10% SDS 
PAGE under reducing conditions and transferred to PVDF 
membrane by using I-Blot system (Invitrogen). The membranes 
were placed in blocking solution [5% (w/v) Blotto in Tris-
Βuffered-Saline/Tween 20] for 2 h at room temperature and 
incubated overnight at 4˚C with anti-MMP-1 (Mouse, Ab-1, 
Calbiochem/Merck, 1:1000) or anti-β-actin (Mouse, clone 
AC-15, Sigma Aldrich, 1:10000) primary antibodies. Proteins 
were revealed using a peroxydase-conjugated secondary anti-
body (Goat anti-mouse IgG, Millipore, 1:10000) and the ECL 
Plus detection kit (Amersham).

Histone extraction and immunoblotting. Histones were acid 
extracted with HCl and precipitated with aceton. Total histones 
(15 µg) were separated on 15% SDS PAGE and transferred to 
PVDF membrane. The membranes were blocked during 2 h 
and incubated overnight with a primary antibody against 
acetylated total histone H4 (Rabbit, 06-866, Upstate, 1:2,000) 
and a peroxydase-conjugated anti rabbit secondary antibody 
(GE Healthcore, 1:100,000).

Image cytometry. Cells were grown and treated with TSA in 
LabTek chambered slides (Nunc). Cells were air-dried and fixed 
in alcohol-formalin mixture (95% ethanol, 3% formaldehyde 
in saline 3:1). After 5N HCl hydrolysis, slides were stained by 
the Feulgen method. Image cytometry was performed as 
described with an image analysis system (SAMBA 2005, 
Samba Technologies) coupled to a color 3CCD camera 
(xC-007P, Sony Corp. Japan) and a microscope (Axioscop, 
Karl Zeiss) (23). G0/G1 nuclei were extracted as previously 
reported (23). Nine texture parameters were computed from 
G0/G1 nuclei after reduction to 16 gray levels by linear rescaling. 
Four features were calculated on the gray levels co-occurrence 
matrix: local mean of gray levels (LM), energy (E), entropy 
(ENT), and inertia (I). Five parameters were calculated on the 
run-length matrix: short run-length emphasis (SRE), long 
run-length emphasis (LRE), gray level distribution (GLD), 
run-length distribution (RLD) and run-length percentage (RPC). 
The distribution, mean, and SD of the nuclear parameters were 
calculated for each cell population.

In order to perform multiple cell groups comparisons, a 
deviation index was calculated, by computing, for each para-
meter measured in a given nucleus, the difference in value to 
the feature value observed in control untreated nuclei (24). 
These differences are then standardized by dividing them by 
the corresponding standard deviations in the control cells data 
sets. Significance of the differences between indexes values 
was estimated by t-test after Bonferroni correction for multiple 
variables. Another data reduction method is computing an 
average nuclear abnormality index (NAI) which was calculated 
for each cell line as the arithmetic mean of the absolute values 
of the deviation indexes (z-scores) observed overall included 
features for all nuclei in a data set (24,25).

Statistical analysis. All experiments were performed in tripli-
cate. Results are expressed as mean ± SEM. Statistical analysis 
was realized using Kruskal-Wallis test except otherwise 
specified. The results were considered significantly different 
when p<0.05.

Results

Epigenetic modulation of proMMP-1 gene expression. In 
order to know whether DNA methylation mechanisms could 
be involved in proMMP-1 gene expression, fibrosarcoma 
HT1080 cells were treated with the DNA methylation inhibitor 
5-azadC (2 or 5 µM) and/or the Histone Deacetylase Inhibitor 
(HDI) TSA (100 ng/ml) for various times. Levels of endogenous 
proMMP-1 mRNA were monitored by real-time RT-PCR. 
Compared to control cells, TSA induced histone H4 acetylation 
after 0.5 h of treatment but did not modulate proMMP-1 
mRNA levels (Fig. 1A and B). After 48 h of treatment with 2 or 
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5 µM of 5-azadC, proMMP-1 gene expression was increased 
(6-fold increased, p<0.05). ProMMP-1 expression was further 
increased after 72 h of 5-azadC treatment (30-fold increased 
with 2 µM p<0.05, 45-fold increased with 5 µM p<0.05) 
(Fig. 1C). When cells were simultaneously treated with TSA 

(100 ng/ml 24 h) and 5-azadC (2 or 5 µM 72 h), proMMP-1 
was strongly expressed (70-fold increased with 2 µM, 100-fold 
increased with 5 µM) compared to 5-azadC alone (Fig. 1D).

Nuclear texture. To examine the effects of these drugs on 
nuclear phenotype, image cytometry was performed on G0/G1 

nuclei of HT1080 cells treated by TSA (100 ng/ml 24 h) and/
or 5-azadC (5 µM 72 h). As shown in Fig. 2, these treatments 
induced significant chromatin higher-order organization changes, 
as evaluated by NAI computing. Moreover, simultaneous treat-
ments with 5-azadC and TSA resulted in a synergistic effect 
on nuclear phenotypic alterations. In 5-azadC treated cells, 
analysis of individual deviation indexes (Table I) revealed that 
these changes corresponded to a global chromatin decon-
densation, as evidenced by a decrease in LM, with a less 
compact (increase in E, decreases in ENT and I) and more 
homogeneously and finely distributed chromatin (decreases in 
SRE and RPC, increases in LRE and GLD). The intensity of 
these changes was further increased by TSA addition. On the 
other hand, TSA alone induced a very slight but significant 
decompaction of chromatin (increase in E) which appeared 
containing reduced heterochromatin areas (increase in LRE, 
decrease in RPC).

Analysis of proMMP-1 secretion. To correlate gene expression 
with protein secretion after treatment by epigenetic modulators, 
Western blot analysis was performed on cell conditioned media. 

Figure 1. Effects of 5-azadC and TSA on proMMP-1 gene expression. HT1080 cells were treated or not with TSA (100 ng/ml), 5-azadC (2 or 5 µM), or both 
drugs for various times as indicated on the figures. (A) Histones were acid extracted and Western blotting using total acetylated H4 histone antibody was 
performed. (B-D) Levels of endogenous mRNA were monitored by real-time RT-PCR. β2microglobulin (β2m) was used as internal control. Results are expressed 
as the mean ± SEM of normalized ratio proMMP-1/β2m.*p<0.05 (Kruskal Wallis statistical test).

Figure 2. Effects of 5-azadC and TSA on chromatin supraorganization. 
HT1080 cells were treated or not with TSA (100 ng/ml 24 h) and/or 5-azadC 
(5 µM 72 h). After Feulgen staining, 9 nuclear texture features were analyzed 
on G0/G1 nuclei using image cytometry. Results are expressed as nuclear 
abnormality index. *p<0.05 (t-test after Bonferonni correction).
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The results show that TSA alone did not induce proMMP-1 secre-
tion (Fig. 3A). 5-azadC or 5-azadC and TSA induced proMMP-1 
secretion in supernatants (Fig. 3B). However, the association of 
both drugs induced a weaker secretion than 5-azadC alone.

Indirect epigenetic regulation of proMMP-1 expression. Despite 
its induction by 5-azadC, proMMP-1 gene does not contain 
CpG islands. In order to investigate if other intermediate 
molecules could be involved in the regulation of proMMP-1 

Table I. Values of deviation indexes in 5-azadC and TSA 
treated HT1080 cell nuclei.

 Treatments

Parameters TSA 5-azadC 5-azadC + TSA

LM -0.09±0.06 -1.94±0.03a -2.17±0.02a,b

E  0.21±0.05  2.81±0.08a  4.36±0.13a,b

ENT -0.13±0.05 -2.19±0.04a -2.84±0.04a,b

I -0.14±0.06 -1.26±0.04a -1.68±0.02a,b

SRE -0.14±0.06 -1.42±0.02a -1.96±0.02a,b

LRE  0.46±0.06a  1.84±0.05a  3.74±0.10a,b

GLD  0.02±0.05  2.64±0.06a  3.64±0.08a,b

RLD -0.13±0.06 -1.40±0.02a -1.90±0.02a,b

RPC -0.29±0.05a -1.58±0.03a -2.34±0.03a,b

Values are expressed as mean ± SEM. ap<0.05 as compared to control 
untreated cells (t-test after Bonferroni correction). bp<0.05 as compared 
to 5-azadC alone (t-test after Bonferroni correction).

Figure 3. Effects of 5-azadC and TSA on proMMP-1 secretion. HT1080 cells 
were treated or not with TSA and/or 5-azadC as indicated on the figures. (A 
and B) Western blot analyses of cell concentrated conditioned media: 35 µg 
of total proteins were analyzed. Panel A (lane 1), recombinant proMMP-1 was 
used as positive control. 

Figure 4. Effect of protein neosynthesis inhibition on proMMP-1 mRNA and protein levels. HT1080 cells were treated or not with 5-azadC and/or CHx as 
indicated in the figures. (A) Western blot analysis of cell-concentrated conditioned media: 35 µg of total proteins were analyzed. (B) Real-time RT-PCR of 
proMMP-1 mRNA. β2microglobulin (β2m) was used as internal control. Results are expressed as the mean ± SEM of normalized ratio proMMP-1/β2m. 
*p<0.05 as compared to CHx untreated cells values (Kruskal Wallis statistical test).
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expression, the neosynthesis of proteins was blocked with 
cycloheximide (CHx). HT1080 were treated or not with 5-azadC 
(5 µM 72 h) and CHx (10 µg/ml 25 h). CHx totally abolished 
proMMP-1 secretion induced by 5-azadC, thus confirming 
the efficiency of the CHX treatment (Fig. 4A), and reduced 
strongly proMMP-1 mRNA levels up to 72 h (Fig. 4B).

Discussion

In most tumor cells, proMMP-1 mRNA levels are very low 
but can be induced by a wide variety of stimuli (7,8,26-28). 
For instance, interleukin-1β, UV radiations or phorbol esters, 
increase proMMP-1 gene expression through histone post-
translational modifications (22,29). In this study we observed 
that accumulation of hyperacetylated histones is not a 
sufficient trigger to enhance either proMMP-1 gene expression 
or chromatin global decondensation in HT1080 fibrosarcoma 
cells. Similarly, it was previously reported that an increase in 
histone acetylation level, induced by HDI treatment, did not 
seem to have any effect on unstimulated levels of MMPs 
whereas it could enhance already stimulated MMP production 
(30). This suggests that HDI effects could target the signaling 
pathways induced by exogenous stimuli (e.g., inflammatory 
cytokines, growth factors and phorbol esters) rather than the 
proMMP-1 gene itself.

These histone post-translational modifications are only one 
possible mechanism and accumulating evidence supports 
epigenetic cross-talk between DNA methylation and histone 
modifications in the regulation of gene expression (31). During 
this cross-talk, DNA methylation appears to be the initial 
signal that triggers events leading to non-permissive chromatin. 
In HT1080 cells, we showed that a treatment with the DNA 
demethylating agent 5-azadC induced a global chromatin 
decondensation and an increase in proMMP-1 expression. 
Interestingly, this gene promoter, unlike other MMPs, does 
not appear to contain CpG islands (32), suggesting that 5-azadC 
effects occur via either demethylation of other genes, or 
different mechanisms (33). Moreover, histone hyperacetylation 
by TSA activates proMMP-1 expression only after chromatin 
demethylation and both epigenetic mechanisms display 
synergistic effects on gene expression and nuclear architecture 
alteration. These ordered re-expression and synergy, involving 
DNMTs, MBDs and HDACs (16,34), have been reported with 
other genes (35-38), but not concerning the proMMP-1 gene.

The simultaneous treatment with TSA increased proMMP-1 
mRNA levels, but surprisingly, decreased MMP-1 protein 
secretion. Such a TSA-induced decrease in MMP-1 secretion 
was also observed in mesenchymal cells treated with IL-1β 
(30). Post-transcriptional regulatory processes including 
mRNA stability, protein translational efficiency, and 
microRNA-based mechanisms have been recently described 
as modulators of MMPs expression (39). Several non-histone 
proteins have been identified as acetylation targets and hyper-
acetylation of these proteins could play important roles in the 
mRNA stability regulation, protein localization and 
degradation, and protein-protein and protein-DNA inter-
actions. HDI treatment may thus destabilize mRNA and 
decrease the resulting protein level, as reported here for 
proMMP-1 (40,41). Indeed the MMP mRNA transcripts 
harbor specific sequences in their 5' or 3' untranslated regions 

(UTRs) which are potential targets of regulatory proteins 
involved in mRNA stability (39). On the other hand, HDI 
treatment may activate miRNA expression and modulate 
tumor cell invasiveness (42-45). For instance, miR22 was 
shown to be upregulated by TSA treatment but not by 5-azadC 
(42). Target sequence analyses revealed that this TSA-inducible 
miRNA could target and potentially repress proMMP-1 
expression. Therefore it could play, as many other miRNAs, a 
significant role in the regulation of proMMP-1 expression 
(43).

Finally, inhibition of protein neosynthesis abolishes the 
5-azadC-induced proMMP-1 mRNA increase, a phenomenon 
not observed for MMP-2 or MMP-9 genes (data not shown). 
These data suggest that some intermediary molecules could 
be involved in the regulation of proMMP-1 gene expression 
and that their production could be specifically triggered by 
DNA demethylation. For instance, proMMP-1 expression could 
be mediated by autocrine mechanisms (46) involving cytokines 
and growth factors (7) whose expression in HT1080 cells could 
be upregulated by 5-azadC.

Identification of such proMMP-1 inducers could therefore 
shed new light on the impact of epigenetic regulation on 
invasive properties of cancer cells.
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