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Abstract. Clinically, our ability to predict disease outcome 
for patients with early stage lung cancer is currently poor. To 
address this issue, tumour specimens were collected at surgery 
from non-small cell lung cancer (NSCLC) patients as part of 
the European Early Lung Cancer (EUELC) consortium. The 
patients were followed-up for three years post-surgery and 
patients who suffered progressive disease (PD, tumour recur-
rence, metastasis or a second primary) or remained disease-free 
(DF) during follow-up were identified. RNA from both tumour 
and adjacent-normal lung tissue was extracted from patients and 
subjected to microarray expression profiling. These samples 
included 36 adenocarcinomas and 23 squamous cell carci-
nomas from both PD and DF patients. The microarray data 
was subject to a series of systematic bioinformatics analyses 
at gene, network and transcription factor levels. The focus of 
these analyses was 2-fold: firstly to determine whether there 
were specific biomarkers capable of differentiating between PD 
and DF patients, and secondly, to identify molecular networks 
which may contribute to the progressive tumour phenotype. 
The experimental design and analyses performed permitted 
the clear differentiation between PD and DF patients using a 

set of biomarkers implicated in neuroendocrine signalling and 
allowed the inference of a set of transcription factors whose 
activity may differ according to disease outcome. Potential links 
between the biomarkers, the transcription factors and the genes 
p21/CDKN1A and Myc, which have previously been implicated 
in NSCLC development, were revealed by a combination of 
pathway analysis and microarray meta-analysis. These findings 
suggest that neuroendocrine-related genes, potentially driven 
through p21/CDKN1A and Myc, are closely linked to whether 
or not a NSCLC patient will have poor clinical outcome.

Introduction

Cancer of the lung kills more patients than any other cancer 
worldwide. In 2008 in England and Wales, it accounted for 
24% of all male cancer deaths and 20% of all female cancer 
deaths (1), representing 6% of all deaths in the UK. The two 
main clinically relevant subtypes of lung cancer are small-cell 
lung cancer (SCLC) and non-small cell lung cancer (NSCLC). 
The latter can be histologically subclassified into adenocarci-
noma, squamous cell carcinoma and large-cell carcinoma (2).

The European Early Lung Cancer (EUELC) consortium 
(3) comprises 12 centres in eight European countries: France, 
Germany, Ireland, Italy, the Netherlands, Poland, Spain and 
the UK. Through the EUELC, more than 900 non-small cell 
lung cancer (NSCLC) patients were recruited from around 
Europe, and their specimens were stored at the European 
Bronchial Tissue Bank based at the Roy Castle Lung Cancer 
Research Programme in Liverpool. The NSCLC patients were 
followed-up for 36 months.

One of the aims of the consortium was to ascertain whether 
alterations in gene expression caused by lung carcinogenesis are 
detectable at an early stage in the respiratory epithelium and 
whether these changes can be used to predict disease outcome. 
To this end, the consortium developed a nested case/control 
study to search for molecular-pathological differences seen in 
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those patients whose cancer was seen to re-occur (PD, progres-
sive disease) and those who remained disease-free (DF) in the 
study period. The PD classification included patients in which 
tumour recurrence, metastasis, or a second primary tumour was 
observed (3). It was hypothesized that expression profiling of 
the RNA from these tumours may identify an expression signa-
ture associated with lung cancer patients with a poor disease 
outcome.

Tissue was taken from patients after surgical resection for 
lung cancer (3). The tumour specimens included both cancer 
cells and non-cancer cells from adjacent tissue. RNA from 
cancer cells and adjacent normal cells was isolated, enabling 
comparisons between expression profiles of cancer and adjacent 
normal lung tissue. This allowed one to control for field effects 
(such as inflammatory signals) that are typical of the lung tumour 
environment, but not intrinsic to transformed lung cells. The PD 
patients were matched to DF patients based on follow-up time 
(at least as long as the event time of PD subjects), centre, gender, 
age (± 6 years), and histology/nodal stage. In total this EUELC 
genome wide expression profiling dataset contains 59 patients 
with 41,672 candidate transcripts. It is from this dataset that we 
have looked for markers able to distinguish between patients 
who remained disease-free compared with those that developed 
a recurrence of the cancer.

A number of studies have used tumour tissue to predict 
post-surgery disease outcome, either based on histology (4,5), 
microarray data (6-9), or the expression levels of specific genes, 
proteins, and immune markers (10-12). In particular, molecules 
such as neurone-specific enolase (13) and p21/CDKN1A (14,15) 
have been associated with poor prognosis. Moreover, several 
studies have identified markers of neuroendocrine differentia-
tion in NSCLC and have associated this molecular phenotype 
to increased tumour recurrence (reviewed in ref. 16). Indeed, 
the frequent presence of neuroendocrine markers in NSCLC 
samples has led to discussions regarding how such cancers 
should be classified (17).

In this study we have chosen to take an agnostic approach 
to the analysis, using a combination of machine learning, bioin-
formatics and pathway analysis, essentially a systems strategy, 
to examine the EUELC expression dataset. The aim was to 
identify markers of disease outcome in the data, using machine 
learning and text mining, that relate to biological processes, 
discovered through network and pathway analysis, which may 
be characteristic of a progressive tumour phenotype and poten-
tially useful for the clinical management of patients.

Methods and Results

i) Trancriptional analysis and biomarker discovery
Transcriptional analysis. Tumour samples were taken from 
patients from the EUELC cohort which had undergone curative 
surgery. High quality RNA (Agilent - RIN > 6), from frozen 
tumour samples was profiled by Oxford Gene Technology (3). 
Normal samples were taken from pooled samples of tissue 
proximal to the tumours. Total RNA (1 µg) was labeled using 
low input RNA Amp kit (Agilent 5184-3523). Lung cancer RNAs 
were labeled with Cy3 and were hybridised with a Cy5 reference 
sample labeled from RNA consisting of a 50:50 mix of Universal 
human reference (Stratagene 740000) and a Human lung cell line 
(Ambion AM7864). The labeled samples were then hybridised to 

Agilent 44k human whole genome oligo microarrays (Agilent 
G4112A).

EUELC collaboration pathologists classified the tumours 
as being of either squamous cell carcinoma or adenocarcinoma 
origin. Patient records were then used to determine whether 
these were from patients who remained disease-free (DF) or 
suffered a cancer recurrence (PD, progressive disease) over 
the 3-year follow-up period. There were therefore 8 classes of 
data within the study, represented as: adenocarcinoma progres-
sive disease cancer (Ac

pd); adenocarcinoma disease-free cancer 
(Ac

df); squamous cell carcinoma progressive disease cancer 
(Sc

pd); squamous cell carcinoma disease-free cancer (Sc
df); and 

the adjacent normals to each sample (An
pd, An

df, Sn
pd, Sn

df). The 
numbers of distinct samples in each group is shown in Table I.

The microarray data was normalized using a standard 
Lowess normalisation (18) in the MaxD software (19) to produce 
a set of log expression data. Within the data there were a 
significant number of missing values across the complete data 
set (~5%) affecting more than 2000 probes. The missing values 
were imputed using a standard missing value imputation [mean 
imputation (20)].

Log ratios of expression values between the cancers and 
adjacent normal groups were evaluated by subtracting the log 
of the expression values of the adjacent normal tissue from 
each of the appropriate log cancer expression datasets. This 
generated 4 new datasets: log(Apd) = log(Ac

pd) - log(An
pd); log(Adf) 

= log(Ac
df) - log(An

df); log(Spd) = log(Sc
pd) - log(Sn

pd); log(Sdf) = 
log(Sc

df) - log(Sn
df). Each of these datasets represents the differ-

ences in gene expression between each type of cancer in the 
dataset and the adjacent normal tissue to that cancer.

In order to gain a deeper understanding of the data we 
performed a principal components analysis (PCA) of the data, 
projecting the experimental data into a low dimensional vector 
space. The PCA plot of the data is shown in Fig. 1. It is particu-
larly striking that the data can be clearly separated in two distinct 
ways: i) based on tumour histology (squamous or adenocarci-
noma); and ii) based on disease outcome - that is, whether the 
cancer that will recur (PD) or not (DF) within 3 years of surgery. 
This suggests that it should be possible to identify markers within 
the dataset which will allow us to predict whether a given cancer 
belongs to the PD or DF groups.

Biomarker discovery. Biomarkers selection technique was 
performed using a standard machine learning strategy. Five sepa-
rate algorithms were used to identify genes that differentiated 
between the PD and DF classes using a leave-one-out cross-vali-
dation strategy. Each method provided a ranking of the genes as 
to their ability to separate samples between the two classes based 
on different assumptions as to the underlying nature of the data. 
A majority rule strategy was then used to select the set of genes 
which performed consistently across all 5 methods. This analysis 
provided a set of the 23 genes selected (shown in Fig. 2). A heat 
map analysis (Fig. 2) clearly shows that these genes do provide a 
mechanism for separating the two classes of patient data (DF or 
PD) and that these genes appear to function similarly in patients 
classified as having a squamous or adenocarcinoma phenotype.

A simple pathway analysis was performed (enrichment for 
particular gene pathways in the KEGG database performed 
using the DAVID software). This analysis showed a very 
significant enrichment for genes linked to neuroendocrine path-
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ways (specifically RIT2, MTNR1A, GNG3, CNTN2, VHLL, 
PTHR2, GPR50 and TPH2) - which was surprising given the 
small number of genes identified in the biomarker set from the 
machine learning analysis.

ii) Network and pathway analysis
Network analysis. The biomarker analysis above provides 
some insights into the cancer processes. However, if we are 
to understand what might be driving these changes it would 
be desirable to understand the fundamentals of regulatory 
machinery, whether there are any hints as to changes in the 
transcriptional regulatory machinery between DF and PD 
patient samples. We have therefore performed comprehensive 
analyses of the transcriptional machinery using some recently 
developed theoretical tools (21). We consider that there are a 
number of components involved in transcription regulation: a) 
a set of genes and associated transcription factor binding sites 
(cis-regulatory regions); b) a set of TF proteins that bind to the 
cis-regulatory regions to regulate gene expression; c) a network 

Figure 1. Principal components of the normalised microarray dataset. Second 
and third principal components separate lung tumours from patients exhibited 
progressive disease, or remained disease-free, during follow-up. SCC, squa-
mous cell carcinoma.

Figure 2. Gene expression profiles for genes which distinguish post-operative prognosis. Heat map of the four lung cancer classes considered: adenocarcinoma 
with progressive disease; adenocarcinoma with disease-free follow-up period; squamous cell carcinoma with progressive disease; squamous cell carcinoma 
with disease-free follow-up period.
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Table I. EUELC PD & DF specimens selected for expression profiling

 Adenocarcinoma Squamous cell carcinoma
 ------------------------------------------------------------------------------------------------------------ ----------------------------------------------------------------------------------------------------------------
 Progressive disease Disease-free Progressive disease Disease-free
 --------------------------------------------- ----------------------------------------------- ---------------------------------------------- -------------------------------------------------
Normal Cancer Normal Cancer Normal Cancer Normal Cancer

3 17 3 19 2 10 2 13

B, Tumour specimens PD v DF matching, pathology, RIN and pTNM staging

 Adenocarcinoma Squamous cell carcinoma
 ---------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------
Patient ID PD matching RNA/RIN pTNM Patient ID PD matching RNA/RIN pTNM

A-002  8.5 T2N0 B-032  5 T2N0
A-041 A-002 7 T1N0 B-015 B-032 6.9 T2N0

B-025  9 T1N0 B-043  7.1 T2N1
B-031 B-025 6.1 T1N0 B-021 B-043 5.5 T1N1
B-042 B-025 8.8 T2N0 B-005 B-043 6.3 T2N1

B-035  6.4 T2N0 C-053  7.1 T2N0
B-018 B-035 7 T2N0 C-009 C-053 6.8 T2N0
B-022 B-035 6.7 T1N0 
    E-031  7.4 T2N0
B-048  6.1 T2N0 E-034 E-031 8.2 T2N0
B-047 B-048 6.4 T1N0 E-069 E-031 6.2 T2N0
B-009 B-048 6.5 T1N0 
    F-008  5.1 T2N0
C-019  5 T2N0 F-046 F-008 7.4 T1N0
C-068 C-019 7.5 T1N0 
    B-003  7.6 T2N1
D-028  6.4 T2N0 B-027 B-003 9.2 T1N1
D-123 D-028 6.8 T1N0 
    B-029  9.3 T2N1
D-033  7.2 T2N0 B-006 B-032 8.8 T2N0
D-001 D-033 6 T1N0 
    B-050  N/A T3N1
D-067  6.9 T1N0 B-033 B-043 8.7 T2N1
D-059 D-067 7 T1N0 
D-069 D-067 6.6 T1N0 C-022  7.1 T2N0
    C-030 C-002 7.1 T1N0
E-042  5.1 T2N0 
E-041 E-042 6.4 T2N0 D-131  8.5 T3N1
E-046 E-042 6.8 T2N0 D-096 D-131 7.8 T2N1

D-105  7 T2N1 F-062  9.5 T2N1
D-077 D-105 6.7 T1N1 F-030 F-062 5 T1N1

01-016  7.8 T2N0
01-011 01-016 8.4 T1N0
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describing the interactions between genes and transcription 
factors; and d) the measured set of gene expression profiles. 
The inputs of the circuits (a and b) are processed on the circuit 
architecture (c) to generate the output (d).

A mathematical model (22) which attempts to describe the 
relations of the four components in the transcriptional regulatory 
circuits was applied to infer the TF activity and concentration 
levels. We can represent the log gene expression measurements 
(the output of the regulatory circuits) as a vector ε where each 
element of the vector represents the signal from a different gene. 
The connection between TFs and genes can be represented as 
a binary matrix τ in which the rows and columns represent the 
genes and TFs (connection topology). α is a matrix that captures 
the strength of the interaction between TFs for their target gene. 
λ is the vector of concentrations of each of the TFs (the input: 
TFs), and ν is a vector of independent and identically distributed 
variables modeling the noise in the system. We can therefore 
model gene expression in the form: ε = ατλ + ν.

Given a knowledge of cis-regulatory regions τ and gene 
expression results ε, the model can be used to infer α and λ - 
giving us a predictive model of the underlying TF concentrations 
and interactions underlying the measured response. Differences 
in these between DF and PD patients can provide useful insights 
into the differences in TF activity in patients whose cancer does 

or does not recur. In particular we are interested in situations in 
which the activity of a TF changes, not just because it changes 
in concentration, but as a result of a change in its state - for 
example because of a change in the cofactors or phosphorylation 
state. To capture this we look at the ratio between the activity 
level of the TFs (α) and the concentration, λ. We therefore define 
a new variable, the scaled total interaction, for each transcrip-
tion factor, f, that sums its total effect across all the genes with 
which it interacts, scaled by the its concentration:

The total scaled interaction can be calculated for every TF in the 
dataset in each of the cancer datasets. In particular we can look 
at this factor as a function of whether a tissue is from the normal 
or cancer set, this provides information on TFs have different 
activation states between the cancer and normal tissues. 
Similarly we can look the set of data from the DF and PD popu-
lations. In particular we calculated two new parameters for each 
TF: fx = σf (cancer) - σf (normal) and fy = σf (PD) - σf (DF).

By plotting these two variables we can easily identify TFs 
that change activation in cancer versus normal tissues and 

Table I. Continued.
C, Normal pooled samples for PD and DF

Normal pool ID Patient ID PD matching PD/DF Gender Patient diagnosis RIN

PD1 C-028 C-028 PD Male Adenocarcinoma 6.8
PD1 C-075 C-075 PD Male Adenocarcinoma 7.6
PD1 A-025 A-025 PD Male Adenocarcinoma 8.9
PD2 B-048 B-048 PD Female Adenocarcinoma 6.7
PD2 C-059 C-059 PD Male Adenocarcinoma 7.4
PD2 C-049 C-049 PD Male Adenocarcinoma 7.2
PD3 F-062 F-062 PD Male SCC 6
PD3 G-024 G-024 PD Male SCC 7
PD3 C-069 C-069 PD Male SCC 5.7
PD4 B-043 B-043 PD Male SCC 6.8
PD4 C-053 C-053 PD Male SCC 7.8
PD4 C-033 C-033 PD Male SCC 7.2
DF1 B-009 B-079 DF Female Adenocarcinoma 7
DF1 B-047 B-048 DF Female Adenocarcinoma 7.3
DF1 D-001 D-033 DF Male Adenocarcinoma 6
DF2 C-087 C-113 DF Male Adenocarcinoma 6.2
DF2 D-070 D-033 DF Male Adenocarcinoma 5.3
DF2 C-060 C-109 DF Male Adenocarcinoma 7.6
DF3 E-034 E-031 DF Male SCC 7
DF3 D-065 D-057 DF Male SCC 7.2
DF3 B-005 B-003 DF Male SCC 6.8
DF4 E-069 E-031 DF Male SCC 8.1
DF4 C-022 C-002 DF Male SCC 5.5
DF4 C-030 C-002 DF Male SCC 6.1
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between the PD and DF patients. The results of this analysis are 
presented in Fig. 3.

The computational pipeline, therefore, has enabled the 
analysis of TFs which appear to be strongly related to the 
progressive disease versus disease-free phenotypes. Fig. 3 
provides a global view of the TFs responsive levels for the lung 
cancer as it presents all changes across two types of cells (TF 
states) and two groups of patients (TF preferences) in a single 
shot image. The major TFs which have been up-regulated in the 
cancer cells are MAZ, SP1, PAX4, NF-AT, YY1, LEF1. The 
strongly activated TFs in the normal cells included MEIS1, 
IRF1 (Fig. 3). Interestingly, the up-regulated TFs in the cancer 
cells have preference to the progressive disease phenotypes. In 
contrast, the active TFs in normal cells are found in disease-free 
phenotypes.

Figure 3. Global view of transcription factor activities in both adenocarcinoma 
and squamous cell carcinoma. TF-activity changes between cancer and normal 
tissue (x-axis) and between PD and DF tumours (y-axis) are indicated. Origin-
proximal TFs are unaffected by either cancer or patient group. TFs in the 
upper-right upregulate target genes in cancer cells and PD patients, those in the 
lower left upregulate their targets in normal cells and DF patients.

Figure 4. Functional interaction network for activated transcription factors and differentially expressed transcripts in PD. Network nodes are coloured according 
to gene/protein groupings: functional markers (pink, PD-upregulated; dark blue, PD-downregulated); predicted TFs (red/orange, high/moderate activation in PD; 
light blue, suppressed in PD). Connections of first- and second-order with cAMP are shown in dark and light blue, respectively. White nodes were absent from the 
input lists but included by the network constructing software.
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Methods for pathway analysis. To study a relationship between 
the revealed functions we used Ingenuity Pathway Analysis 
(IPA) (23,24) software. The biological information in IPA is 
created by text mining tools, and the data retrieved from the 
major protein-protein interaction databases and the literature 
can be used to construct networks based on functional connec-
tivity between different molecules. IPA also allows the direct 
projection of physiologically and pathologically relevant data 
onto biological networks and pathways.

Links between biomarkers and known biological information. 
To study the relationship between the predicted TFs and known 
biological functions, we constructed a list of HUGO gene 
symbols corresponding to up- and down-regulated differential 
PD markers and predicted highly up-regulated TFs. This list 
was used as input to the Ingenuity database of protein and meta-
bolic interactions from which a network comprising the marker 
functions and the predicted TFs was generated (Fig. 4). IPA soft-
ware included a few additional nodes to construct a continuous 
network by connecting otherwise isolated parts of the dataset. 
The process of connectivity reconstruction is entirely automatic 
and thus helps to reveal functionally important hubs that may be 
central to an integral network. Ca2+, cAMP-response module, 
histones 3 and 4, P300 and a group of cell cycle regulating func-
tions present such additional nodes in a network that connects 
PD marker functions to the predicted TFs, with only 7 from 
50 integrated functions not being connected to a central cAMP 
hub by either the first or the second order interactions. Fig. 5 
shows details of a functional connection between PTHR2 and 
cAMP. It also schematically shows cross-talk between markers 
for progression (red boxes) and demonstrates their relation to 
neuronal physiology.

When marker functions were combined with all predicted 
TFs as input to Ingenuity, a c-myc centred network was obtained 
(Fig. 6). Meta-analysis of previously published expression data 
using Genevestigator software (25) identified a correlation 
between the expression of PD differential markers and the pres-
ence of active Myc. Fig. 7 demonstrates average relative levels of 
expression of the chosen PD markers across a variety of condi-

tions. As can be seen, c-myc depletion causes the activation of 
almost all of the PD functional gene markers. Conversely, p73 
overexpression leads to the downregulation of PD markers.

Transcription factor network. TFs enriched in the promoters 
for those genes which were differentially expressed in PD were 
identified. To discern whether functional relationships between 
these proteins exist, the corresponding gene symbols were used 
as input to Ingenuity. All of the TFs had interactions of first 
order with at least one other member of the group or with the 
TF Myc. Notably, from the 18 TF considered 10 had a direct 
functional relationship with Myc (Fig. 6).

A subset of 10 TFs that were highly enriched for the promoters 
of the same PD-regulated genes leads to another smaller network 
centred around CDKN1A/p21 (Fig. 8). HUGO symbols for the 
10 selected TFs and all of the protein-protein, functional and 
genetic interactions in the Ingenuity database were used to auto-
matically construct this network. Within the set of 10 TFs, 7 had 
a direct functional link to CDKN1A/p21.

Discussion

In this study, tumour expression profiles were used to charac-
terise the 3-year cancer-free survival of lung cancer patients 
after surgery. System-wide analysis of mRNA expression in the 
context of transcriptional and regulatory networks identified 
several candidate markers for tumour progression and potential 
mechanisms for their persistent upregulation. This hierarchical 
application of bioinformatics to modelling tumour expression 
profiles highlighted a role for neuroendocrine signalling in 
progressive adenocarcinoma and squamous cell carcinoma of 
the lung.

Neuroendocrine genes as markers of progressive tumours. 
The nervous system controls physiological events through the 
neuroendocrine system, a network of hormone releasing glands. 
In the lung, pulmonary neuroendocrine cells are involved in 
lung morphogenesis and the serotonin-mediated response to 
hypoxia (26). Neuroendocrine tumours derived from these cells, 

Figure 5. Connections between differentially-expressed PD markers and ontologies characteristic of neuronal function. Details of a functional connection between 
PTH2R and cAMP, and cross-talk between PD differential markers (red figures) are shown.
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Figure 6. Myc-centred transcription factor network. Network linking the transcription factors with the greatest differential activity in PD tumours (red/orange, 
highly/moderately activated TFs; blue, suppressed TFs). First-order connections to Myc are shown in blue. Functional categories and selected ontologies are 
projected onto the network.

Figure 7. c-Myc and p73 regulate the neurosecretory PD markers. Fragment 
of an expression profile meta-analysis heat map illustrates the effect of c-Myc 
depletion and p73 overexpression on the expression of a subset of the PD dif-
ferential markers. All affymetrix arrays with human gene sets were selected as 
input to Genevestigator. Red/green, elevated/diminished expression following 
treatment.

Figure 8. Highly regulated transcription factors have multiple functional con-
nections with p21/CDKN1A. A network was constructed around the TFs which 
were most highly activated (red) or suppressed (blue) in PD tumours. White 
nodes were added automatically during the network construction process.
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including large cell neuroendocrine carcinoma (LCNEC) and 
many small-cell lung cancers (SCLC), are well established (27). 
Indeed, neuroendocrine markers, such as chromogranin, are 
used to histologically classify LCNEC and SCLC (27). Our 
observation that certain neuroendocrine markers are elevated 
in recurrent NSCLC suggests that this system may need to be 
expanded to prevent the misclassification of NSCLC tumours. In 
support of this, the clinical aggressiveness of adenocarcinomas 
that contain a subpopulation of neuroendocrine cells has previ-
ously been suggested (28,29).

Our initial evidence for a connection between neuroen-
docrine markers and the progressive tumour phenotype came 
from the expression levels of specific neuroendocrine genes. 
Of the 23 genes which were robust in discriminating PD from 
DF expression profiles, 8 are involved in neuroendocrine 
phenomena. For example, TPH2 encodes a key enzyme in sero-
tonin synthesis (30) and MTNR1A, a melatonin receptor gene, 
regulates circadian rhythm and hormone release (31). Potential 
biomarkers which have roles in more typical cancer-associated 
pathways (motility/apoptosis/growth factor signalling) were 
also identified in this screen, however, the neuroendocrine 
features of progressive tumours were further supported by our 
results on transcriptional control, discussed presently.

Transcriptional networks contributing to the progressive 
phenotype. Transcription factor activities (for normal, cancer, 
PD and DF samples) were inferred using TF-gene connectivi-
ties and the whole microarray dataset. Interestingly, many of 
the most selective TFs for the progressive phenotype have 
previously been implicated in neuroendocrine cell physiology 
and/or cell transformation/proliferation, despite not having 
focussed solely on the potential PD biomarkers in this analysis. 
For example, SP1 mediates the expression of the neuroendo-
crine marker chromogranin B (32), PDX1/IPF1 and PAX4 
expression is controlled by the neuron-restrictive silencer 
element [which suppresses the expression of neural genes in 
most non-neural tissues; (33)] and the OCT1/2/3 transcription 
factors have roles throughout the neuroendocrine system (34). 
Notably, OCT2 mediates the differentiation of neuroendocrine 
brain cells. The activated TFs SOX9 and MAZ have elevated 
activity in prostate cancer (35,36), the latter playing a role in 
prostate neuroendocrine cancer and also the SP1-dependent 
regulation of parathyroid hormone-related peptide receptor 
expression (37). The potential function of the MAZ/SP1-PTHR 
pathway in the persistence of the progressive phenotype, in light 
of the expression of parathyroid hormone-like peptides by all 
major lung cancer cell types (38), is discussed later. Conversely, 
MEIS1 and IRF1, whose activity was down-regulated in 
progressive tumours, are known tumour suppressors (39,40), 
albeit through roles in leukaemia and the immune system, 
respectively. Finally, LEF1 is known to enhance the metastatic 
potential of lung adenocarcinoma cells (41). Since the activity 
of this WNT/TCF pathway component was strongly predictive 
for lung cancer, but did not discriminate PD from DF, it is 
anticipated that additional pro-metastatic genes/proteins may 
be required for recurrence in PD tumours.

Persistence networks of progressive cancer cells. There are a 
multitude of differences between any given pair of lung tumours, 
manifested at molecular, cellular and histological levels. Our 

analysis, however, shows that consistent changes (for example, 
in apoptotic or neuroendocrine genes) occur within PD tumours 
that distinguish them from matched DF counterparts. Convergent 
cellular mechanisms that allow the transformed phenotype to 
persist after surgery and which mediate the robust expression 
of our biomarker set in this heterogeneous background may 
therefore exist and potential mechanisms were identified though 
meta-analysis of published microarray studies and network 
analysis methods.

Genevestigator software demonstrated a negative correla-
tion of Myc expression and p73 activation with 5 and 6 of our 
PD markers, respectively. Myc and p73 could, therefore, have an 
important role in regulating this cluster of genes. p73 isoforms 
have either pro- or antiapoptotic function (42), the p73 locus 
(1p36.33) is frequently deleted in squamous cell carcinoma (43) 
and induction of p73 has been shown to inhibit the proliferation 
of p53-mutant cells (44). Indeed, Myc has been shown to enhance 
p73 expression (45) and expression of dominant-negative p73 
isoforms in patients with mutant-p53 ovarian cancer is associ-
ated with worse recurrence-free survival (46). Nonetheless, the 
possibility that the inhibition of a p73/Myc-based pathway could 
play a role in progressive lung cancer needs further verification.

Further support for a role of altered Myc signalling in PD 
tumours came from pathway analysis (Fig. 6). Many connec-
tions are observed from the PD-activated transcription factors 
to Myc and CDKN1A (which encodes p21; Fig. 8), suggesting 
Myc and CDKN1A as direct targets of these TFs in tumours 
that have a high probability of progression. Several studies 
have shown that lung tumours expressing low levels of p21 are 
associated with poor clinical outcome (15,47-49). p21 activa-
tion decreases cellular proliferation and decreases apoptosis in 
airway epithelial cells (50), although p21 may be proapoptotic 
under different cellular contexts (51,52). Sp1, which was one of 
the transcription factors most associated with PD tumours, is 
known to repress p21 expression in the presence of Myc and the 
histone deacetylase HDAC1 (52). Sp1 binds to its own promoter 
(see later), which may ensure its stable upregulation in progres-
sive tumours.

The neuroendocrine markers (TPH2, RIT2, CNTN2, GPG3, 
PTH2R) exhibit close links with cAMP and Ca++ signalling. 
TPH2 is a rate-limiting enzyme in serotonin biosynthesis whose 
expression is itself regulated by cAMP in a manner dependent 
on the cancer-associated TF complex NF-Y/SP1 (30). Autocrine 
or paracrine signalling by serotonin or parathyroid hormone (via 
PTH2R) could sustain cellular cAMP levels and the expression 
of the neuroendocrine genes. Interestingly, cAMP, Ca++ and our 
PD-enriched TFs also interact with G2/M controlling proteins 
Rb, Cdc2 and Cyclin A.

Auto-regulatory TFs that were suggested by analysis of 
promoters and our transcription network include YY1, IRF1, 
SP1 and NF-Y (data not shown). The latter pair have previ-
ously been shown to form an autoregulatory transcription loop. 
MAZ, CREB, NF-Y and SP1 interact with histones and the 
histone acetylation/methylation machinery (Fig. 6). Epigenetic 
mechanisms and stable autoregulatory transcriptional loops 
may provide a further means for self-sustained growth of an 
established transformed phenotype after tumour resection. Since 
progressive tumours may develop at a distance from the original 
tumour, this internal rewiring of the epigenetic and transcrip-
tional machinery may desensitise progressive tumour cells to the 
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altered environment encountered by mobile transformed lung 
cancer cells. This hypothesis, though intriguing, requires further 
testing in vivo.

Collectively, our systematic analyses provided a list of 
potential biomarkers for lung cancer recurrence or prognosis 
which require validation in a separate set of PD/DF samples. 
This identified 23 genes, a series of transcription factors 
(Fig. 3). When combined with known biological information, 
these genes/proteins provide a comprehensive understanding 
of changes in the regulatory processes underlying lung cancer. 
Several of the genes were involved in serotonin homeostasis 
and its regulatory pathways. Strong links between the identi-
fied biomarkers, transcriptional autoactivation and epigenetic 
processes were evident and may have implications for the 
understanding of cancer. 

In conclusion, the analyses performed suggest that neuroen-
docrine signalling may have a role in the survival of aggressive 
lung cancer cells, and that the neuroendocrine phenotype may 
be connected to cancer-associated dysregulation of Myc and 
CDKN1A/p21.
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